

Addition & Alterations Department of Public Works 10 Hartford Road Delran, NJ 08060

PROJECT NO. 2241869 CPU PROJECT NO. CPU-25-0009A

for the

Burlington County Board of County Commissioners 49 Rancocas Road Mount Holly, New Jersey 08060

VOLUME NO. 2

GENERAL DOCUMENTS AND SPECIFICATIONS

April 25, 2025

PREPARED BY:

NETTA ARCHITECTS 1084 Route 22 West Mountainside, NJ 07092

SECTION 00010 TABLE OF CONTENTS

TABLE OF CONTENTS – VOLUME 1

DIVISION 0 -	BIDDING REQUIREMENTS, CONTRACT FORMS AND CONDITIONS OF THE
	CONTRACT

Table of Contents	
Project Summary	00050-1 to 2
Instructions to Bidders	00100-1 to 5
Burlington County General Conditions	00300-1 to 48
Bidders Checklist	00400-1
Bid Form	00410-1 to 5
Bid Guarantee Form	00420-1
Consent of Surety Form	00430-1
Ownership Statement	00440-1
Non Collusion Certification	00450-1
Qualifications Questionnaire	00460-1
Form of Agreement	00470-1 to 2
Performance and Payment Bond Form	00480-1 to 2
Disclosure Statement and Certification	00490-1 to 3
Public Works Registration	00500-1
Release of Lien Form	00510-1 to 2
Affirmative Action	00520-1 to 5
Prevailing Wage Rates / Listed Contractors and Subcontractors	00530-1
Business Registration Certificate	00540-1
Americans with Disabilities Act	00550-1
Responsible Contractor Policy	00560-1
Non-Debarment Certification	00600-1
Anti-Discrimination Agreement	00700-1
	Project Summary Instructions to Bidders Burlington County General Conditions Bidders Checklist Bid Form Bid Guarantee Form Consent of Surety Form Ownership Statement Non Collusion Certification Qualifications Questionnaire Form of Agreement Performance and Payment Bond Form Disclosure Statement and Certification Public Works Registration Release of Lien Form Affirmative Action Prevailing Wage Rates / Listed Contractors and Subcontractors Business Registration Certificate Americans with Disabilities Act Responsible Contractor Policy Non-Debarment Certification

DIVISION 00 – PROCUREMENT AND CONTRACTING REQUIREMENTS

DIVISION 01 – GENERAL REQUIREMENTS

SECTION 011000	Summary
SECTION 012100	Allowances
SECTION 012500	Substitution Procedures
SECTION 012600	Contract Modification Procedures
SECTION 012900	Payment Procedures
SECTION 013100	Project Management and Coordination
SECTION 013200	Construction Progress Documentation
SECTION 013233	Photographic Documentation
SECTION 013300	Submittal Procedures
SECTION 013516	Alteration Project Procedures
SECTION 014000	Quality Requirements
SECTION 014200	References

Addition & Alterations
Department of Public Works
10 Hartford Road
Delran, NJ
April 25, 2025

TABLE OF CONTENTS

SECTION 015000 Temporary Facilities and Controls

SECTION 016000 Product Requirements
SECTION 017100 Cleaning and Restoration

SECTION 017113 Mobilization SECTION 017300 Execution

SECTION 017419 Construction Waste Management & Disposal

SECTION 017700 Closeout Procedures

SECTION 017823 Operation and Maintenance Data

SECTION 017839 Project Record documents

SECTION 018119 Indoor Air Quality

DIVISION 02 - EXISTING CONDITIONS

SECTION 024119 Selective Demolition

DIVISION 03 – CONCRETE

SECTION 033000 Cast- In- Place- Concrete

DIVISION 04 - MASONRY

SECTION 048100 Unit Masonry Assemblies

DIVISION 05 - METALS

SECTION 051200 Structural Steel Framing SECTION 054000 Cold Formed Metal Framing

SECTION 055000 Metal Fabrications

DIVISION 06 - WOOD, PLASTICS, AND COMPOSITES

SECTION 061000 Rough Carpentry

SECTION 064023 Interior Architectural Woodwork

SECTION 064116 Plastic-Laminate-faced Architectural Cabinets

DIVISION 07 – THERMAL AND MOISTURE PROTECTION

SECTION 072100 Thermal Insulation SECTION 072600 Vapor Retarders

SECTION 074116 Insulated Metal Roof Panels SECTION 074213.19 Insulated Metal Wall Panels

SECTION 077200 Roof Accessories

SECTION 078413 Penetration Fire stopping SECTION 078446 Fire Resistive Joint Systems

SECTION 079200 Joint Sealants

DIVISION 08 - OPENINGS

SECTION 080671 Door Hardware Sets

SECTION 081113 Hollow Metal Doors and Frames

SECTION 085113 Aluminum Window SECTION 087100 Door Hardware

SECTION 088000 Glazing SECTION 088300 Mirrors

Addition & Alterations
Department of Public Works
10 Hartford Road
Delran, NJ
April 25, 2025

TABLE OF CONTENTS

Page 00010-2

DIVISION 09 - FINISHES

SECTION 092900 Gypsum Board

SECTION 093000 Tiling

SECTION 095113 Acoustical Panel Ceilings

SECTION 096513 Resilient Base and Accessories

SECTION 096519 Resilient Tile Flooring

SECTION 096813 Tile Carpeting

SECTION 099123 Painting

DIVISION 10 - SPECIALTIES

SECTION 101423 Panel Signage

Toilet Room Accessories SECTION 102800

SECTION 105113 Metal Lockers

SECTION 105213 Fire Protection Specialties **SECTION 107316** Aluminum Canopy Systems

DIVISION 11 - EQUIPMENT

(Not Used)

DIVISION 12 - FURNISHINGS

SECTION 123661.18 Solid Surfacing Countertops

TABLE OF **CONTENTS - VOLUME 2**

DIVISION 21 – FIRE SUPPRESSION

SECTION 210517 Sleeve and Sleeve Seals for Fire Suppression Piping

SECTION 210518 Escutcheons for Fire Suppression Piping

Vibration and Seismic Controls for Fire-Suppression Piping **SECTION 210548**

SECTION 211313 Wet Pipe Sprinkler Systems

DIVISION 22 - PLUMBING

SECTION 220500 Common Cork Requirements for Plumbing Sleeves and Sleeve Seams for Plumbing Piping **SECTION 220517**

Escutcheons for Plumbing Piping SECTION 220518

SECTION 220523 General Duty Valves for Plumbing Piping

Hangers and Supports for Plumbing Piping and Equipment **SECTION 220529**

SECTION 220553 Identification for Plumbing and Equipment

SECTION 220700 Plumbing Insulation **Domestic Water Piping SECTION 221116**

SECTION 221119 Domestic Water Piping Specialties Sanitary Waste and Vent Piping **SECTION 221316** Sanitary Waste Piping Specialties **SECTION 221319**

SECTION 223401 Hot Water Heaters SECTION 224000 Plumbing Fixtures

DIVISION 23 – HEATING, VENTILATION, AND AIR CONDITIONING

SECTION 230500 Common Work Requirements for Mechanical

SECTION 230513 Common Motor Requirements for HVAC Equipment

Sleeves and Seals for HVAC Piping **SECTION 230517**

Addition & Alterations TABLE OF CONTENTS

Department of Public Works

10 Hartford Road

Delran, NJ

April 25, 2025 Page 00010-3 **SECTION 230518** Escutcheons for HVAC Piping Meters and Gages for HVAC Piping **SECTION 230519** General Duty Valves for HVAC Piping **SECTION 230523** Hangers and Supports for HVAC Piping and Equipment **SECTION 230529**

Vibration and Seismic Controls for HVAC Piping and Equipment **SECTION 230548**

SECTION 230553 Identification for HVAC Piping and Equipment

SECTION 230593 Testing, Adjusting, & Balancing

HVAC Insulation **SECTION 230700**

Instrumentation and Control for HVAC **SECTION 230900**

Direct Digital Control System SECTION 230923 Facility Natural Gas Piping **SECTION 231123**

SECTION 232113 Hydronic Piping Refrigerant Piping **SECTION 232300** Metal Ducts **SECTION 233113**

Air Duct Accessories **SECTION 233300 SECTION 233423 HVAC Power Ventilators SECTION 233616** Hot Water Duct Coils

Diffusers, Registers and Grilles **SECTION 233713 SECTION 238129** Variable Refrigerant Flow Systems

Fan Coil Units **SECTION 238219**

DIVISION 26 – ELECTRICAL

SECTION 260450 Electrical Demolition & Renovation

Common Work Requirements for Electrical **SECTION 260500**

SECTION 260519 Conductors and Cables **SECTION 260526** Grounding and Bonding Hangers and Supports **SECTION 260529** Raceways and Boxes **SECTION 260533**

Underground Ducts & Raceways for Electrical Systems **SECTION 260543**

Sleeves and Sleeve Seals for Electrical Raceways and Cabling **SECTION 260544**

SECTION 260553 Electrical Identification **Lighting Control Devices SECTION 260923 SECTION 262416** Panelboards & Switchboards

Wiring Devices **SECTION 262726**

SECTION 262813 Fuses

Enclosed Switches and Circuit Breakers SECTION 262816

SECTION 265100 Led Interior Lighting **SECTION 265600** Led Exterior Lighting

DIVISION 27 - COMMUNICATIONS

SECTION 271500 Communication Horizontal Cabling

DIVISION 31 – EARTHWORK

SECTION 311000 Site Clearing Earth Moving **SECTION 312000 SECTION 321313** Concrete Paving Turf and Grasses **SECTION 329200**

Addition & Alterations Department of Public Works 10 Hartford Road Delran, NJ April 25, 2025

TABLE OF CONTENTS

Page 00010-4

END OF TABLE OF CONTENTS

Addition & Alterations
Department of Public Works
10 Hartford Road
Delran, NJ
April 25, 2025

TABLE OF CONTENTS

SECTION 210517

SLEEVES AND SLEEVE SEALS FOR FIRE-SUPPRESSION PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Sleeves.
 - 2. Stack-sleeve fittings.
 - 3. Sleeve-seal systems.
 - 4. Sleeve-seal fittings.
 - 5. Grout.

1.3 SUBMITTALS

A. Product Data: For each type of product indicated.

PART 2 - PRODUCTS

2.1 SLEEVES

- A. Cast-Iron Wall Pipes: Cast or fabricated of cast or ductile iron and equivalent to ductile-iron pressure pipe, with plain ends and integral waterstop unless otherwise indicated.
- B. Galvanized-Steel Wall Pipes: ASTM A 53/A 53M, Schedule 40, with plain ends and welded steel collar; zinc coated.
- C. Galvanized-Steel-Pipe Sleeves: ASTM A 53/A 53M, Type E, Grade B, Schedule 40, zinc coated, with plain ends.

- D. PVC-Pipe Sleeves: ASTM D 1785, Schedule 40.
- E. Galvanized-Steel-Sheet Sleeves: 0.0239-inch minimum thickness; round tube closed with welded longitudinal joint.
- F. Molded-PE or -PP Sleeves: Removable, tapered-cup shaped, and smooth outer surface with nailing flange for attaching to wooden forms.
- G. Molded-PVC Sleeves: With nailing flange for attaching to wooden forms.

2.2 STACK-SLEEVE FITTINGS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Smith, Jay R. Mfg. Co.
 - 2. Zurn Specification Drainage Operation; Zurn Plumbing Products Group.
- B. Description: Manufactured, cast-iron sleeve with integral clamping flange. Include clamping ring, bolts, and nuts for membrane flashing.
 - 1. Underdeck Clamp: Clamping ring with setscrews.

2.3 SLEEVE-SEAL SYSTEMS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Advance Products & Systems, Inc.
 - 2. CALPICO, Inc.
 - 3. Metraflex Company (The).
 - 4. Pipeline Seal and Insulator, Inc.
 - 5. Proco Products, Inc.
- B. Description: Modular sealing-element unit, designed for field assembly, for filling annular space between piping and sleeve.
 - 1. Sealing Elements: EPDM-rubber interlocking links shaped to fit surface of pipe. Include type and number required for pipe material and size of pipe.
 - 2. Pressure Plates: Stainless steel.
 - 3. Connecting Bolts and Nuts: Stainless steel of length required to secure pressure plates to sealing elements.

2.4 SLEEVE-SEAL FITTINGS

- A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - 1. Presealed Systems.
- B. Description: Manufactured plastic, sleeve-type, waterstop assembly made for imbedding in concrete slab or wall. Unit has plastic or rubber waterstop collar with center opening to match piping OD.

2.5 GROUT

- A. Standard: ASTM C 1107/C 1107M, Grade B, post-hardening and volume-adjusting, dry, hydraulic-cement grout.
- B. Characteristics: Nonshrink; recommended for interior and exterior applications.
- C. Design Mix: 5000-psi, 28-day compressive strength.
- D. Packaging: Premixed and factory packaged.

PART 3 - EXECUTION

3.1 SLEEVE INSTALLATION

- A. Install sleeves for piping passing through penetrations in floors, partitions, roofs, and walls.
- B. For sleeves that will have sleeve-seal system installed, select sleeves of size large enough to provide 1-inch annular clear space between piping and concrete slabs and walls.
 - 1. Sleeves are not required for core-drilled holes.
- C. Install sleeves in concrete floors, concrete roof slabs, and concrete walls as new slabs and walls are constructed.
 - 1. Permanent sleeves are not required for holes in slabs formed by molded-PE or -PP sleeves.
 - 2. Cut sleeves to length for mounting flush with both surfaces.

- a. Exception: Extend sleeves installed in floors of mechanical equipment areas or other wet areas 2 inches above finished floor level.
- 3. Using grout, seal the space outside of sleeves in slabs and walls without sleeve-seal system.
- D. Install sleeves for pipes passing through interior partitions.
 - 1. Cut sleeves to length for mounting flush with both surfaces.
 - 2. Install sleeves that are large enough to provide 1/4-inch annular clear space between sleeve and pipe or pipe insulation.
 - 3. Seal annular space between sleeve and piping or piping insulation; use joint sealants appropriate for size, depth, and location of joint. Comply with requirements for sealants specified in Division 07 Section "Joint Sealants."
- E. Fire-Barrier Penetrations: Maintain indicated fire rating of walls, partitions, ceilings, and floors at pipe penetrations. Seal pipe penetrations with firestop materials. Comply with requirements for firestopping specified in Division 07 Section "Penetration Firestopping."

3.2 STACK-SLEEVE-FITTING INSTALLATION

- A. Install stack-sleeve fittings in new slabs as slabs are constructed.
 - 1. Install fittings that are large enough to provide 1/4-inch annular clear space between sleeve and pipe or pipe insulation.
 - 2. Secure flashing between clamping flanges for pipes penetrating floors with membrane waterproofing. Comply with requirements for flashing specified in Division 07 Section "Sheet Metal Flashing and Trim."
 - 3. Install section of cast-iron soil pipe to extend sleeve to 2 inches above finished floor level.
 - 4. Extend cast-iron sleeve fittings below floor slab as required to secure clamping ring if ring is specified.
 - 5. Using grout, seal the space around outside of stack-sleeve fittings.
- B. Fire-Barrier Penetrations: Maintain indicated fire rating of floors at pipe penetrations. Seal pipe penetrations with firestop materials. Comply with requirements for firestopping specified in Division 07 Section "Penetration Firestopping."

3.3 SLEEVE-SEAL-SYSTEM INSTALLATION

- A. Install sleeve-seal systems in sleeves in exterior concrete walls and slabs-on-grade at service piping entries into building.
- B. Select type, size, and number of sealing elements required for piping material and size and for sleeve ID or hole size. Position piping in center of sleeve. Center piping in penetration, assemble sleeve-seal system components, and install in annular space between piping and sleeve. Tighten bolts against pressure plates that cause sealing elements to expand and make a watertight seal.

3.4 SLEEVE-SEAL-FITTING INSTALLATION

- A. Install sleeve-seal fittings in new walls and slabs as they are constructed.
- B. Assemble fitting components of length to be flush with both surfaces of concrete slabs and walls. Position waterstop flange to be centered in concrete slab or wall.
- C. Secure nailing flanges to concrete forms.
- D. Using grout, seal the space around outside of sleeve-seal fittings.

3.5 SLEEVE AND SLEEVE-SEAL SCHEDULE

- A. Use sleeves and sleeve seals for the following piping-penetration applications:
 - 1. Exterior Concrete Walls above Grade:
 - a. Piping Smaller Than NPS 6: Galvanized-steel-pipe sleeves.
 - b. Piping NPS 6 and Larger: Galvanized-steel-pipe sleeves.
 - 2. Exterior Concrete Walls below Grade:
 - a. Piping Smaller Than NPS 6: Cast-iron wall sleeves with sleeve-seal system.
 - 1) Select sleeve size to allow for 1-inch annular clear space between piping and sleeve for installing sleeve-seal system.
 - b. Piping NPS 6 Cast-iron wall sleeves with sleeve-seal system.
 - 1) Select sleeve size to allow for 1-inch annular clear space between piping and sleeve for installing sleeve-seal system.

3. Concrete Slabs-on-Grade:

- a. Piping Smaller Than NPS 6. Cast-iron wall sleeves with sleeve-seal system.
 - 1) Select sleeve size to allow for 1-inch annular clear space between piping and sleeve for installing sleeve-seal system.
- b. Piping NPS 6 and Larger: Cast-iron wall sleeves with sleeve-seal system.
 - 1) Select sleeve size to allow for 1-inch annular clear space between piping and sleeve for installing sleeve-seal system.
- 4. Concrete Slabs above Grade:
 - a. Piping Smaller Than NPS 6: Galvanized-steel-pipe sleeves.
 - b. Piping NPS 6 and Larger: Galvanized-steel-pipe sleeves.
- 5. Interior Partitions:
 - a. Piping Smaller Than NPS 6: Galvanized-steel-pipe sleeves.
 - b. Piping NPS 6 and Larger: Galvanized-steel-sheet sleeves.

END OF SECTION

SECTION 210518

ESCUTCHEONS FOR FIRE-SUPPRESSION PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Escutcheons.
 - 2. Floor plates.

1.3 SUBMITTALS

A. Product Data: For each type of product indicated.

PART 2 - PRODUCTS

2.1 ESCUTCHEONS

- A. One-Piece, Cast-Brass Type: With polished, chrome-plated finish and setscrew fastener.
- B. One-Piece, Deep-Pattern Type: Deep-drawn, box-shaped brass with chrome-plated finish and spring-clip fasteners.
- C. One-Piece, Stamped-Steel Type: With chrome-plated finish and spring-clip fasteners.
- D. Split-Casting Brass Type: With polished, chrome-plated finish and with concealed hinge and setscrew.
- E. Split-Plate, Stamped-Steel Type: With chrome-plated finish, concealed hinge, and spring-clip fasteners.

2.2 FLOOR PLATES

- A. One-Piece Floor Plates: Cast-iron flange with holes for fasteners.
- B. Split-Casting Floor Plates: Cast brass with concealed hinge.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Install escutcheons for piping penetrations of walls, ceilings, and finished floors.
- B. Install escutcheons with ID to closely fit around pipe, tube, and insulation of piping and with OD that completely covers opening.
 - 1. Escutcheons for New Piping:
 - a. Piping with Fitting or Sleeve Protruding from Wall: One-piece, deep-pattern type.
 - b. Chrome-Plated Piping: One-piece, cast-brass type with polished, chrome-plated finish.
 - c. Insulated Piping: One-piece, stamped-steel type.
 - d. Bare Piping at Wall and Floor Penetrations in Finished Spaces: One-piece, cast-brass type with polished, chrome-plated finish.
 - e. Bare Piping at Wall and Floor Penetrations in Finished Spaces: One-piece, stamped-steel type.
 - f. Bare Piping at Ceiling Penetrations in Finished Spaces: One-piece, cast-brass type with polished, chrome-plated finish.
 - g. Bare Piping at Ceiling Penetrations in Finished Spaces: One-piece, stamped-steel type.
 - h. Bare Piping in Unfinished Service Spaces: One-piece, cast-brass type with polished, chrome-plated finish.
 - i. Bare Piping in Unfinished Service Spaces: One-piece, stamped-steel type.
 - j. Bare Piping in Equipment Rooms: One-piece, cast-brass polished, chrome-plated finish.
 - k. Bare Piping in Equipment Rooms: One-piece, stamped-steel type.

2. Escutcheons for Existing Piping:

- a. Chrome-Plated Piping: Split-casting brass type with polished, chrome-plated finish.
- b. Insulated Piping: Split-plate, stamped-steel type with concealed hinge.
- c. Bare Piping at Wall and Floor Penetrations in Finished Spaces: Split-casting brass type with polished, chrome-plated finish.

- d. Bare Piping at Wall and Floor Penetrations in Finished Spaces: Split-plate, stamped-steel type with concealed hinge.
- e. Bare Piping at Ceiling Penetrations in Finished Spaces: Split-casting brass type with polished, chrome-plated finish.
- f. Bare Piping at Ceiling Penetrations in Finished Spaces: Split-plate, stamped-steel type with concealed hinge.
- g. Bare Piping in Unfinished Service Spaces: Split-casting brass type with polished, chrome-plated finish.
- h. Bare Piping in Unfinished Service Spaces: Split-plate, stamped-steel type with concealed hinge.
- i. Bare Piping in Equipment Rooms: Split-casting brass type with polished, chromeplated finish.
- j. Bare Piping in Equipment Rooms: Split-plate, stamped-steel type with concealed hinge.
- C. Install floor plates for piping penetrations of equipment-room floors.
- D. Install floor plates with ID to closely fit around pipe, tube, and insulation of piping and with OD that completely covers opening.
 - 1. New Piping: One-piece, floor-plate type.
 - 2. Existing Piping: Split-casting, floor-plate type.

3.2 FIELD QUALITY CONTROL

A. Replace broken and damaged escutcheons and floor plates using new materials.

END OF SECTION

SECTION 210548

VIBRATION AND SEISMIC CONTROLS FOR FIRE-SUPPRESSION PIPING AND EQUIPMENT

PART 1 - GENERAL

1.1 SUMMARY

- A. This Section includes the following:
 - 1. Isolation pads.
 - 2. Isolation mounts.
 - 3. Restrained elastomeric isolation mounts.
 - 4. Restraining braces.

1.2 DEFINITIONS

- A. IBC: International Building Code.
- B. ICC-ES: ICC-Evaluation Service.
- C. OSHPD: Office of Statewide Health Planning and Development for the State of California.

1.3 PERFORMANCE REQUIREMENTS

- A. Seismic-Restraint Loading:
 - 1. Site Class as Defined in the IBC: 2009.
 - 2. Assigned Seismic Use Group or Building Category as Defined in the IBC: 2009.
 - a. Component Importance Factor: as required by IBC 2009.
 - b. Component Response Modification Factor: as required by IBC 2009.
 - c. Component Amplification Factor: as required by IBC 2009.
 - 3. Design Spectral Response Acceleration at Short Periods (0.2 Second): as required by IBC 2009.
 - 4. Design Spectral Response Acceleration at 1-Second Period: as required by IBC 2009.

1.4 SUBMITTALS

- A. Product Data: For each product indicated.
- B. Delegated-Design Submittal: For vibration isolation and seismic-restraint calculations and details indicated to comply with performance requirements and design criteria, including analysis data signed and sealed by the qualified professional engineer responsible for their preparation and licensed in the Commonwealth of Pennsylvania.
- C. Welding certificates.
- D. Qualification Data: For professional engineer.

1.5 QUALITY ASSURANCE

- A. Comply with seismic-restraint requirements in the IBC and NFPA 13 unless requirements in this Section are more stringent.
- B. Welding: Qualify procedures and personnel according to AWS D1.1/D1.1M, "Structural Welding Code Steel."
- C. Seismic-restraint devices shall have horizontal and vertical load testing and analysis and shall bear anchorage preapproval OPA number from OSHPD, preapproval by ICC-ES, or preapproval by another agency acceptable to authorities having jurisdiction, showing maximum seismic-restraint ratings. Ratings based on independent testing are preferred to ratings based on calculations. If preapproved ratings are not available, submittals based on independent testing are preferred. Calculations (including combining shear and tensile loads) to support seismic-restraint designs must be signed and sealed by a qualified professional engineer.

PART 2 - PRODUCTS

2.1 VIBRATION ISOLATORS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Ace Mountings Co., Inc.
 - 2. Amber/Booth Company, Inc.
 - 3. California Dynamics Corporation.
 - 4. Isolation Technology, Inc.
 - 5. Kinetics Noise Control.

- 6. Mason Industries.
- 7. Vibration Eliminator Co., Inc.
- 8. Vibration Isolation.
- 9. Vibration Mountings & Controls, Inc.
- B. Pads: Arranged in single or multiple layers of sufficient stiffness for uniform loading over pad area, molded with a nonslip pattern and galvanized-steel baseplates, and factory cut to sizes that match requirements of supported equipment.
 - 1. Resilient Material: Oil- and water-resistant neoprene.
- C. Mounts: Double-deflection type, with molded, oil-resistant rubber, hermetically sealed compressed fiberglass, or neoprene isolator elements with factory-drilled, encapsulated top plate for bolting to equipment and with baseplate for bolting to structure. Color-code or otherwise identify to indicate capacity range.
 - 1. Materials: Cast-ductile-iron or welded steel housing containing two separate and opposing, oil-resistant rubber or neoprene elements that prevent central threaded element and attachment hardware from contacting the housing during normal operation.
 - 2. Neoprene: Shock-absorbing materials compounded according to the standard for bridge-bearing neoprene as defined by AASHTO.
- D. Restrained Mounts: All-directional mountings with seismic restraint.
 - 1. Materials: Cast-ductile-iron or welded steel housing containing two separate and opposing, oil-resistant rubber or neoprene elements that prevent central threaded element and attachment hardware from contacting the housing during normal operation.
 - 2. Neoprene: Shock-absorbing materials compounded according to the standard for bridge-bearing neoprene as defined by AASHTO.

2.2 SEISMIC-RESTRAINT DEVICES

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Amber/Booth Company, Inc.
 - 2. California Dynamics Corporation.
 - 3. Cooper B-Line, Inc.; a division of Cooper Industries.
 - 4. Hilti, Inc.
 - 5. Kinetics Noise Control.
 - 6. Loos & Co.; Cableware Division.
 - 7. Mason Industries.

- 8. TOLCO Incorporated; a brand of NIBCO INC.
- 9. Unistrut; Tyco International, Ltd.
- B. General Requirements for Restraint Components: Rated strengths, features, and applications shall be as defined in reports by an agency acceptable to authorities having jurisdiction.
 - 1. Structural Safety Factor: Allowable strength in tension, shear, and pullout force of components shall be at least four times the maximum seismic forces to which they will be subjected.
- C. Channel Support System: MFMA-3, shop- or field-fabricated support assembly made of slotted steel channels with accessories for attachment to braced component at one end and to building structure at the other end and other matching components and with corrosion-resistant coating; and rated in tension, compression, and torsion forces.
- D. Hanger Rod Stiffener: Steel tube or steel slotted-support-system sleeve with internally bolted connections to hanger rod.
- E. Bushings for Floor-Mounted Equipment Anchor Bolts: Neoprene bushings designed for rigid equipment mountings, and matched to type and size of anchor bolts and studs.
- F. Resilient Isolation Washers and Bushings: One-piece, molded, oil- and water-resistant neoprene, with a flat washer face.
- G. Mechanical Anchor Bolts: Drilled-in and stud-wedge or female-wedge type in zinc-coated steel for interior applications and stainless steel for exterior applications. Select anchor bolts with strength required for anchor and as tested according to ASTM E 488. Minimum length of eight times diameter.

PART 3 - EXECUTION

3.1 VIBRATION-CONTROL AND SEISMIC-RESTRAINT DEVICE INSTALLATION

A. Equipment Restraints:

- 1. Install resilient bolt isolation washers on equipment anchor bolts where clearance between anchor and adjacent surface exceeds 0.125 inch.
- 2. Install seismic-restraint devices using methods approved by an agency acceptable to authorities having jurisdiction providing required submittals for component.
- B. Piping Restraints:

- 1. Comply with requirements in MSS SP-127 and NFPA 13.
- 2. Space lateral supports a maximum of 40 feet o.c., and longitudinal supports a maximum of 80 feet o.c.
- 3. Brace a change of direction longer than 12 feet.
- C. Install seismic-restraint devices using methods approved by an agency acceptable to authorities having jurisdiction providing required submittals for component.
- D. Install bushing assemblies for anchor bolts for floor-mounted equipment, arranged to provide resilient media between anchor bolt and mounting hole in concrete base.
- E. Attachment to Structure: If specific attachment is not indicated, anchor bracing to structure at flanges of beams, at upper truss chords of bar joists, or at concrete members.

F. Drilled-in Anchors:

- 1. Identify position of reinforcing steel and other embedded items prior to drilling holes for anchors. Do not damage existing reinforcing or embedded items during coring or drilling. Notify the structural engineer if reinforcing steel or other embedded items are encountered during drilling. Locate and avoid prestressed tendons, electrical and telecommunications conduit, and gas lines.
- 2. Do not drill holes in concrete or masonry until concrete, mortar, or grout has achieved full design strength.
- 3. Wedge Anchors: Protect threads from damage during anchor installation. Heavy-duty sleeve anchors shall be installed with sleeve fully engaged in the structural element to which anchor is to be fastened.
- 4. Set anchors to manufacturer's recommended torque, using a torque wrench.
- 5. Install zinc-coated steel anchors for interior and stainless-steel anchors for exterior applications.

3.2 ACCOMMODATION OF DIFFERENTIAL SEISMIC MOTION

A. Install flexible connections in piping where they cross seismic joints, where adjacent sections or branches are supported by different structural elements, and where the connections terminate with connection to equipment that is anchored to a different structural element from the one supporting the connections as they approach equipment. Comply with requirements in Division 21 Section "Wet Pipe Sprinkler System" for piping flexible connections.

END OF SECTION 210548

SECTION 211313

WET-PIPE SPRINKLER SYSTEMS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

- 1. Wet Pipe Sprinkler Systems
- 2. Automatic wet-type standpipe systems
- 3. Dry-pipe sprinkler systems.
- 4. Fire-protection valves.
- 5. Fire-department connections.
- 6. Sprinklers.
- 7. Alarm devices.
- 8. Manual control stations.
- 9. Control panels.
- 10. Pressure gages.

B. Related Sections:

- 1. Division 21 Section "Fire-Suppression Standpipes" for standpipe piping.
- 2. Division 21 Section "Sleeve and Sleeve Seals for Fire Suppression Piping" for sleeves and seals.
- 3. Division 21 Section "Escutcheons for Fire Suppression Piping" for escutcheons.
- 4. Division 21 Section "Vibration and Seismic Controls for Fire Suppression Piping" for seismic restraint requirements.

1.3 DEFINITIONS

A. High-Pressure Sprinkler Piping: Wet-pipe sprinkler system piping designed to operate at working pressure higher than standard 175 psig, but not higher than 300 psig.

B. Standard-Pressure Sprinkler Piping: Wet-pipe sprinkler system piping designed to operate at working pressure of 175 psig maximum.

1.4 SYSTEM DESCRIPTIONS

- A. Combined Standpipe and Sprinkler System: Fire-suppression system with both standpipe and sprinkler systems. Sprinkler system is supplied from standpipe system.
- B. Automatic Wet-Type, Class I Standpipe System: Includes NPS 2-1/2 (DN 65) hose connections. Has open water-supply valve with pressure maintained and is capable of supplying water demand.
- C. Automatic Wet-Type, Class II Standpipe System: Includes NPS 1-1/2 (DN 40) hose stations. Has open water-supply valve with pressure maintained and is capable of supplying water demand.
- D. Automatic Wet-Type, Class III Standpipe System: Includes NPS 1-1/2 (DN 40) hose stations and NPS 2-1/2 (DN 65) hose connections. Has open water-supply valve with pressure maintained and is capable of supplying water demand.
- E. Dry-Pipe Sprinkler System: Automatic sprinklers are attached to piping containing compressed air. Opening of sprinklers releases compressed air and permits water pressure to open dry-pipe valve. Water then flows into piping and discharges from opened sprinklers.
- F. Wet-Pipe Sprinkler System: Automatic sprinklers are attached to piping containing water and that is connected to water supply through alarm valve. Water discharges immediately from sprinklers when they are opened. Sprinklers open when heat melts fusible link or destroys frangible device. Hose connections are included.

1.5 PERFORMANCE REQUIREMENTS

- A. Standard-Pressure Piping System Component: Listed for 175-psig minimum working pressure.
- B. High-Pressure Piping System Component: Listed for 300-psig working pressure.
- C. Fire-suppression standpipe system design shall be approved by authorities having jurisdiction.
 - 1. Minimum residual pressure at each hose-connection outlet is the following:
 - a. NPS 1-1/2 Hose Connections: 65 psig
 - b. NPS 2-1/2 Hose Connections: 100 psig.

- 2. Unless otherwise indicated, the following is maximum residual pressure at required flow at each hose-connection outlet:
 - a. NPS 1-1/2 Hose Connections: 100 psig
- b. NPS 2-1/2 Hose Connections: 175 psig
- D. Fire-suppression sprinkler system design shall be approved by authorities having jurisdiction.
- E. Delegated Design: Design sprinkler system(s), including comprehensive engineering analysis by a qualified professional engineer, using performance requirements and design criteria indicated. Sprinkler system shall be designed using hydraulic calculations in accordance with NFPA 13 requirements.
- F. Sprinkler system design shall be approved by authorities having jurisdiction.
 - 1. Margin of Safety for Available Water Flow and Pressure: 10 percent, including losses through water-service piping, valves, and backflow preventers.
 - 2. Sprinkler Occupancy Hazard Classifications See drawings for Occupancy Hazard Classifications.
 - 3. Maximum Protection Area per Sprinkler: Per UL listing.
 - 4. Maximum Protection Area per Sprinkler: See drawings
 - 5. Total Combined Hose-Stream Demand Requirement: According to NFPA 13 unless otherwise indicated:
 - a. Light-Hazard Occupancies: 100 gpm for 30 minutes
 - b. Ordinary-Hazard Occupancies: 250 gpm for 60 to 90 minutes
 - c. Extra-Hazard Occupancies: 500 gpm for 90 to 120 minutes
- G. Seismic Performance: Sprinkler piping shall withstand the effects of earthquake motions determined according to NFPA 13. See specification section 210548.

1.6 SUBMITTALS

- A. Product Data: For each type of product indicated. Include rated capacities, operating characteristics, electrical characteristics, and furnished specialties and accessories.
- B. Shop Drawings: For wet-pipe sprinkler systems. Include plans, elevations, sections, details, and attachments to other work.
 - 1. Wiring Diagrams: For power, signal, and control wiring.
- C. Delegated-Design Submittal: For sprinkler systems indicated to comply with performance requirements and design criteria, including analysis data signed and sealed by the qualified professional engineer responsible for their preparation.

- D. Coordination Drawings: Sprinkler systems, drawn to scale, on which the following items are shown and coordinated with each other, using input from installers of the items involved:
 - 1. Domestic water piping.
 - 2. Compressed air piping.
 - 3. HVAC ducts & equipment.
 - 4. Items penetrating finished ceiling include the following:
 - a. Lighting fixtures.
 - b. Air outlets and inlets.
- E. Qualification Data: For qualified Installer and Designer.
- F. Approved Sprinkler Piping Drawings: Working plans, prepared according to NFPA 13, that have been approved by authorities having jurisdiction, including hydraulic calculations if applicable. Drawings and Hydraulic Calculations shall be signed and sealed by a professional engineer licensed in the state of New Jersey.
- G. Welding certificates.
- H. Fire-hydrant flow test report.
- I. Field Test Reports and Certificates: Indicate and interpret test results for compliance with performance requirements and as described in NFPA 13. Include "Contractor's Material and Test Certificate for Aboveground Piping."
- J. Field quality-control reports.
- K. Operation and Maintenance Data: For sprinkler specialties to include in emergency, operation, and maintenance manuals.

1.7 QUALITY ASSURANCE

- A. Installer Qualifications:
 - 1. Installer's responsibilities include designing, fabricating, and installing sprinkler systems and providing professional engineering services needed to assume engineering responsibility. Base calculations on results of fire-hydrant flow test.
 - a. Engineering Responsibility: Preparation of working plans, calculations, and field test reports by a qualified professional engineer.
- B. Welding Qualifications: Qualify procedures and operators according to ASME Boiler and Pressure Vessel Code.

- C. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- D. NFPA Standards: Sprinkler system equipment, specialties, accessories, installation, and testing shall comply with the following:
 - 1. NFPA 13, "Installation of Sprinkler Systems."
 - 2. NFPA 13R, "Installation of Sprinkler Systems in Residential Occupancies up to and Including Four Stories in Height."
 - 3. NFPA 14, "Installation of Standpipe, Private Hydrant, and Hose Systems."
 - 4. NFPA 24, "Installation of Private Fire Service Mains and Their Appurtenances."

1.8 PROJECT CONDITIONS

- A. Interruption of Existing Sprinkler Service: Do not interrupt sprinkler service to facilities occupied by Owner or others unless permitted under the following conditions and then only after arranging to provide temporary sprinkler service according to requirements indicated:
 - 1. Notify Architect/Engineer and Construction Manager no fewer than two days in advance of proposed interruption of sprinkler service.
 - 2. Do not proceed with interruption of sprinkler service without Architect's and Construction Manager's written permission.

1.9 COORDINATION

A. Coordinate layout and installation of sprinklers with other construction that penetrates ceilings, including light fixtures, HVAC equipment, and partition assemblies.

1.10 EXTRA MATERIALS

- A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 - 1. Sprinkler Cabinets: Finished, wall-mounted, steel cabinet with hinged cover, and with space for minimum of six spare sprinklers plus sprinkler wrench for each type of sprinkler used in the project. Include number of sprinklers required by NFPA 13 and sprinkler wrench. Coordinate final location of cabinet with Architect.

PART 2 - PRODUCTS

2.1 PIPING MATERIALS

A. Comply with requirements in "Piping Schedule" Article for applications of pipe, tube, and fitting materials, and for joining methods for specific services, service locations, and pipe sizes.

2.2 STEEL PIPE AND FITTINGS

- A. Standard Weight, Black-Steel Pipe: ASTM A 53/A 53M, Type E, Grade B. Pipe ends may be factory or field formed to match joining method.
- B. Black-Steel Pipe Nipples: ASTM A 733, made of ASTM A 53/A 53M, standard-weight, seamless steel pipe with threaded ends.
- C. Galvanized and Uncoated, Steel Couplings: ASTM A 865, threaded.
- D. Galvanized and Uncoated, Gray-Iron Threaded Fittings: ASME B16.4, Class 125, standard pattern.
- E. Malleable- or Ductile-Iron Unions: UL 860.
- F. Cast-Iron Flanges: ASME 16.1, Class 125.
- G. Steel Flanges and Flanged Fittings: ASME B16.5, Class 150.
- H. Steel Welding Fittings: ASTM A 234/A 234M and ASME B16.9.
- I. Grooved-Joint, Steel-Pipe Appurtenances:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Victaulic Company.
 - 2. Pressure Rating: 300 psig minimum.
 - 3. Galvanized and Uncoated, Grooved-End Fittings for Steel Piping: ASTM A 47/A 47M, malleable-iron casting or ASTM A 536, ductile-iron casting; with dimensions matching steel pipe.
 - 4. Grooved-End-Pipe Couplings for Steel Piping: AWWA C606 and UL 213, rigid pattern, unless otherwise indicated, for steel-pipe dimensions. Include ferrous housing sections, EPDM-rubber gasket, and bolts and nuts.

- J. Steel Pressure-Seal Fittings: UL 213, FM-approved, 175-psig pressure rating with steel housing, rubber O-rings, and pipe stop; for use with fitting manufacturers' pressure-seal tools.
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Victaulic Company.

2.3 PIPING JOINING MATERIALS

- A. Pipe-Flange Gasket Materials: AWWA C110, rubber, flat face, 1/8 inch thick or ASME B16.21, nonmetallic and asbestos free.
 - 1. Class 125, Cast-Iron Flanges and Class 150, Bronze Flat-Face Flanges: Full-face gaskets.
 - 2. Class 250, Cast-Iron Flanges and Class 300, Steel Raised-Face Flanges: Ring-type gaskets.
- B. Metal, Pipe-Flange Bolts and Nuts: ASME B18.2.1, carbon steel unless otherwise indicated.
- C. Welding Filler Metals: Comply with AWS D10.12M/D10.12 for welding materials appropriate for wall thickness and chemical analysis of steel pipe being welded.
- D. Plastic, Pipe-Flange Gasket, and Bolts and Nuts: Type and material recommended by piping system manufacturer unless otherwise indicated.

2.4 COVER SYSTEM FOR SPRINKLER PIPING

- A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - 1. DecoShield Systems, Inc.
- B. Description: System of support brackets and covers made to protect sprinkler piping.
- C. Brackets: Glass-reinforced nylon.
- D. Covers: Extruded PVC sections of length, shape, and size required for size and routing of CPVC piping.

2.5 LISTED FIRE-PROTECTION VALVES

A. General Requirements:

- 1. Valves shall be UL listed or FM approved.
- 2. Minimum Pressure Rating for Standard-Pressure Piping: 175 psig.
- 3. Minimum Pressure Rating for High-Pressure Piping: 300 psig.

B. Ball Valves:

- 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - a. Anvil International, Inc.
 - b. Victaulic Company.
- 2. Standard: UL 1091 except with ball instead of disc.
- 3. Valves NPS 1-1/2 and Smaller: Bronze body with threaded ends.
- 4. Valves NPS 2 and NPS 2-1/2: Bronze body with threaded ends or ductile-iron body with grooved ends.
- 5. Valves NPS 3: Ductile-iron body with grooved ends.

C. Bronze Butterfly Valves:

- 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - a. Fivalco Inc.
 - b. Global Safety Products, Inc.
 - c. Milwaukee Valve Company.
- 2. Standard: UL 1091.
- 3. Pressure Rating: 175 psig.
- 4. Body Material: Bronze.
- 5. End Connections: Threaded.

D. Iron Butterfly Valves:

- 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - a. Anvil International, Inc.
 - b. Global Safety Products, Inc.

- c. Kennedy Valve; a division of McWane, Inc.
- d. NIBCO INC.
- e. Tyco Fire & Building Products LP.
- f. Victaulic Company.
- 2. Standard: UL 1091.
- 3. Pressure Rating: 175 psig.
- 4. Body Material: Cast or ductile iron.
- 5. Style: Lug or wafer.
- 6. End Connections: Grooved.

E. Check Valves:

- 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - a. American Cast Iron Pipe Company; Waterous Company Subsidiary.
 - b. Anvil International, Inc.
 - c. Clow Valve Company; a division of McWane, Inc.
 - d. Crane Co.; Crane Valve Group; Crane Valves.
 - e. Crane Co.; Crane Valve Group; Jenkins Valves.
 - f. Crane Co.; Crane Valve Group; Stockham Division.
 - g. NIBCO INC.
 - h. Potter Roemer.
 - i. Reliable Automatic Sprinkler Co., Inc.
 - j. Tyco Fire & Building Products LP.
 - k. Victaulic Company.
 - 1. Viking Corporation.
 - m. Watts Water Technologies, Inc.
- 2. Standard: UL 312.
- 3. Pressure Rating: 300 psig.
- 4. Type: Swing check.
- 5. Body Material: Cast iron.
- 6. End Connections: Flanged or grooved.

F. Bronze OS&Y Gate Valves:

- 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - a. Crane Co.; Crane Valve Group; Crane Valves.
 - b. Crane Co.; Crane Valve Group; Stockham Division.
 - c. Milwaukee Valve Company.

- d. NIBCO INC.
- e. United Brass Works, Inc.
- 2. Standard: UL 262.
- 3. Pressure Rating: 175 psig.
- 4. Body Material: Bronze.
- 5. End Connections: Threaded.

G. Iron OS&Y Gate Valves:

- 1. Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - a. Crane Co.; Crane Valve Group; Crane Valves.
 - b. Crane Co.; Crane Valve Group; Jenkins Valves.
 - c. Crane Co.; Crane Valve Group; Stockham Division..
 - d. NIBCO INC.
 - e. Tyco Fire & Building Products LP.
 - f. United Brass Works, Inc.
 - g. Watts Water Technologies, Inc.
- 2. Standard: UL 262.
- 3. Pressure Rating: 300 psig.
- 4. Body Material: Cast or ductile iron.
- 5. End Connections: Flanged or grooved.

H. Indicating-Type Butterfly Valves:

- 1. Manufacturers: Subject to compliance with requirements, [available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - a. Anvil International, Inc.
 - b. Kennedy Valve; a division of McWane, Inc.
 - c. NIBCO INC.
 - d. Tyco Fire & Building Products LP.
 - e. Victaulic Company.
- 2. Standard: UL 1091.
- 3. Pressure Rating: 175 psig minimum.
- 4. Valves NPS 2 and Smaller:
 - a. Valve Type: Ball or butterfly.
 - b. Body Material: Bronze.
 - c. End Connections: Threaded.

- 5. Valves NPS 2-1/2 and Larger:
 - a. Valve Type: Butterfly.
 - b. Body Material: Cast or ductile iron.
 - c. End Connections: Flanged, grooved, or wafer.
- 6. Valve Operation: Integral, 115-V ac, prewired, two-circuit, supervisory switch visual indicating device.

I. NRS Gate Valves:

- 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - a. Crane Co.; Crane Valve Group; Stockham Division.
 - b. Kennedy Valve; a division of McWane, Inc.
 - c. NIBCO INC.
 - d. Tyco Fire & Building Products LP.
- 2. Standard: UL 262.
- 3. Pressure Rating: 300 psig.
- 4. Body Material: Cast iron with indicator post flange.
- 5. Stem: Nonrising.
- 6. End Connections: Flanged or grooved.

2.6 TRIM AND DRAIN VALVES

A. General Requirements:

- 1. Standard: UL's "Fire Protection Equipment Directory" listing or "Approval Guide," published by FM Global, listing.
- 2. Pressure Rating: 175 psig minimum.

B. Angle Valves:

- 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - a. Fire Protection Products, Inc.
 - b. United Brass Works, Inc.

C. Ball Valves:

- 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - a. Anvil International, Inc.
 - b. Conbraco Industries, Inc.; Apollo Valves.
 - c. Kennedy Valve; a division of McWane, Inc.
 - d. NIBCO INC.
 - e. Potter Roemer.
 - f. Tyco Fire & Building Products LP.
 - g. Victaulic Company.
 - h. Watts Water Technologies, Inc.

D. Globe Valves:

- 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - a. Fire Protection Products, Inc.
 - b. United Brass Works, Inc.

E. Plug Valves:

- 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - a. Southern Manufacturing Group.

2.7 SPECIALTY VALVES

A. General Requirements:

- 1. Standard: UL's "Fire Protection Equipment Directory" listing or "Approval Guide," published by FM Global, listing.
- 2. Pressure Rating:
 - a. Standard-Pressure Piping Specialty Valves: 175 psig minimum.
 - b. High-Pressure Piping Specialty Valves: 300 psig.
- 3. Body Material: Cast or ductile iron.
- 4. Size: Same as connected piping.
- 5. End Connections: Flanged or grooved.

B. Alarm Valves:

- 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - a. Reliable Automatic Sprinkler Co., Inc.
 - b. Tyco Fire & Building Products LP.
 - c. Victaulic Company.
 - d. Viking Corporation.
- 2. Standard: UL 193.
- 3. Design: For horizontal or vertical installation.
- 4. Include trim sets for bypass, drain, electrical sprinkler alarm switch, pressure gages, retarding chamber, and fill-line attachment with strainer.
- 5. Drip Cup Assembly: Pipe drain without valves and separate from main drain piping.
- 6. Drip Cup Assembly: Pipe drain with check valve to main drain piping.
- C. Automatic (Ball Drip) Drain Valves:
 - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - a. AFAC Inc.
 - b. Reliable Automatic Sprinkler Co., Inc.
 - c. Tyco Fire & Building Products LP.
 - 2. Standard: UL 1726.
 - 3. Pressure Rating: 175 psig minimum.
 - 4. Type: Automatic draining, ball check.
 - 5. Size: NPS 3/4.
 - 6. End Connections: Threaded.
- D. Dry-Pipe Valves: UL 260, differential type; with bronze seat with O-ring seals, single-hinge pin, and latch design. Include UL 1486, quick-opening devices, trim sets for air supply, drain, priming level, alarm connections, ball drip valves, pressure gages, priming chamber attachment, and fill-line attachment.
 - a. Air-Pressure Maintenance Device: UL 260, automatic device to maintain correct air pressure in piping. Include shutoff valves to permit servicing without shutting down sprinkler piping, bypass valve for quick filling, pressure regulator or switch to maintain pressure, strainer, pressure ratings with 14- to 60-psig adjustable range, and 175-psig maximum inlet pressure.
 - 1) Available Manufacturers:
 - a) AFAC Inc.

- b) Central Sprinkler Corp.
- c) General Air Products, Inc.
- d) Globe Fire Sprinkler Corporation.
- e) Grinnell Fire Protection.
- f) Reliable Automatic Sprinkler Co., Inc.
- g) Star Sprinkler Inc.
- h) Viking Corp.
- b. Air Compressor: UL 753, fractional horsepower, 120-V ac, 60 Hz, single phase.
 - 1) Available Manufacturers:
 - a) AFAC Inc.
 - b) Gast Manufacturing, Inc.
 - c) Grinnell Fire Protection.
 - d) Reliable Automatic Sprinkler Co., Inc.
 - e) Viking Corp.

2.8 FIRE-DEPARTMENT CONNECTIONS

- A. Exposed-Type, Fire-Department Connection:
 - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - a. AFAC Inc.
 - b. Elkhart Brass Mfg. Company, Inc.
 - c. GMR International Equipment Corporation.
 - d. Guardian Fire Equipment, Inc.
 - e. Tyco Fire & Building Products LP.
 - 2. Standard: UL 405.
 - 3. Type: Exposed, projecting, for wall mounting.
 - 4. Pressure Rating: 175 psig minimum.
 - 5. Body Material: Corrosion-resistant metal.
 - 6. Inlets: Brass with threads according to NFPA 1963 and matching local fire-department sizes and threads. Include extension pipe nipples, brass lugged swivel connections, and check devices or clappers.
 - 7. Caps: Brass, lugged type, with gasket and chain.
 - 8. Escutcheon Plate: Round, brass, wall type.
 - 9. Outlet: Back, with pipe threads.
 - 10. Number of Inlets: Two.
 - 11. Escutcheon Plate Marking: Similar to "AUTO SPKR & STANDPIPE"

- 12. Finish: Polished chrome plated.
- 13. Coordinate requirements for fire department connection with local Fire Department requirements.

B. Flush-Type, Fire-Department Connection:

- 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - a. AFAC Inc.
 - b. Elkhart Brass Mfg. Company, Inc.
 - c. GMR International Equipment Corporation.
 - d. Guardian Fire Equipment, Inc.
 - e. Potter Roemer.
- 2. Standard: UL 405.
- 3. Type: Flush, for wall mounting.
- 4. Pressure Rating: 175 psig minimum.
- 5. Body Material: Corrosion-resistant metal.
- 6. Inlets: Brass with threads according to NFPA 1963 and matching local fire-department sizes and threads. Include extension pipe nipples, brass lugged swivel connections, and check devices or clappers.
- 7. Caps: Brass, lugged type, with gasket and chain.
- 8. Escutcheon Plate: Rectangular, brass, wall type.
- 9. Outlet: With pipe threads.
- 10. Escutcheon Plate Marking: Similar to "AUTO SPKR & STANDPIPE."
- 11. Finish: Polished chrome plated
- 12. Coordinate requirements for fire department connection with local Fire Department requirements.

2.9 SPRINKLER SPECIALTY PIPE FITTINGS

A. Branch Outlet Fittings:

- 1. Manufacturers: Subject to compliance with requirements, [available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - a. Anvil International, Inc.
 - b. National Fittings, Inc.
 - c. Tyco Fire & Building Products LP.
 - d. Victaulic Company.
- 2. Standard: UL 213.

- 3. Pressure Rating: 300 psig.
- 4. Body Material: Ductile-iron housing with EPDM seals and bolts and nuts.
- 5. Type: Mechanical-T and -cross fittings.
- 6. Configurations: Snap-on and strapless, ductile-iron housing with branch outlets.
- 7. Size: Of dimension to fit onto sprinkler main and with outlet connections as required to match connected branch piping.
- 8. Branch Outlets: Grooved, plain-end pipe, or threaded.

B. Flow Detection and Test Assemblies:

- 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - a. AGF Manufacturing Inc.
 - b. Reliable Automatic Sprinkler Co., Inc.
 - c. Tyco Fire & Building Products LP.
 - d. Victaulic Company.
- 2. Standard: UL's "Fire Protection Equipment Directory" listing or "Approval Guide," published by FM Global, listing.
- 3. Pressure Rating: 300 psig.
- 4. Body Material: Cast- or ductile-iron housing with orifice, sight glass, and integral test valve.
- 5. Size: Same as connected piping.
- 6. Inlet and Outlet: Threaded.

C. Branch Line Testers:

- 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - a. Elkhart Brass Mfg. Company, Inc.
 - b. Fire-End & Croker Corporation.
 - c. Potter Roemer.
- 2. Standard: UL 199.
- 3. Pressure Rating: 175 psig.
- 4. Body Material: Brass.
- 5. Size: Same as connected piping.
- 6. Inlet: Threaded.
- 7. Drain Outlet: Threaded and capped.
- 8. Branch Outlet: Threaded, for sprinkler.
- D. Sprinkler Inspector's Test Fittings:

- 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - a. Tyco Fire & Building Products LP.
 - b. Victaulic Company.
 - c. Viking Corporation.
- 2. Standard: UL's "Fire Protection Equipment Directory" listing or "Approval Guide," published by FM Global, listing.
- 3. Pressure Rating: 300 psig.
- 4. Body Material: Cast- or ductile-iron housing with sight glass.
- 5. Size: Same as connected piping.
- 6. Inlet and Outlet: Threaded.

E. Adjustable Drop Nipples:

- 1. Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - a. CECA, LLC.
 - b. Corcoran Piping System Co.
 - c. Merit Manufacturing; a division of Anvil International, Inc.
- 2. Standard: UL 1474.
- 3. Pressure Rating: [250 psig minimum] [300 psig].
- 4. Body Material: Steel pipe with EPDM-rubber O-ring seals.
- 5. Size: Same as connected piping.
- 6. Length: Adjustable.
- 7. Inlet and Outlet: Threaded.

F. Flexible, Sprinkler Hose Fittings:

- 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - a. Fivalco Inc.
 - b. FlexHead Industries, Inc.
 - c. Gateway Tubing, Inc.
- 2. Standard: UL 1474.
- 3. Type: Flexible hose for connection to sprinkler, and with bracket for connection to ceiling grid.
- 4. Pressure Rating: 300 psig.
- 5. Size: Same as connected piping, for sprinkler.

2.10 SPRINKLERS

- A. Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - 1. Globe Fire Sprinkler Corporation.
 - 2. Reliable Automatic Sprinkler Co., Inc.
 - 3. Tyco Fire & Building Products LP.
 - 4. Victaulic Company.
 - 5. Viking Corporation.
- B. General Requirements:
 - 1. Standard: UL's "Fire Protection Equipment Directory" listing or "Approval Guide," published by FM Global, listing.
 - 2. Pressure Rating for Residential Sprinklers: 175 psig maximum.
 - 3. Pressure Rating for Automatic Sprinklers: 175 psig minimum.
 - 4. Pressure Rating for High-Pressure Automatic Sprinklers: 300 psig.
- C. Automatic Sprinklers with Heat-Responsive Element:
 - 1. Early-Suppression, Fast-Response Applications: UL 1767.
 - 2. Nonresidential Applications: UL 199.
 - 3. Residential Applications: UL 1626.
 - 4. Characteristics: Nominal 1/2-inch orifice with Discharge Coefficient K of 5.6, and for "Ordinary" temperature classification rating unless otherwise indicated or required by application.
- D. Sprinkler Finishes: (Coordinate finish type with Architect)
 - 1. Chrome plated.
 - 2. Bronze.
 - 3. Painted.
- E. Special Coatings:
 - 1. Corrosion-resistant paint.
 - 2. Wax
- F. Sprinkler Escutcheons: Materials, types, and finishes for the following sprinkler mounting applications. Escutcheons for concealed, flush, and recessed-type sprinklers are specified with sprinklers.
 - 1. Ceiling Mounting: Chrome-plated steel, one piece, flat
 - 2. Sidewall Mounting: Chrome-plated steel, one piece, flat.

G. Sprinkler Guards:

- 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - a. Reliable Automatic Sprinkler Co., Inc.
 - b. Tyco Fire & Building Products LP.
 - c. Victaulic Company.
 - d. Viking Corporation.
- 2. Standard: UL 199.
- 3. Type: Wire cage with fastening device for attaching to sprinkler.

2.11 ALARM DEVICES

- A. Alarm-device types shall match piping and equipment connections.
- B. Water-Motor-Operated Alarm:
 - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - a. Globe Fire Sprinkler Corporation.
 - b. Tyco Fire & Building Products LP.
 - c. Victaulic Company.
 - d. Viking Corporation.
 - 2. Standard: UL 753.
 - 3. Type: Mechanically operated, with Pelton wheel.
 - 4. Alarm Gong: Cast aluminum with red-enamel factory finish.
 - 5. Size: 10-inch diameter.
 - 6. Components: Shaft length, bearings, and sleeve to suit wall construction.
 - 7. Inlet: NPS 3/4.
 - 8. Outlet: NPS 1 drain connection.

C. Electrically Operated Alarm Bell:

- 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - a. Fire-Lite Alarms, Inc.; a Honeywell company.
 - b. Notifier; a Honeywell company.

- c. Potter Electric Signal Company.
- 2. Standard: UL 464.
- 3. Type: Vibrating, metal alarm bell.
- 4. Finish: Red-enamel factory finish, suitable for outdoor use.

D. Water-Flow Indicators:

- 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - a. ADT Security Services, Inc.
 - b. McDonnell & Miller; ITT Industries.
 - c. Potter Electric Signal Company.
 - d. System Sensor; a Honeywell company.
 - e. Viking Corporation.
 - f. Watts Industries (Canada) Inc.
- 2. Standard: UL 346.
- 3. Water-Flow Detector: Electrically supervised.
- 4. Components: Two single-pole, double-throw circuit switches for isolated alarm and auxiliary contacts, 7 A, 125-V ac and 0.25 A, 24-V dc; complete with factory-set, field-adjustable retard element to prevent false signals and tamperproof cover that sends signal if removed.
- 5. Type: Paddle operated.
- 6. Pressure Rating: 250 psig.
- 7. Design Installation: Horizontal or vertical.

E. Pressure Switches:

- 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - a. Potter Electric Signal Company.
 - b. System Sensor; a Honeywell company.
 - c. Tyco Fire & Building Products LP.
 - d. United Electric Controls Co.
 - e. Viking Corporation.
- 2. Standard: UL 346.
- 3. Type: Electrically supervised water-flow switch with retard feature.
- 4. Components: Single-pole, double-throw switch with normally closed contacts.
- 5. Design Operation: Rising pressure signals water flow.
- F. Valve Supervisory Switches:

- 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - a. Fire-Lite Alarms, Inc.; a Honeywell company.
 - b. Kennedy Valve; a division of McWane, Inc.
 - c. Potter Electric Signal Company.
 - d. System Sensor; a Honeywell company.
- 2. Standard: UL 346.
- 3. Type: Electrically supervised.
- 4. Components: Single-pole, double-throw switch with normally closed contacts.
- 5. Design: Signals that controlled valve is in other than fully open position.
- G. Indicator-Post Supervisory Switches:
 - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - a. Potter Electric Signal Company.
 - b. System Sensor; a Honeywell company.
 - 2. Standard: UL 346.
 - 3. Type: Electrically supervised.
 - 4. Components: Single-pole, double-throw switch with normally closed contacts.
 - 5. Design: Signals that controlled indicator-post valve is in other than fully open position.

2.12 MANUAL CONTROL STATIONS

A. Description: UL listed or FM approved, hydraulic operation, with union, NPS 1/2 pipe nipple, and bronze ball valve. Include metal enclosure labeled "MANUAL CONTROL STATION" with operating instructions and cover held closed by breakable strut to prevent accidental opening.

2.13 PRESSURE GAGES

- A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - 1. AMETEK; U.S. Gauge Division.
 - 2. Ashcroft, Inc.

- 3. Brecco Corporation.
- 4. WIKA Instrument Corporation.
- B. Standard: UL 393.
- C. Dial Size: 3-1/2- to 4-1/2-inch diameter.
- D. Pressure Gage Range: 0 to 300 psig.
- E. Water System Piping Gage: Include "WATER" or "AIR/WATER" label on dial face.
- F. Air System Piping Gage: Include retard feature and "AIR" or "AIR/WATER" label on dial face.

PART 3 - EXECUTION

3.1 PREPARATION

- A. Perform fire-hydrant flow test according to NFPA 13, NFPA 14 and NFPA 291. Use results for system design calculations required in "Quality Assurance" Article.
- B. Report test results promptly and in writing.

3.2 SERVICE-ENTRANCE PIPING

- A. Connect sprinkler piping to water-service piping for service entrance to building. Coordinate with site drawings and specifications for requirements.
- B. Install shutoff valve, backflow preventer, pressure gage, drain, and other accessories indicated at connection to water-service piping.
- C. Install shutoff valve, check valve, pressure gage, and drain at connection to water service.

3.3 WATER-SUPPLY CONNECTIONS

- A. Install shutoff valve, backflow preventer, alarm valve, pressure gage, drain, and other accessories indicated at connection to water-distribution piping. Comply with requirements for backflow preventers in Division 22 Section "Domestic Water Piping Specialties."
- B. Install shutoff valve, check valve, pressure gage, and drain at connection to water supply.

3.4 PIPING INSTALLATION

- A. Locations and Arrangements: Drawing plans, schematics, and diagrams indicate general location and arrangement of piping. Install piping as indicated, as far as practical.
 - 1. Deviations from approved working plans for piping require written approval from authorities having jurisdiction. File written approval with Architect before deviating from approved working plans.
- B. Piping Standard: Comply with requirements for installation of sprinkler piping in NFPA 13.
- C. Install seismic restraints on piping. Comply with requirements for seismic-restraint device materials and installation in NFPA 13.
- D. Use listed fittings to make changes in direction, branch takeoffs from mains, and reductions in pipe sizes.
- E. Install unions adjacent to each valve in pipes NPS 2 and smaller.
- F. Install flanges, flange adapters, or couplings for grooved-end piping on valves, apparatus, and equipment having NPS 2-1/2 and larger end connections.
- G. Install "Inspector's Test Connections" in sprinkler system piping, complete with shutoff valve, and sized and located according to NFPA 13.
- H. Install sprinkler piping with drains for complete system drainage.
- I. Install sprinkler control valves, test assemblies, and drain risers adjacent to standpipes when sprinkler piping is connected to standpipes.
- J. Install drain valves on standpipes.
- K. Install automatic (ball drip) drain valve at each check valve for fire-department connection, to drain piping between fire-department connection and check valve. Install drain piping to and spill over floor drain or to outside building.
- L. Install alarm devices in piping systems.
- M. Install hangers and supports for sprinkler system piping according to NFPA 13. Comply with requirements for hanger materials in NFPA 13.
- N. Install pressure gages on riser or feed main, at each sprinkler test connection, and at top of each standpipe. Include pressure gages with connection not less than NPS 1/4 and

with soft metal seated globe valve, arranged for draining pipe between gage and valve. Install gages to permit removal, and install where they will not be subject to freezing.

- O. Fill sprinkler system piping with water.
- P. Drain dry-type standpipe piping.
- Q. Connect compressed-air supply to dry-pipe sprinkler piping.
- R. Connect air compressor to the following piping and wiring:
 - 1. Pressure gages and controls.
 - 2. Electrical power system.
 - 3. Fire alarm devices, including low-pressure alarm.
- S. Electrical Connections: Power wiring is specified in Division 26.
- T. Connect alarm devices to fire alarm.
- U. Drain dry-pipe sprinkler piping.
- V. Pressurize and check dry-pipe sprinkler system piping and air-pressure maintenance devices.
- W. Earthquake Protection: Install piping according to NFPA 13 to protect from earthquake damage.
- X. Install sleeves for piping penetrations of walls, ceilings, and floors. Comply with requirements for sleeves specified in Division 21 Section "Sleeves and Sleeve Seals for Fire-Suppression Piping."
- Y. Install sleeve seals for piping penetrations of concrete walls and slabs. Comply with requirements for sleeve seals specified in Division 21 Section "Sleeves and Sleeve Seals for Fire-Suppression Piping."
- Z. Install escutcheons for piping penetrations of walls, ceilings, and floors. Comply with requirements for escutcheons specified in Division 21 Section "Escutcheons for Fire-Suppression Piping."
- AA. Install flexible connectors on fire-pump and pressure-maintenance-pump supply and discharge connections and in fire-suppression piping where indicated.

3.5 JOINT CONSTRUCTION

- A. Install couplings, flanges, flanged fittings, unions, nipples, and transition and special fittings that have finish and pressure ratings same as or higher than system's pressure rating for aboveground applications unless otherwise indicated.
- B. Install unions adjacent to each valve in pipes NPS 2 and smaller.
- C. Install flanges, flange adapters, or couplings for grooved-end piping on valves, apparatus, and equipment having NPS 2-1/2 and larger end connections.
- D. Ream ends of pipes and tubes and remove burrs. Bevel plain ends of steel pipe.
- E. Remove scale, slag, dirt, and debris from inside and outside of pipes, tubes, and fittings before assembly.
- F. Flanged Joints: Select appropriate gasket material in size, type, and thickness suitable for water service. Join flanges with gasket and bolts according to ASME B31.9.
- G. Threaded Joints: Thread pipe with tapered pipe threads according to ASME B1.20.1. Cut threads full and clean using sharp dies. Ream threaded pipe ends to remove burrs and restore full ID. Join pipe fittings and valves as follows:
 - 1. Apply appropriate tape or thread compound to external pipe threads.
 - 2. Damaged Threads: Do not use pipe or pipe fittings with threads that are corroded or damaged.
- H. Twist-Locked Joints: Insert plain end of steel pipe into plain-end-pipe fitting. Rotate retainer lugs one-quarter turn or tighten retainer pin.
- I. Steel-Piping, Pressure-Sealed Joints: Join lightwall steel pipe and steel pressure-seal fittings with tools recommended by fitting manufacturer.
- J. Welded Joints: Construct joints according to AWS D10.12M/D10.12, using qualified processes and welding operators according to "Quality Assurance" Article.
 - 1. Shop weld pipe joints where welded piping is indicated. Do not use welded joints for galvanized-steel pipe.
- K. Steel-Piping, Cut-Grooved Joints: Cut square-edge groove in end of pipe according to AWWA C606. Assemble coupling with housing, gasket, lubricant, and bolts. Join steel pipe and grooved-end fittings according to AWWA C606 for steel-pipe joints.
- L. Steel-Piping, Roll-Grooved Joints: Roll rounded-edge groove in end of pipe according to AWWA C606. Assemble coupling with housing, gasket, lubricant, and bolts. Join

- steel pipe and grooved-end fittings according to AWWA C606 for steel-pipe grooved joints.
- M. Steel-Piping, Pressure-Sealed Joints: Join Schedule 5 steel pipe and steel pressure-seal fittings with tools recommended by fitting manufacturer.
- N. Brazed Joints: Join copper tube and fittings according to CDA's "Copper Tube Handbook," "Brazed Joints" Chapter.
- O. Copper-Tubing Grooved Joints: Roll rounded-edge groove in end of tube according to AWWA C606. Assemble coupling with housing, gasket, lubricant, and bolts. Join copper tube and grooved-end fittings according to AWWA C606 for steel-pipe grooved joints.
- P. Copper-Tubing, Pressure-Sealed Joints: Join copper tube and copper pressure-seal fittings with tools recommended by fitting manufacturer.
- Q. Extruded-Tee Connections: Form tee in copper tube according to ASTM F 2014. Use tool designed for copper tube; drill pilot hole, form collar for outlet, dimple tube to form seating stop, and braze branch tube into collar.
- R. Dissimilar-Material Piping Joints: Make joints using adapters compatible with materials of both piping systems.
- S. Plastic-Piping, Solvent-Cement Joints: Clean and dry joining surfaces. Join pipe and fittings according to the following:
 - 1. Comply with ASTM F 402 for safe-handling practice of cleaners, primers, and solvent cements. Apply primer.
 - 2. CPVC Piping: Join according to ASTM D 2846/D 2846M Appendix.

3.6 INSTALLATION OF COVER SYSTEM FOR SPRINKLER PIPING

A. Install cover system, brackets, and cover components for sprinkler piping according to manufacturer's "Installation Manual" and with NFPA 13 or NFPA 13R for supports.

3.7 VALVE AND SPECIALTIES INSTALLATION

- A. Install listed fire-protection valves, trim and drain valves, specialty valves and trim, controls, and specialties according to NFPA 13 and authorities having jurisdiction.
- B. Install listed fire-protection shutoff valves supervised open, located to control sources of water supply except from fire-department connections. Install permanent identification signs indicating portion of system controlled by each valve.

C. Install check valve in each water-supply connection. Install backflow preventers instead of check valves in potable-water-supply sources.

D. Specialty Valves:

- 1. General Requirements: Install in vertical position for proper direction of flow, in main supply to system.
- 2. Alarm Valves: Include bypass check valve and retarding chamber drain-line connection.

3.8 SPRINKLER INSTALLATION

- A. Install sprinklers in suspended ceilings in center of acoustical ceiling panels.
- B. Install sprinklers into flexible, sprinkler hose fittings and install hose into bracket on ceiling grid.

3.9 FIRE-DEPARTMENT CONNECTION INSTALLATION

- A. Install wall-type, fire-department connections.
- B. Install automatic (ball drip) drain valve at each check valve for fire-department connection.

3.10 HOSE-CONNECTION INSTALLATION

- A. Install hose connections adjacent to standpipes, unless otherwise indicated.
- B. Install freestanding hose connections for access and minimum passage restriction.
- C. Install NPS 1-1/2 hose-connection valves with flow-restricting device, unless otherwise indicated.
- D. Install NPS 2-1/2 hose connections with quick-disconnect NPS 2-1/2 by NPS 1-1/2 reducer adapter and flow-restricting device, unless otherwise indicated.
- E. Install wall-mounting-type hose connections in cabinets. Include pipe escutcheons, with finish matching valves, inside cabinet where water-supply piping penetrates cabinet. Install valves at angle required for connection of fire hose. Refer to Division 10 Section "Fire Extinguisher Cabinets" for cabinets.

3.11 IDENTIFICATION

- A. Install labeling and pipe markers on equipment and piping according to requirements in NFPA 13.
- B. Identify system components, wiring, cabling, and terminals. Comply with requirements for identification specified in Division 26 Section "Identification for Electrical Systems."

3.12 FIELD QUALITY CONTROL

- A. Perform tests and inspections.
- B. Tests and Inspections:
 - 1. Leak Test: After installation, charge systems and test for leaks. Repair leaks and retest until no leaks exist.
 - 2. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.
 - 3. Flush, test, and inspect sprinkler systems according to NFPA 13, "Systems Acceptance" Chapter.
 - 4. Energize circuits to electrical equipment and devices.
 - 5. Start and run excess-pressure pumps.
 - 6. Coordinate with fire-alarm tests. Operate as required.
 - 7. Coordinate with fire-pump tests. Operate as required.
 - 8. Verify that equipment hose threads are same as local fire-department equipment.
- C. Sprinkler piping system will be considered defective if it does not pass tests and inspections.
- D. Prepare test and inspection reports.

3.13 CLEANING

- A. Clean dirt and debris from sprinklers.
- B. Remove and replace sprinklers with paint other than factory finish.

3.14 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain specialty valves.

3.15 PIPING SCHEDULE

- A. Piping between Fire-Department Connections and Check Valves: Galvanized, standard-weight steel pipe.
- B. Sprinkler specialty fittings may be used, downstream of control vales, instead of specified fittings.
- C. High-pressure, wet-pipe sprinkler system, NPS 4 and smaller, shall be one of the following:
 - 1. Standard-weight galvanized-steel pipe with cut-grooved ends; galvanized, grooved-end fittings for steel piping; grooved-end-pipe couplings for steel piping; and grooved joints.
 - 2. Standard-weight, black-steel pipe with plain ends; steel welding fittings; and welded joints.
- D. High-pressure, wet-pipe sprinkler system, NPS 5 and larger shall be one of the following:
 - 1. Standard-weight, galvanized-steel pipe with cut-grooved ends; galvanized, grooved-end fittings for steel piping; grooved-end-pipe couplings for steel piping; and grooved joints.
 - 2. Standard-weight, black-steel pipe with plain ends; steel welding fittings; and welded joints.
- E. High-pressure, dry-pipe sprinkler system, NPS 4 and smaller, shall be one of the following:
 - 1. Standard-weight galvanized-steel pipe with cut-grooved ends; galvanized, grooved-end fittings for steel piping; grooved-end-pipe couplings for steel piping; and grooved joints.
 - 2. Standard-weight, black-steel pipe with plain ends; steel welding fittings; and welded joints.
- F. High-pressure, dry-pipe sprinkler system, NPS 5 and larger shall be one of the following:
 - 1. Standard-weight, galvanized-steel pipe with cut-grooved ends; galvanized, grooved-end fittings for steel piping; grooved-end-pipe couplings for steel piping; and grooved joints.
 - 2. Standard-weight, black-steel pipe with plain ends; steel welding fittings; and welded joints.

3.16 SPRINKLER SCHEDULE

- A. Use sprinkler types in subparagraphs below for the following applications:
 - 1. Rooms without Ceilings: Upright sprinklers.

- 2. Rooms with Suspended Ceilings: Concealed sprinklers
- 3. Wall Mounting: Sidewall sprinklers.
- 4. Spaces Subject to Freezing: Upright, pendent, sprinkler with heat tape; and sidewall sprinklers with heat tape as indicated.
- 5. Special Applications: Extended-coverage, flow-control, and quick-response sprinklers where indicated.
- B. Provide sprinkler types in subparagraphs below with finishes indicated.
 - 1. Concealed Sprinklers: Rough brass, with factory-painted white cover plate.
 - 2. Flush Sprinklers: Bright chrome, with painted white escutcheon.
 - 3. Recessed Sprinklers: Bright chrome, with bright chrome escutcheon.
 - 4. Upright, Pendent and Sidewall Sprinklers: Chrome plated in finished spaces exposed to view; rough bronze in unfinished spaces not exposed to view; wax coated where exposed to acids, chemicals, or other corrosive fumes.

END OF SECTION 211313

SECTION 220500

COMMON WORK RESULTS FOR PLUMBING

PART 1 - GENERAL

1.1 SUMMARY

- A. This Section includes the following:
 - 1. Piping materials and installation instructions common to most piping systems.
 - 2. Dielectric fittings.
 - 3. Mechanical sleeve seals.
 - 4. Sleeves.
 - 5. Escutcheons.
 - 6. Grout.
 - 7. Plumbing demolition.
 - 8. Equipment installation requirements common to equipment sections.
 - 9. Concrete bases.
 - 10. Supports and anchorages.

1.2 DEFINITIONS

- A. Finished Spaces: Spaces other than plumbing and electrical equipment rooms, furred spaces, pipe chases, unheated spaces immediately below roof, spaces above ceilings, unexcavated spaces, crawlspaces, and tunnels.
- B. Exposed, Interior Installations: Exposed to view indoors. Examples include finished occupied spaces and plumbing equipment rooms.
- C. Exposed, Exterior Installations: Exposed to view outdoors or subject to outdoor ambient temperatures and weather conditions. Examples include rooftop locations.
- D. Concealed, Interior Installations: Concealed from view and protected from physical contact by building occupants. Examples include above ceilings and in chases.
- E. Concealed, Exterior Installations: Concealed from view and protected from weather conditions and physical contact by building occupants but subject to outdoor ambient temperatures. Examples include installations within unheated shelters.

1.3 SUBMITTALS

A. Welding certificates.

1.4 QUALITY ASSURANCE

- A. Steel Support Welding: Qualify processes and operators according to AWS D1.1, "Structural Welding Code--Steel."
- B. Steel Pipe Welding: Qualify processes and operators according to ASME Boiler and Pressure Vessel Code: Section IX, "Welding and Brazing Qualifications."
 - 1. Comply with provisions in ASME B31 Series, "Code for Pressure Piping."
 - 2. Certify that each welder has passed AWS qualification tests for welding processes involved and that certification is current.
- C. Electrical Characteristics for Plumbing Equipment: Equipment of higher electrical characteristics may be furnished provided such proposed equipment is approved in writing and connecting electrical services, circuit breakers, and conduit sizes are appropriately modified. If minimum energy ratings or efficiencies are specified, equipment shall comply with requirements.

PART 2 - PRODUCTS

2.1 PIPE, TUBE, AND FITTINGS

- A. Refer to individual Division 22 piping Sections for pipe, tube, and fitting materials and joining methods.
- B. Pipe Threads: ASME B1.20.1 for factory-threaded pipe and pipe fittings.

2.2 JOINING MATERIALS

- A. Refer to individual Division 22 piping Sections for special joining materials not listed below.
- B. Pipe-Flange Gasket Materials: ASME B16.21, nonmetallic, flat, asbestos-free, 1/8-inch (3.2-mm) maximum thickness unless thickness or specific material is indicated.
- C. Plastic, Pipe-Flange Gasket, Bolts, and Nuts: Type and material recommended by piping system manufacturer, unless otherwise indicated.

- D. Solder Filler Metals: ASTM B 32, lead-free alloys. Include water-flushable flux according to ASTM B 813.
- E. Brazing Filler Metals: AWS A5.8, BCuP Series or BAg1, unless otherwise indicated.
- F. Welding Filler Metals: Comply with AWS D10.12.
- G. Solvent Cements for Joining Plastic Piping:
 - 1. ABS Piping: ASTM D 2235.
 - 2. CPVC Piping: ASTM F 493.
 - 3. PVC Piping: ASTM D 2564. Include primer according to ASTM F 656.
 - 4. PVC to ABS Piping Transition: ASTM D 3138.

2.3 DIELECTRIC FITTINGS

- A. Description: Combination fitting of copper alloy and ferrous materials with threaded, solder-joint, plain, or weld-neck end connections that match piping system materials.
- B. Insulating Material: Suitable for system fluid, pressure, and temperature.
- C. Dielectric Unions: Factory-fabricated, union assembly, for 250-psig (1725-kPa) minimum working pressure at 180 deg F (82 deg C).
- D. Dielectric Flanges: Factory-fabricated, companion-flange assembly, for 150- or 300-psig (1035- or 2070-kPa) minimum working pressure as required to suit system pressures.
- E. Dielectric Couplings: Galvanized-steel coupling with inert and noncorrosive, thermoplastic lining; threaded ends; and 300-psig (2070-kPa) minimum working pressure at 225 deg F (107 deg C).
- F. Dielectric Nipples: Electroplated steel nipple with inert and noncorrosive, thermoplastic lining; plain, threaded, or grooved ends; and 300-psig (2070-kPa) minimum working pressure at 225 deg F (107 deg C).

2.4 MECHANICAL SLEEVE SEALS

- A. Description: Modular sealing element unit, designed for field assembly, to fill annular space between pipe and sleeve.
- B. Sealing Elements: EPDM interlocking links shaped to fit surface of pipe. Include type and number required for pipe material and size of pipe.

- C. Pressure Plates: Stainless steel. Include two for each sealing element.
- D. Connecting Bolts and Nuts: Stainless steel of length required to secure pressure plates to sealing elements. Include one for each sealing element.

2.5 SLEEVES

- A. Galvanized-Steel Sheet: 0.0239-inch (0.6-mm) minimum thickness; round tube closed with welded longitudinal joint.
- B. Steel Pipe: ASTM A 53, Type E, Grade B, Schedule 40, galvanized, plain ends.
- C. Cast Iron: Cast or fabricated "wall pipe" equivalent to ductile-iron pressure pipe, with plain ends and integral waterstop, unless otherwise indicated.
- D. Stack Sleeve Fittings: Manufactured, cast-iron sleeve with integral clamping flange. Include clamping ring and bolts and nuts for membrane flashing.
 - 1. Underdeck Clamp: Clamping ring with set screws.
- E. Molded PVC: Permanent, with nailing flange for attaching to wooden forms.
- F. PVC Pipe: ASTM D 1785, Schedule 40.
- G. Molded PE: Reusable, PE, tapered-cup shaped, and smooth-outer surface with nailing flange for attaching to wooden forms.

2.6 ESCUTCHEONS

- A. Description: Manufactured wall and ceiling escutcheons and floor plates, with an ID to closely fit around pipe, tube, and insulation of insulated piping and an OD that completely covers opening.
- B. One-Piece, Deep-Pattern Type: Deep-drawn, box-shaped brass with polished chrome-plated finish.
- C. One-Piece, Cast-Brass Type: With set screw.
 - 1. Finish: Polished chrome-plated
- D. Split-Casting, Cast-Brass Type: With concealed hinge and set screw.
 - 1. Finish: Polished chrome-plated

2.7 GROUT

- A. Description: ASTM C 1107, Grade B, nonshrink and nonmetallic, dry hydraulic-cement grout.
 - 1. Characteristics: Post-hardening, volume-adjusting, nonstaining, noncorrosive, nongaseous, and recommended for interior and exterior applications.
 - 2. Design Mix: 5000-psi (34.5-MPa), 28-day compressive strength.
 - 3. Packaging: Premixed and factory packaged.

PART 3 - EXECUTION

3.1 PLUMBING DEMOLITION

- A. Refer to Division 01 Section "Cutting and Patching" and Division 02 Section "Selective Structure Demolition" for general demolition requirements and procedures.
- B. Disconnect, demolish, and remove plumbing systems, equipment, and components indicated to be removed.
 - 1. Piping to Be Removed: Remove portion of piping indicated to be removed and cap or plug remaining piping with same or compatible piping material.
 - 2. Piping to Be Abandoned in Place: Drain piping and cap or plug piping with same or compatible piping material.
 - 3. Equipment to Be Removed: Disconnect and cap services and remove equipment.
 - 4. Equipment to Be Removed and Reinstalled: Disconnect and cap services and remove, clean, and store equipment; when appropriate, reinstall, reconnect, and make equipment operational.
 - 5. Equipment to Be Removed and Salvaged: Disconnect and cap services and remove equipment and deliver to Owner.
- C. If pipe, insulation, or equipment to remain is damaged in appearance or is unserviceable, remove damaged or unserviceable portions and replace with new products of equal capacity and quality.

3.2 PIPING SYSTEMS - COMMON REQUIREMENTS

- A. Install piping according to the following requirements and Division 22 Sections specifying piping systems.
- B. Drawing plans, schematics, and diagrams indicate general location and arrangement of piping systems. Indicated locations and arrangements were used to size pipe and

- calculate friction loss, expansion, pump sizing, and other design considerations. Install piping as indicated unless deviations to layout are approved on Coordination Drawings.
- C. Install piping in concealed locations, unless otherwise indicated and except in equipment rooms and service areas.
- D. Install piping indicated to be exposed and piping in equipment rooms and service areas at right angles or parallel to building walls. Diagonal runs are prohibited unless specifically indicated otherwise.
- E. Install piping above accessible ceilings to allow sufficient space for ceiling panel removal.
- F. Install piping to permit valve servicing.
- G. Install piping at indicated slopes.
- H. Install piping free of sags and bends.
- I. Install fittings for changes in direction and branch connections.
- J. Install piping to allow application of insulation.
- K. Select system components with pressure rating equal to or greater than system operating pressure.
- L. Install escutcheons for penetrations of walls, ceilings, and floors.
- M. Install sleeves for pipes passing through concrete and masonry walls, gypsum-board partitions, and concrete floor and roof slabs.
- N. Aboveground, Exterior-Wall Pipe Penetrations: Seal penetrations using sleeves and mechanical sleeve seals. Select sleeve size to allow for 1-inch (25-mm) annular clear space between pipe and sleeve for installing mechanical sleeve seals.
 - 1. Install steel pipe for sleeves smaller than 6 inches (150 mm) in diameter.
 - 2. Install cast-iron "wall pipes" for sleeves 6 inches (150 mm) and larger in diameter.
 - 3. Mechanical Sleeve Seal Installation: Select type and number of sealing elements required for pipe material and size. Position pipe in center of sleeve. Assemble mechanical sleeve seals and install in annular space between pipe and sleeve. Tighten bolts against pressure plates that cause sealing elements to expand and make watertight seal.

- O. Underground, Exterior-Wall Pipe Penetrations: Install cast-iron "wall pipes" for sleeves. Seal pipe penetrations using mechanical sleeve seals. Select sleeve size to allow for 1-inch (25-mm) annular clear space between pipe and sleeve for installing mechanical sleeve seals.
 - 1. Mechanical Sleeve Seal Installation: Select type and number of sealing elements required for pipe material and size. Position pipe in center of sleeve. Assemble mechanical sleeve seals and install in annular space between pipe and sleeve. Tighten bolts against pressure plates that cause sealing elements to expand and make watertight seal.
- P. Fire-Barrier Penetrations: Maintain indicated fire rating of walls, partitions, ceilings, and floors at pipe penetrations. Seal pipe penetrations with firestop materials. Refer to Division 07 Section "Penetration Firestopping" for materials.
- Q. Verify final equipment locations for roughing-in.
- R. Refer to equipment specifications in other Sections of these Specifications for roughing-in requirements.

3.3 PIPING JOINT CONSTRUCTION

- A. Join pipe and fittings according to the following requirements and Division 22 Sections specifying piping systems.
- B. Ream ends of pipes and tubes and remove burrs. Bevel plain ends of steel pipe.
- C. Remove scale, slag, dirt, and debris from inside and outside of pipe and fittings before assembly.
- D. Soldered Joints: Apply ASTM B 813, water-flushable flux, unless otherwise indicated, to tube end. Construct joints according to ASTM B 828 or CDA's "Copper Tube Handbook," using lead-free solder alloy complying with ASTM B 32.
- E. Brazed Joints: Construct joints according to AWS's "Brazing Handbook," "Pipe and Tube" Chapter, using copper-phosphorus brazing filler metal complying with AWS A5.8.
- F. Threaded Joints: Thread pipe with tapered pipe threads according to ASME B1.20.1. Cut threads full and clean using sharp dies. Ream threaded pipe ends to remove burrs and restore full ID. Join pipe fittings and valves as follows:
 - 1. Apply appropriate tape or thread compound to external pipe threads unless dry seal threading is specified.

- 2. Damaged Threads: Do not use pipe or pipe fittings with threads that are corroded or damaged. Do not use pipe sections that have cracked or open welds.
- G. Welded Joints: Construct joints according to AWS D10.12, using qualified processes and welding operators according to Part 1 "Quality Assurance" Article.
- H. Flanged Joints: Select appropriate gasket material, size, type, and thickness for service application. Install gasket concentrically positioned. Use suitable lubricants on bolt threads.
- I. Plastic Piping Solvent-Cement Joints: Clean and dry joining surfaces. Join pipe and fittings according to the following:
 - 1. Comply with ASTM F 402, for safe-handling practice of cleaners, primers, and solvent cements.
 - 2. ABS Piping: Join according to ASTM D 2235 and ASTM D 2661 Appendixes.
 - 3. CPVC Piping: Join according to ASTM D 2846/D 2846M Appendix.
 - 4. PVC Pressure Piping: Join schedule number ASTM D 1785, PVC pipe and PVC socket fittings according to ASTM D 2672. Join other-than-schedule-number PVC pipe and socket fittings according to ASTM D 2855.
 - 5. PVC Nonpressure Piping: Join according to ASTM D 2855.
 - 6. PVC to ABS Nonpressure Transition Fittings: Join according to ASTM D 3138 Appendix.
- J. Plastic Pressure Piping Gasketed Joints: Join according to ASTM D 3139.
- K. Plastic Nonpressure Piping Gasketed Joints: Join according to ASTM D 3212.
- L. PE Piping Heat-Fusion Joints: Clean and dry joining surfaces by wiping with clean cloth or paper towels. Join according to ASTM D 2657.
 - 1. Plain-End Pipe and Fittings: Use butt fusion.
 - 2. Plain-End Pipe and Socket Fittings: Use socket fusion.
- M. Fiberglass Bonded Joints: Prepare pipe ends and fittings, apply adhesive, and join according to pipe manufacturer's written instructions.

3.4 PIPING CONNECTIONS

- A. Make connections according to the following, unless otherwise indicated:
 - 1. Install unions, in piping NPS 2 (DN 50) and smaller, adjacent to each valve and at final connection to each piece of equipment.

- 2. Install flanges, in piping NPS 2-1/2 (DN 65) and larger, adjacent to flanged valves and at final connection to each piece of equipment.
- 3. Dry Piping Systems: Install dielectric unions and flanges to connect piping materials of dissimilar metals.
- 4. Wet Piping Systems: Install dielectric coupling and nipple fittings to connect piping materials of dissimilar metals.

3.5 EQUIPMENT INSTALLATION - COMMON REQUIREMENTS

- A. Install equipment to allow maximum possible headroom unless specific mounting heights are not indicated.
- B. Install equipment level and plumb, parallel and perpendicular to other building systems and components in exposed interior spaces, unless otherwise indicated.
- C. Install plumbing equipment to facilitate service, maintenance, and repair or replacement of components. Connect equipment for ease of disconnecting, with minimum interference to other installations. Extend grease fittings to accessible locations.
- D. Install equipment to allow right of way for piping installed at required slope.

3.6 CONCRETE BASES

- A. Concrete Bases: Anchor equipment to concrete base according to equipment manufacturer's written instructions and according to seismic codes at Project.
 - 1. Construct concrete bases of dimensions indicated, but not less than 4 inches (100 mm) larger in both directions than supported unit.
 - 2. Install dowel rods to connect concrete base to concrete floor. Unless otherwise indicated, install dowel rods on 18-inch (450-mm) centers around the full perimeter of the base.
 - 3. Install epoxy-coated anchor bolts for supported equipment that extend through concrete base, and anchor into structural concrete floor.
 - 4. Place and secure anchorage devices. Use supported equipment manufacturer's setting drawings, templates, diagrams, instructions, and directions furnished with items to be embedded.
 - 5. Install anchor bolts to elevations required for proper attachment to supported equipment.
 - 6. Install anchor bolts according to anchor-bolt manufacturer's written instructions.
 - 7. Use 3000-psi (20.7-MPa) 28-day compressive-strength concrete and reinforcement as specified in Division 03 Sections.

3.7 ERECTION OF METAL SUPPORTS AND ANCHORAGES

- A. Refer to Division 05 Section "Metal Fabrications" for structural steel.
- B. Cut, fit, and place miscellaneous metal supports accurately in location, alignment, and elevation to support and anchor plumbing materials and equipment.
- C. Field Welding: Comply with AWS D1.1.

3.8 ERECTION OF WOOD SUPPORTS AND ANCHORAGES

- A. Cut, fit, and place wood grounds, nailers, blocking, and anchorages to support, and anchor plumbing materials and equipment.
- B. Select fastener sizes that will not penetrate members if opposite side will be exposed to view or will receive finish materials. Tighten connections between members. Install fasteners without splitting wood members.
- C. Attach to substrates as required to support applied loads.

3.9 GROUTING

- A. Mix and install grout for plumbing equipment base bearing surfaces, pump and other equipment base plates, and anchors.
- B. Clean surfaces that will come into contact with grout.
- C. Provide forms as required for placement of grout.
- D. Avoid air entrapment during placement of grout.
- E. Place grout, completely filling equipment bases.
- F. Place grout on concrete bases and provide smooth bearing surface for equipment.
- G. Place grout around anchors.
- H. Cure placed grout.

END OF SECTION 220500

SECTION 220517

SLEEVES AND SLEEVE SEALS FOR PLUMBING PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Sleeves.
 - 2. Stack-sleeve fittings.
 - 3. Sleeve-seal systems.
 - 4. Sleeve-seal fittings.
 - 5. Grout.

1.3 SUBMITTALS

A. Product Data: For each type of product indicated.

PART 2 - PRODUCTS

2.1 SLEEVES

- A. Cast-Iron Wall Pipes: Cast or fabricated of cast or ductile iron and equivalent to ductile-iron pressure pipe, with plain ends and integral waterstop unless otherwise indicated.
- B. Galvanized-Steel Wall Pipes: ASTM A 53/A 53M, Schedule 40, with plain ends and welded steel collar; zinc coated.
- C. Galvanized-Steel-Pipe Sleeves: ASTM A 53/A 53M, Type E, Grade B, Schedule 40, zinc coated, with plain ends.
- D. PVC-Pipe Sleeves: ASTM D 1785, Schedule 40.

- E. Galvanized-Steel-Sheet Sleeves: 0.0239-inch minimum thickness; round tube closed with welded longitudinal joint.
- F. Molded-PE or -PP Sleeves: Removable, tapered-cup shaped, and smooth outer surface with nailing flange for attaching to wooden forms.
- G. Molded-PVC Sleeves: With nailing flange for attaching to wooden forms.

2.2 STACK-SLEEVE FITTINGS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Smith, Jay R. Mfg. Co.
 - 2. Zurn Specification Drainage Operation; Zurn Plumbing Products Group.
- B. Description: Manufactured, cast-iron sleeve with integral clamping flange. Include clamping ring, bolts, and nuts for membrane flashing.
 - 1. Underdeck Clamp: Clamping ring with setscrews.

2.3 SLEEVE-SEAL SYSTEMS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Advance Products & Systems, Inc.
 - 2. CALPICO, Inc.
 - 3. Metraflex Company (The).
 - 4. Pipeline Seal and Insulator, Inc.
 - 5. Proco Products, Inc.
- B. Description: Modular sealing-element unit, designed for field assembly, for filling annular space between piping and sleeve.
 - 1. Sealing Elements: EPDM-rubber interlocking links shaped to fit surface of pipe. Include type and number required for pipe material and size of pipe.
 - 2. Pressure Plates: Stainless steel.
 - 3. Connecting Bolts and Nuts: Stainless steel of length required to secure pressure plates to sealing elements.

2.4 SLEEVE-SEAL FITTINGS

- A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - 1. Presealed Systems.
- B. Description: Manufactured plastic, sleeve-type, waterstop assembly made for imbedding in concrete slab or wall. Unit has plastic or rubber waterstop collar with center opening to match piping OD.

2.5 GROUT

- A. Standard: ASTM C 1107/C 1107M, Grade B, post-hardening and volume-adjusting, dry, hydraulic-cement grout.
- B. Characteristics: Nonshrink; recommended for interior and exterior applications.
- C. Design Mix: 5000-psi, 28-day compressive strength.
- D. Packaging: Premixed and factory packaged.

PART 3 - EXECUTION

3.1 SLEEVE INSTALLATION

- A. Install sleeves for piping passing through penetrations in floors, partitions, roofs, and walls.
- B. For sleeves that will have sleeve-seal system installed, select sleeves of size large enough to provide 1-inch annular clear space between piping and concrete slabs and walls.
 - 1. Sleeves are not required for core-drilled holes.
- C. Install sleeves in concrete floors, concrete roof slabs, and concrete walls as new slabs and walls are constructed.
 - 1. Permanent sleeves are not required for holes in slabs formed by molded-PE or -PP sleeves.
 - 2. Cut sleeves to length for mounting flush with both surfaces.

- a. Exception: Extend sleeves installed in floors of mechanical equipment areas or other wet areas 2 inches above finished floor level.
- 3. Using grout, seal the space outside of sleeves in slabs and walls without sleeve-seal system.
- D. Install sleeves for pipes passing through interior partitions.
 - 1. Cut sleeves to length for mounting flush with both surfaces.
 - 2. Install sleeves that are large enough to provide 1/4-inch annular clear space between sleeve and pipe or pipe insulation.
 - 3. Seal annular space between sleeve and piping or piping insulation; use joint sealants appropriate for size, depth, and location of joint. Comply with requirements for sealants specified in Division 07 Section "Joint Sealants."
- E. Fire-Barrier Penetrations: Maintain indicated fire rating of walls, partitions, ceilings, and floors at pipe penetrations. Seal pipe penetrations with firestop materials. Comply with requirements for firestopping specified in Division 07 Section "Penetration Firestopping."

3.2 STACK-SLEEVE-FITTING INSTALLATION

- A. Install stack-sleeve fittings in new slabs as slabs are constructed.
 - 1. Install fittings that are large enough to provide 1/4-inch annular clear space between sleeve and pipe or pipe insulation.
 - 2. Secure flashing between clamping flanges for pipes penetrating floors with membrane waterproofing. Comply with requirements for flashing specified in Division 07 Section "Sheet Metal Flashing and Trim."
 - 3. Install section of cast-iron soil pipe to extend sleeve to 2 inches above finished floor level.
 - 4. Extend cast-iron sleeve fittings below floor slab as required to secure clamping ring if ring is specified.
 - 5. Using grout, seal the space around outside of stack-sleeve fittings.
- B. Fire-Barrier Penetrations: Maintain indicated fire rating of floors at pipe penetrations. Seal pipe penetrations with firestop materials. Comply with requirements for firestopping specified in Division 07 Section "Penetration Firestopping."

3.3 SLEEVE-SEAL-SYSTEM INSTALLATION

A. Install sleeve-seal systems in sleeves in exterior concrete walls and slabs-on-grade at service piping entries into building.

B. Select type, size, and number of sealing elements required for piping material and size and for sleeve ID or hole size. Position piping in center of sleeve. Center piping in penetration, assemble sleeve-seal system components, and install in annular space between piping and sleeve. Tighten bolts against pressure plates that cause sealing elements to expand and make a watertight seal.

3.4 SLEEVE-SEAL-FITTING INSTALLATION

- A. Install sleeve-seal fittings in new walls and slabs as they are constructed.
- B. Assemble fitting components of length to be flush with both surfaces of concrete slabs and walls. Position waterstop flange to be centered in concrete slab or wall.
- C. Secure nailing flanges to concrete forms.
- D. Using grout, seal the space around outside of sleeve-seal fittings.

3.5 SLEEVE AND SLEEVE-SEAL SCHEDULE

- A. Use sleeves and sleeve seals for the following piping-penetration applications:
 - 1. Exterior Concrete Walls above Grade:
 - a. Piping Smaller Than NPS 6. Galvanized-steel wall sleeves.
 - b. Piping NPS 6 and Larger: Galvanized-steel wall sleeves
 - 2. Exterior Concrete Walls below Grade:
 - a. Piping Smaller Than NPS 6: Galvanized-steel wall sleeves with sleeve seal.
 - 1) Select sleeve size to allow for 1-inch annular clear space between piping and sleeve for installing sleeve-seal system.
 - b. Piping NPS 6 and Larger: Galvanized-steel wall sleeves with sleeve seal.
 - 1) Select sleeve size to allow for 1-inch annular clear space between piping and sleeve for installing sleeve-seal system.
 - 3. Concrete Slabs-on-Grade:
 - a. Piping Smaller Than NPS 6: Galvanized-steel wall sleeves with sleeve seal.
 - 1) Select sleeve size to allow for 1-inch annular clear space between piping and sleeve for installing sleeve-seal system.
 - b. Piping NPS 6 and Larger: Galvanized-steel wall sleeves with sleeve seal.

- 1) Select sleeve size to allow for 1-inch annular clear space between piping and sleeve for installing sleeve-seal system.
- 4. Concrete Slabs above Grade:
 - a. Piping Smaller Than NPS 6: Galvanized-steel-pipe sleeves.
 - b. Piping NPS 6 (DN 150) and Larger: Galvanized-steel-pipe sleeves.
- 5. Interior Partitions:
 - a. Piping Smaller Than NPS 6: Galvanized-steel-pipe sleeves.
 - b. Piping NPS 6 and Larger: Galvanized-steel-sheet sleeves.

END OF SECTION 220517

SECTION 220518

ESCUTCHEONS FOR PLUMBING PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Escutcheons.
 - 2. Floor plates.

1.3 SUBMITTALS

A. Product Data: For each type of product indicated.

PART 2 - PRODUCTS

2.1 ESCUTCHEONS

- A. One-Piece, Cast-Brass Type: With polished, chrome-plated finish and setscrew fastener.
- B. One-Piece, Deep-Pattern Type: Deep-drawn, box-shaped brass with chrome-plated finish and spring-clip fasteners.
- C. One-Piece, Stamped-Steel Type: With chrome-plated finish and spring-clip fasteners.
- D. Split-Casting Brass Type: With polished, chrome-plated finish and with concealed hinge and setscrew.

E. Split-Plate, Stamped-Steel Type: With chrome-plated finish, concealed hinge, and spring-clip fasteners.

2.2 FLOOR PLATES

- A. One-Piece Floor Plates: Cast-iron flange with holes for fasteners.
- B. Split-Casting Floor Plates: Cast brass with concealed hinge.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Install escutcheons for piping penetrations of walls, ceilings, and finished floors.
- B. Install escutcheons with ID to closely fit around pipe, tube, and insulation of insulated piping and with OD that completely covers opening.
 - 1. Escutcheons for New Piping:
 - a. Piping with Fitting or Sleeve Protruding from Wall: One-piece, deep-pattern type.
 - b. Chrome-Plated Piping: One-piece, cast-brass type with polished, chrome-plated finish.
 - c. Insulated Piping: One-piece, stamped-steel type.
 - d. Bare Piping at Wall and Floor Penetrations in Finished Spaces: One-piece, cast-brass type with polished, chrome-plated finish.
 - e. Bare Piping at Wall and Floor Penetrations in Finished Spaces: One-piece, stamped-steel type.
 - f. Bare Piping at Ceiling Penetrations in Finished Spaces: One-piece, cast-brass type with polished, chrome-plated finish.
 - g. Bare Piping at Ceiling Penetrations in Finished Spaces: One-piece, stamped-steel type.
 - h. Bare Piping in Unfinished Service Spaces: One-piece, cast-brass type with polished, chrome-plated finish.
 - i. Bare Piping in Unfinished Service Spaces: One-piece, stamped-steel type.
 - j. Bare Piping in Equipment Rooms: One-piece, cast-brass type with polished, chrome-plated finish.
 - k. Bare Piping in Equipment Rooms: One-piece, stamped-steel type.
 - 2. Escutcheons for Existing Piping:

- a. Chrome-Plated Piping: Split-casting brass type with polished, chrome-plated finish.
- b. Insulated Piping: Split-plate, stamped-steel type with concealed hinge.
- c. Bare Piping at Wall and Floor Penetrations in Finished Spaces: Split-casting brass type with polished, chrome-plated finish.
- d. Bare Piping at Wall and Floor Penetrations in Finished Spaces: Split-plate, stamped-steel type with concealed hinge.
- e. Bare Piping at Ceiling Penetrations in Finished Spaces: Split-casting brass type with polished, chrome-plated finish.
- f. Bare Piping at Ceiling Penetrations in Finished Spaces: Split-plate, stamped-steel type with concealed hinge.
- g. Bare Piping in Unfinished Service Spaces: Split-casting brass type with polished, chrome-plated finish.
- h. Bare Piping in Unfinished Service Spaces: Split-plate, stamped-steel type with concealed hinge.
- i. Bare Piping in Equipment Rooms: Split-casting brass type with polished, chromeplated finish.
- j. Bare Piping in Equipment Rooms: Split-plate, stamped-steel type with concealed hinge.
- C. Install floor plates for piping penetrations of equipment-room floors.
- D. Install floor plates with ID to closely fit around pipe, tube, and insulation of piping and with OD that completely covers opening.
 - 1. New Piping: One-piece, floor-plate type.
 - 2. Existing Piping: Split-casting, floor-plate type.

3.2 FIELD QUALITY CONTROL

A. Replace broken and damaged escutcheons and floor plates using new materials.

END OF SECTION 220518

SECTION 220523

GENERAL-DUTY VALVES FOR PLUMBING PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

- 1. Bronze angle valves.
- 2. Brass ball valves.
- 3. Bronze ball valves.
- 4. Iron ball valves.
- 5. Iron, single-flange butterfly valves.
- 6. Iron, grooved-end butterfly valves.
- 7. Bronze lift check valves.
- 8. Bronze swing check valves.
- 9. Iron swing check valves.
- 10. Iron swing check valves with closure control.
- 11. Iron, grooved-end swing check valves.
- 12. Iron, center-guided check valves.
- 13. Iron, plate-type check valves.
- 14. Bronze gate valves.
- 15. Iron gate valves.
- 16. Bronze globe valves.
- 17. Iron globe valves.
- 18. Lubricated plug valves.
- 19. Chainwheels.

B. Related Sections:

- 1. Division 22 plumbing piping Sections for specialty valves applicable to those Sections only.
- 2. Division 22 Section "Identification for Plumbing Piping and Equipment" for valve tags and schedules.

1.3 DEFINITIONS

- A. CWP: Cold working pressure.
- B. EPDM: Ethylene propylene copolymer rubber.
- C. NBR: Acrylonitrile-butadiene, Buna-N, or nitrile rubber.
- D. NRS: Nonrising stem.
- E. OS&Y: Outside screw and yoke.
- F. RS: Rising stem.
- G. SWP: Steam working pressure.

1.4 SUBMITTALS

A. Product Data: For each type of valve indicated.

1.5 QUALITY ASSURANCE

- A. Source Limitations for Valves: Obtain each type of valve from single source from single manufacturer.
- B. ASME Compliance:
 - 1. ASME B16.10 and ASME B16.34 for ferrous valve dimensions and design criteria.
 - 2. ASME B31.1 for power piping valves.
 - 3. ASME B31.9 for building services piping valves.
- C. NSF Compliance: NSF 61 for valve materials for potable-water service.

1.6 DELIVERY, STORAGE, AND HANDLING

- A. Prepare valves for shipping as follows:
 - 1. Protect internal parts against rust and corrosion.
 - 2. Protect threads, flange faces, grooves, and weld ends.
 - 3. Set angle, gate, and globe valves closed to prevent rattling.
 - 4. Set ball and plug valves open to minimize exposure of functional surfaces.
 - 5. Set butterfly valves closed or slightly open.

- 6. Block check valves in either closed or open position.
- B. Use the following precautions during storage:
 - 1. Maintain valve end protection.
 - 2. Store valves indoors and maintain at higher than ambient dew point temperature. If outdoor storage is necessary, store valves off the ground in watertight enclosures.
- C. Use sling to handle large valves; rig sling to avoid damage to exposed parts. Do not use handwheels or stems as lifting or rigging points.

PART 2 - PRODUCTS

2.1 GENERAL REQUIREMENTS FOR VALVES

- A. Refer to valve schedule articles for applications of valves.
- B. Valve Pressure and Temperature Ratings: Not less than indicated and as required for system pressures and temperatures.
- C. Valve Sizes: Same as upstream piping unless otherwise indicated.
- D. Valve Actuator Types:
 - 1. Gear Actuator: For quarter-turn valves NPS 8 and larger.
 - 2. Handwheel: For valves other than quarter-turn types.
 - 3. Handlever: For quarter-turn valves NPS 6 and smaller.
 - 4. Chainwheel: Device for attachment to valve handwheel, stem, or other actuator; of size and with chain for mounting height, as indicated in the "Valve Installation" Article.
- E. Valves in Insulated Piping: With 2-inch stem extensions and the following features:
 - 1. Gate Valves: With rising stem.
 - 2. Ball Valves: With extended operating handle of non-thermal-conductive material, and protective sleeve that allows operation of valve without breaking the vapor seal or disturbing insulation.
 - 3. Butterfly Valves: With extended neck.

F. Valve-End Connections:

- 1. Flanged: With flanges according to ASME B16.1 for iron valves.
- 2. Grooved: With grooves according to AWWA C606.

- 3. Solder Joint: With sockets according to ASME B16.18.
- 4. Threaded: With threads according to ASME B1.20.1.
- G. Valve Bypass and Drain Connections: MSS SP-45.

2.2 BRASS BALL VALVES

- A. One-Piece, Full-Port, Brass Ball Valves with Brass Trim:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. American Valve, Inc.
 - b. Crane Co.; Crane Valve Group; Jenkins Valves.
 - c. Crane Co.; Crane Valve Group; Stockham Div.
 - d. Grinnell Corporation.
 - e. Jamesbury, Inc.
 - f. NIBCO INC.
 - g. Watts Industries, Inc.; Water Products Div.
 - h. Kitz Corporation.

2. Description:

- a. Standard: MSS SP-110.
- b. CWP Rating: 400 psig.
- c. Body Design: One piece.
- d. Body Material: Forged brass.
- e. Ends: Threaded.
- f. Seats: PTFE or TFE.
- g. Stem: Brass.
- h. Ball: Chrome-plated brass.
- i. Port: Full.
- B. Three-Piece, Full-Port, Brass Ball Valves with Stainless-Steel Trim:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Jomar International, LTD.
 - b. Kitz Corporation.
 - c. Marwin Valve; a division of Richards Industries.
 - d. Watts Regulator Co.; a division of Watts Water Technologies, Inc.
 - e. Conbraco Industries, Inc.; Apollo Div.
 - f. Grinnell Corporation.

- g. Jamesbury, Inc.
- h. NIBCO INC.
- i. PBM, Inc.

2. Controls Description:

- a. Standard: MSS SP-110.
- b. SWP Rating: 150 psig.
- c. CWP Rating: 600 psig.
- d. Body Design: Three piece.
- e. Body Material: Forged brass.
- f. Ends: Threaded.
- g. Seats: PTFE or TFE.
- h. Stem: Stainless steel.
- i. Ball: Stainless steel, vented.
- j. Port: Full.

2.3 IRON, SINGLE-FLANGE BUTTERFLY VALVES

- A. 200 CWP, Iron, Single-Flange Butterfly Valves with EPDM Seat and Stainless-Steel Disc:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following manufacturers
 - a. ABZ Valve and Controls; a division of ABZ Manufacturing, Inc.
 - b. American Valve, Inc.
 - c. Conbraco Industries, Inc.; Apollo Valves.
 - d. Cooper Cameron Valves; a division of Cooper Cameron Corp.
 - e. Crane Co.; Crane Valve Group; Jenkins Valves.
 - f. Crane Co.; Crane Valve Group; Stockham Division.
 - g. DeZurik Water Controls.
 - h. Dover Corp.; Dover Resources Company; Norriseal Div.
 - i. Flo Fab Inc.
 - j. Grinnell Corporation
 - k. Hammond Valve.
 - 1. Kitz Corporation.
 - m. Legend Valve.
 - n. Milwaukee Valve Company.
 - o. Mueller Steam Specialty; a division of SPX Corporation.
 - p. NIBCO INC.
 - q. Norriseal; a Dover Corporation company.
 - r. Red-White Valve Corporation.
 - s. Spence Strainers International; a division of CIRCOR International.

- t. Sure Flow Equipment Inc.
- u. Tyco International, Ltd.; Tyco Valves & Controls.
- v. Watts Regulator Co.; a division of Watts Water Technologies, Inc.

2. Description:

- a. Standard: MSS SP-67, Type I.
- b. CWP Rating: 200 psig.
- c. Body Design: Lug type; suitable for bidirectional dead-end service at rated pressure without use of downstream flange.
- d. Body Material: ASTM A 126, cast iron or ASTM A 536, ductile iron.
- e. Seat: EPDM.
- f. Stem: One- or two-piece stainless steel.
- g. Disc: Stainless steel.

2.4 HIGH-PERFORMANCE BUTTERFLY VALVES

- A. Class 150, Single-Flange, High-Performance Butterfly Valves:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following manufacturers:
 - a. ABZ Valve and Controls; a division of ABZ Manufacturing, Inc.
 - b. Bray Controls; a division of Bray International.
 - c. Cooper Cameron Valves; a division of Cooper Cameron Corp.
 - d. Crane Co.; Crane Valve Group; Flowseal.
 - e. Crane Co.; Crane Valve Group; Stockham Division.
 - f. DeZurik Water Controls.
 - g. Hammond Valve.
 - h. Jamesbury; a subsidiary of Metso Automation.
 - i. Milwaukee Valve Company.
 - j. NIBCO INC.
 - k. Process Development & Control, Inc.
 - 1. Tyco Valves & Controls; a unit of Tyco Flow Control.
 - m. Xomox Corporation.

2. Description:

- a. Standard: MSS SP-68.
- b. CWP Rating: 285 psig at 100 deg F.
- c. Body Design: Lug type; suitable for bidirectional dead-end service at rated pressure without use of downstream flange.
- d. Body Material: Carbon steel, cast iron, ductile iron, or stainless steel.
- e. Seat: Reinforced PTFE or metal.

- f. Stem: Stainless steel; offset from seat plane.
- g. Disc: Carbon steel.
- h. Service: Bidirectional.

2.5 BRONZE LIFT CHECK VALVES

- A. Class 125, Lift Check Valves with Bronze Disc:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following] [available manufacturers:
 - a. Crane Co.; Crane Valve Group; Crane Valves.
 - b. Crane Co.; Crane Valve Group; Jenkins Valves.
 - c. Crane Co.; Crane Valve Group; Stockham Division.
 - 2. Description:
 - a. Standard: MSS SP-80, Type 1.
 - b. CWP Rating: 200 psig.
 - c. Body Design: Vertical flow.
 - d. Body Material: ASTM B 61 or ASTM B 62, bronze.
 - e. Ends: Threaded.
 - f. Disc: Bronze.

2.6 BRONZE SWING CHECK VALVES

- A. Class 150, Bronze Swing Check Valves with Bronze Disc:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following vailable manufacturer:
 - a. American Valve, Inc.
 - b. Crane Co.; Crane Valve Group; Crane Valves.
 - c. Crane Co.; Crane Valve Group; Jenkins Valves.
 - d. Crane Co.; Crane Valve Group; Stockham Division.
 - e. Grinnell Corporation.
 - f. Kitz Corporation.
 - g. Milwaukee Valve Company.
 - h. NIBCO INC.
 - i. Red-White Valve Corporation.
 - j. Watts Industries, Inc.; Water Products Div.
 - k. Zy-Tech Global Industries, Inc.

2. Description:

- a. Standard: MSS SP-80, Type 3.
- b. CWP Rating: 300 psig.
- c. Body Design: Horizontal flow.
- d. Body Material: ASTM B 62, bronze.
- e. Ends: Threaded.
- f. Disc: Bronze.

2.7 IRON SWING CHECK VALVES

- A. Class 250, Iron Swing Check Valves with Metal Seats:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following vailable manufacturers:
 - a. Crane Co.; Crane Valve Group; Crane Valves.
 - b. Crane Co.; Crane Valve Group; Jenkins Valves.
 - c. Crane Co.; Crane Valve Group; Stockham Division.
 - d. Cincinnati Valve Company
 - e. Flomatic Valves
 - f. Grinnell Corporation
 - g. Hammond Valve.
 - h. Milwaukee Valve Company.
 - i. NIBCO INC.
 - j. Watts Regulator Co.; a division of Watts Water Technologies, Inc.

2. Description:

- a. Standard: MSS SP-71, Type I.
- b. NPS 2-1/2 to NPS 12, CWP Rating: 500 psig.
- c. NPS 14 to NPS 24, CWP Rating: 300 psig.
- d. Body Design: Clear or full waterway.
- e. Body Material: ASTM A 126, gray iron with bolted bonnet.
- f. Ends: Flanged.
- g. Trim: Bronze.
- h. Gasket: Asbestos free.

2.8 BRONZE GATE VALVES

A. Class 150, NRS Bronze Gate Valves:

- 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following manufacturers:
 - a. Hammond Valve.
 - b. Kitz Corporation.
 - c. Milwaukee Valve Company.
 - d. NIBCO INC.
 - e. Powell Valves.
 - f. Red-White Valve Corporation.
 - g. Watts Regulator Co.; a division of Watts Water Technologies, Inc.
 - h. American Valve, Inc.
 - i. Grinnell Corporation.

2. Description:

- a. Standard: MSS SP-80, Type 1.
- b. CWP Rating: 300 psig.
- c. Body Material: ASTM B 62, bronze with integral seat and union-ring bonnet.
- d. Ends: Threaded.
- e. Stem: Bronze.
- f. Disc: Solid wedge; bronze.
- g. Packing: Asbestos free.
- h. Handwheel: Malleable iron bronze, or aluminum.

2.9 IRON GATE VALVES

- A. Class 250, NRS, Iron Gate Valves:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following manufacturers:
 - a. Crane Co.; Crane Valve Group; Crane Valves.
 - b. Crane Co.; Crane Valve Group; Stockham Division.
 - c. NIBCO INC.
 - d. Cincinnati Valve Company
 - e. Grinnell Corporation

2. Description:

- a. Standard: MSS SP-70, Type I.
- b. NPS 2-1/2 to NPS 12, CWP Rating: 500 psig.
- c. NPS 14 to NPS 24, CWP Rating: 300 psig.
- d. Body Material: ASTM A 126, gray iron with bolted bonnet.

- e. Ends: Flanged.
- f. Trim: Bronze.
- g. Disc: Solid wedge.
- h. Packing and Gasket: Asbestos free.

B. Class 250, OS&Y, Iron Gate Valves:

- 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following manufacturers:
 - a. Crane Co.; Crane Valve Group; Crane Valves.
 - b. Crane Co.; Crane Valve Group; Stockham Division.
 - c. Hammond Valve.
 - d. Milwaukee Valve Company.
 - e. NIBCO INC.
 - f. Powell Valves.
 - g. Watts Regulator Co.; a division of Watts Water Technologies, Inc.
 - h. Grinnell Corporation

2. Description:

- a. Standard: MSS SP-70, Type I.
- b. NPS 2-1/2 to NPS 12, CWP Rating: 500 psig.
- c. NPS 14 to NPS 24, CWP Rating: 300 psig.
- d. Body Material: ASTM A 126, gray iron with bolted bonnet.
- e. Ends: Flanged.
- f. Trim: Bronze.
- g. Disc: Solid wedge.
- h. Packing and Gasket: Asbestos free.

2.10 CHAINWHEELS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following manufacturers:
 - 1. Babbitt Steam Specialty Co.
 - 2. Roto Hammer Industries.
 - 3. Trumbull Industries.
- B. Description: Valve actuation assembly with sprocket rim, brackets, and chain.
 - 1. Brackets: Type, number, size, and fasteners required to mount actuator on valve.
 - 2. Attachment: For connection to butterfly valve stems.

- 3. Sprocket Rim with Chain Guides: Ductile or cast iron, of type and size required for valve. Include zinc coating.
- 4. Chain: Hot-dip, galvanized steel, of size required to fit sprocket rim.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine valve interior for cleanliness, freedom from foreign matter, and corrosion. Remove special packing materials, such as blocks, used to prevent disc movement during shipping and handling.
- B. Operate valves in positions from fully open to fully closed. Examine guides and seats made accessible by such operations.
- C. Examine threads on valve and mating pipe for form and cleanliness.
- D. Examine mating flange faces for conditions that might cause leakage. Check bolting for proper size, length, and material. Verify that gasket is of proper size, that its material composition is suitable for service, and that it is free from defects and damage.
- E. Do not attempt to repair defective valves; replace with new valves.

3.2 VALVE INSTALLATION

- A. Install valves with unions or flanges at each piece of equipment arranged to allow service, maintenance, and equipment removal without system shutdown.
- B. Locate valves for easy access and provide separate support where necessary.
- C. Install valves in horizontal piping with stem at or above center of pipe.
- D. Install valves in position to allow full stem movement.
- E. Install chainwheels on operators for butterfly and gate valves NPS 4 and larger and more than 96 inches above floor. Extend chains to 60 inches above finished floor.
- F. Install check valves for proper direction of flow and as follows:
 - 1. Swing Check Valves: In horizontal position with hinge pin level.
 - 2. Lift Check Valves: With stem upright and plumb.

G. Provide an additional six (6) valves of each type and size used in the project to accommodate interferences and/or as directed by Engineer.

3.3 ADJUSTING

A. Adjust or replace valve packing after piping systems have been tested and put into service but before final adjusting and balancing. Replace valves if persistent leaking occurs.

3.4 GENERAL REQUIREMENTS FOR VALVE APPLICATIONS

- A. If valve applications are not indicated, use the following:
 - 1. Shutoff Service: Ball, butterfly or gate valves.
 - 2. Butterfly Valve Dead-End Service: Single-flange (lug) type.
 - 3. Throttling Service: ball, or butterfly valves.
 - 4. Pump-Discharge Check Valves:
 - a. NPS 2 and Smaller: Bronze swing check valves with bronze disc.
 - b. NPS 2-1/2 and Larger for Domestic Water: Iron swing check valves with lever and weight or with spring or iron, center-guided, metal-seat check valves.
 - c. NPS 2-1/2 and Larger for Sanitary Waste and Storm Drainage: Iron swing check valves with lever and weight or spring.
- B. If valves with specified SWP classes or CWP ratings are not available, the same types of valves with higher SWP classes or CWP ratings may be substituted.
- C. Select valves, except wafer types, with the following end connections:
 - 1. For Copper Tubing, NPS 2 and Smaller: Threaded ends except where solder-joint valve-end option is indicated in valve schedules below.
 - 2. For Copper Tubing, NPS 2-1/2 to NPS 4: Flanged ends except where threaded valve-end option is indicated in valve schedules below.
 - 3. For Copper Tubing, NPS 5 and Larger: Flanged ends.
 - 4. For Steel Piping, NPS 2 and Smaller: Threaded ends.
 - 5. For Steel Piping, NPS 2-1/2 to NPS 4: Flanged ends except where threaded valve-end option is indicated in valve schedules below.
 - 6. For Steel Piping, NPS 5 and Larger: Flanged ends.

3.5 DOMESTIC, HOT- AND COLD-WATER VALVE SCHEDULE

A. Pipe NPS 2 (DN 50) and Smaller:

- 1. Bronze and Brass Valves: may be provided with solder-joint ends instead of threaded ends.
- 2. Ball Valves: One or Three piece, full port, brass with stainless-steel trim.
- 3. Bronze Swing Check Valves: Class 150, bronze disc.
- 4. Bronze Gate Valves: Class 150, NRS.

B. Pipe NPS 2-1/2 and Larger:

- 1. Iron, Single-Flange Butterfly Valves, NPS 2-1/2 to NPS 12: 200 CWP, EPDM seat, stainless-steel disc.
- 2. Iron, Single-Flange Butterfly Valves, NPS 14 to NPS 24: 150 CWP, EPDM seat, stainless-steel disc.
- 3. High-Performance Butterfly Valves: Class 150, single flange.
- 4. Iron Swing Check Valves: Class 250, metal seats.
- 5. Iron Gate Valves: Class 250, NRS or OS&Y.

3.6 SANITARY-WASTE AND STORM-DRAINAGE VALVE SCHEDULE

A. Pipe NPS 2 and Smaller:

- 1. Brass and Bronze Valves: May be provided with solder-joint ends instead of threaded ends.
- 2. Ball Valves: One or Three piece, full port, brass with stainless-steel trim.
- 3. Bronze Swing Check Valves: Class 150, bronze disc.
- 4. Bronze Gate Valves: Class 150, [NRS, bronze.

B. Pipe NPS 2-1/2 and Larger:

- 1. Iron Valves, NPS 2-1/2 to NPS 4: May be provided with threaded ends instead of flanged ends.
- 2. Iron, Single-Flange Butterfly Valves, NPS 2-1/2 to NPS 12: 200 CWP, EPDM seat, stainless-steel disc.
- 3. Iron, Single-Flange Butterfly Valves, NPS 14 to NPS 24: 150 CWP, EPDM seat, stainless-steel disc.
- 4. High-Performance Butterfly Valves: Class 150, single flange.
- 5. Iron Swing Check Valves: Class 250, metal seats.
- 6. Iron Gate Valves: Class 250, NRS or OS&Y.

END OF SECTION 220523

SECTION 220529

HANGERS AND SUPPORTS FOR PLUMBING PIPING AND EQUIPMENT

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

- 1. Metal pipe hangers and supports.
- 2. Trapeze pipe hangers.
- 3. Fiberglass pipe hangers.
- 4. Metal framing systems.
- 5. Fiberglass strut systems.
- 6. Thermal-hanger shield inserts.
- 7. Fastener systems.
- 8. Pipe stands.
- 9. Pipe positioning systems.
- 10. Equipment supports.

B. Related Sections:

- 1. Division 21 fire-suppression piping Sections for pipe hangers for fire-suppression piping.
- 2. Division 22 Section "Expansion Fittings and Loops for Plumbing Piping" for pipe guides and anchors.
- 3. Division 22 Section "Vibration and Seismic Controls for Plumbing Piping and Equipment" for vibration isolation devices.

1.3 DEFINITIONS

A. MSS: Manufacturers Standardization Society of The Valve and Fittings Industry Inc.

1.4 PERFORMANCE REQUIREMENTS

- A. Delegated Design: Design trapeze pipe hangers and equipment supports, including comprehensive engineering analysis by a qualified professional engineer, using performance requirements and design criteria indicated.
- B. Structural Performance: Hangers and supports for plumbing piping and equipment shall withstand the effects of gravity loads and stresses within limits and under conditions indicated according to ASCE/SEI 7.
 - 1. Design supports for multiple pipes, including pipe stands, capable of supporting combined weight of supported systems, system contents, and test water.
 - 2. Design equipment supports capable of supporting combined operating weight of supported equipment and connected systems and components.
 - 3. Design seismic-restraint hangers and supports for piping and equipment and obtain approval from authorities having jurisdiction.

1.5 SUBMITTALS

- A. Product Data: For each type of product indicated.
- B. Shop Drawings: Signed and sealed by a qualified professional engineer. Show fabrication and installation details and include calculations for the following; include Product Data for components:
 - 1. Trapeze pipe hangers.
 - 2. Metal framing systems.
 - 3. Fiberglass strut systems.
 - 4. Pipe stands.
 - 5. Equipment supports.
- C. Delegated-Design Submittal: For trapeze hangers indicated to comply with performance requirements and design criteria, including analysis data signed and sealed by the qualified professional engineer responsible for their preparation.
 - 1. Detail fabrication and assembly of trapeze hangers.
 - 2. Design Calculations: Calculate requirements for designing trapeze hangers.
- D. Welding certificates.

1.6 QUALITY ASSURANCE

- A. Structural Steel Welding Qualifications: Qualify procedures and personnel according to AWS D1.1/D1.1M, "Structural Welding Code Steel."
- B. Pipe Welding Qualifications: Qualify procedures and operators according to ASME Boiler and Pressure Vessel Code.

PART 2 - PRODUCTS

2.1 METAL PIPE HANGERS AND SUPPORTS

- A. Carbon-Steel Pipe Hangers and Supports:
 - 1. Description: MSS SP-58, Types 1 through 58, factory-fabricated components.
 - 2. Galvanized Metallic Coatings: Pregalvanized or hot dipped.
 - 3. Nonmetallic Coatings: Plastic coating, jacket, or liner.
 - 4. Padded Hangers: Hanger with fiberglass or other pipe insulation pad or cushion to support bearing surface of piping.
 - 5. Hanger Rods: Continuous-thread rod, nuts, and washer made of stainless steel.
- B. Stainless-Steel Pipe Hangers and Supports:
 - 1. Description: MSS SP-58, Types 1 through 58, factory-fabricated components.
 - 2. Padded Hangers: Hanger with fiberglass or other pipe insulation pad or cushion to support bearing surface of piping.
 - 3. Hanger Rods: Continuous-thread rod, nuts, and washer made of stainless steel.

C. Copper Pipe Hangers:

- 1. Description: MSS SP-58, Types 1 through 58, copper-coated-steel, factory-fabricated components.
- 2. Hanger Rods: Continuous-thread rod, nuts, and washer made of stainless steel

2.2 TRAPEZE PIPE HANGERS

A. Description: MSS SP-69, Type 59, shop- or field-fabricated pipe-support assembly made from structural carbon-steel shapes with MSS SP-58 carbon-steel hanger rods, nuts, saddles, and U-bolts.

2.3 FIBERGLASS PIPE HANGERS

- A. Clevis-Type, Fiberglass Pipe Hangers:
 - 1. Description: Similar to MSS SP-58, Type 1, steel pipe hanger except hanger is made of fiberglass or fiberglass-reinforced resin.
 - 2. Hanger Rods: Continuous-thread rod, washer, and nuts made of stainless steel
- B. Strap-Type, Fiberglass Pipe Hangers:
 - 1. Description: Similar to MSS SP-58, Type 9 or Type 10, steel pipe hanger except hanger is made of fiberglass-reinforced resin.
 - 2. Hanger Rod and Fittings: Continuous-thread rod, washer, and nuts made of stainless steel

2.4 METAL FRAMING SYSTEMS

- A. MFMA Manufacturer Metal Framing Systems:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Allied Tube & Conduit.
 - b. Cooper B-Line, Inc.
 - c. Flex-Strut Inc.
 - d. GS Metals Corp.
 - e. Thomas & Betts Corporation.
 - f. Unistrut Corporation; Tyco International, Ltd.
 - g. Wesanco, Inc.
 - 2. Description: Shop- or field-fabricated pipe-support assembly for supporting multiple parallel pipes.
 - 3. Standard: MFMA-4.
 - 4. Channels: Continuous slotted steel channel with inturned lips.

- 5. Channel Nuts: Formed or stamped steel nuts or other devices designed to fit into channel slot and, when tightened, prevent slipping along channel.
- 6. Hanger Rods: Continuous-thread rod, nuts, and washer made of stainless steel
- 7. Metallic Coating: Electroplated zinc

2.5 THERMAL-HANGER SHIELD INSERTS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Carpenter & Paterson, Inc.
 - 2. Clement Support Services.
 - 3. ERICO International Corporation.
 - 4. National Pipe Hanger Corporation.
 - 5. PHS Industries, Inc.
 - 6. Pipe Shields, Inc.; a subsidiary of Piping Technology & Products, Inc.
 - 7. Piping Technology & Products, Inc.
 - 8. Rilco Manufacturing Co., Inc.
 - 9. Value Engineered Products, Inc.
- B. Insulation-Insert Material for Cold Piping: ASTM C 552, Type II cellular glass with 100-psig minimum compressive strength and vapor barrier.
- C. Insulation-Insert Material for Hot Piping: Water-repellent treated, ASTM C 552, Type II cellular glass with 100-psig minimum compressive strength.
- D. For Trapeze or Clamped Systems: Insert and shield shall cover entire circumference of pipe.
- E. For Clevis or Band Hangers: Insert and shield shall cover lower 180 degrees of pipe.
- F. Insert Length: Extend 2 inches beyond sheet metal shield for piping operating below ambient air temperature.

2.6 FASTENER SYSTEMS

A. Powder-Actuated Fasteners: Threaded-steel stud, for use in hardened portland cement concrete with pull-out, tension, and shear capacities appropriate for supported loads and building materials where used.

B. Mechanical-Expansion Anchors: Insert-wedge-type, stainless-steel anchors, for use in hardened portland cement concrete; with pull-out, tension, and shear capacities appropriate for supported loads and building materials where used.

2.7 PIPE STANDS

- A. General Requirements for Pipe Stands: Shop- or field-fabricated assemblies made of manufactured corrosion-resistant components to support roof-mounted piping.
- B. Compact Pipe Stand: One-piece plastic unit with integral-rod roller, pipe clamps, or V-shaped cradle to support pipe, for roof installation without membrane penetration.
- C. Low-Type, Single-Pipe Stand: One-piece stainless-steel base unit with plastic roller, for roof installation without membrane penetration.
- D. High-Type, Single-Pipe Stand:
 - 1. Description: Assembly of base, vertical and horizontal members, and pipe support, for roof installation without membrane penetration.
 - 2. Base: Stainless steel.
 - 3. Vertical Members: Two or more cadmium-plated-steel or stainless-steel, continuous-thread rods.
 - 4. Horizontal Member: Cadmium-plated-steel or stainless-steel rod with plastic or stainless-steel, roller-type pipe support.

E. High-Type, Multiple-Pipe Stand:

- 1. Description: Assembly of bases, vertical and horizontal members, and pipe supports, for roof installation without membrane penetration.
- 2. Bases: One or more; plastic.
- 3. Vertical Members: Two or more protective-coated-steel channels.
- 4. Horizontal Member: Protective-coated-steel channel.
- 5. Pipe Supports: Galvanized-steel, clevis-type pipe hangers.
- F. Curb-Mounting-Type Pipe Stands: Shop- or field-fabricated pipe supports made from structural-steel shapes, continuous-thread rods, and rollers, for mounting on permanent stationary roof curb.

2.8 PIPE POSITIONING SYSTEMS

A. Description: IAPMO PS 42, positioning system of metal brackets, clips, and straps for positioning piping in pipe spaces; for plumbing fixtures in commercial applications.

2.9 EQUIPMENT SUPPORTS

A. Description: Welded, shop- or field-fabricated equipment support made from structural carbon-steel shapes.

2.10 MISCELLANEOUS MATERIALS

- A. Structural Steel: ASTM A 36/A 36M, carbon-steel plates, shapes, and bars; black and galvanized.
- B. Grout: ASTM C 1107, factory-mixed and -packaged, dry, hydraulic-cement, nonshrink and nonmetallic grout; suitable for interior and exterior applications.
 - 1. Properties: Nonstaining, noncorrosive, and nongaseous.
 - 2. Design Mix: 5000-psi, 28-day compressive strength.

PART 3 - EXECUTION

3.1 HANGER AND SUPPORT INSTALLATION

- A. Metal Pipe-Hanger Installation: Comply with MSS SP-69 and MSS SP-89. Install hangers, supports, clamps, and attachments as required to properly support piping from the building structure.
- B. Metal Trapeze Pipe-Hanger Installation: Comply with MSS SP-69 and MSS SP-89. Arrange for grouping of parallel runs of horizontal piping, and support together on field-fabricated trapeze pipe hangers.
 - 1. Pipes of Various Sizes: Support together and space trapezes for smallest pipe size or install intermediate supports for smaller diameter pipes as specified for individual pipe hangers.
 - 2. Field fabricate from ASTM A 36/A 36M, carbon-steel shapes selected for loads being supported. Weld steel according to AWS D1.1/D1.1M.

- C. Fiberglass Pipe-Hanger Installation: Comply with applicable portions of MSS SP-69 and MSS SP-89. Install hangers and attachments as required to properly support piping from building structure.
- D. Metal Framing System Installation: Arrange for grouping of parallel runs of piping, and support together on field-assembled metal framing systems.
- E. Fiberglass Strut System Installation: Arrange for grouping of parallel runs of piping, and support together on field-assembled fiberglass struts.
- F. Thermal-Hanger Shield Installation: Install in pipe hanger or shield for insulated piping.
- G. Fastener System Installation:
 - 1. Install powder-actuated fasteners for use in lightweight concrete or concrete slabs less than 4 inches (100 mm) thick in concrete after concrete is placed and completely cured. Use operators that are licensed by powder-actuated tool manufacturer. Install fasteners according to powder-actuated tool manufacturer's operating manual.
 - 2. Install mechanical-expansion anchors in concrete after concrete is placed and completely cured. Install fasteners according to manufacturer's written instructions.

H. Pipe Stand Installation:

- 1. Pipe Stand Types except Curb-Mounted Type: Assemble components and mount on smooth roof surface. Do not penetrate roof membrane.
- 2. Curb-Mounted-Type Pipe Stands: Assemble components or fabricate pipe stand and mount on permanent, stationary roof curb. See Division 07 Section "Roof Accessories" for curbs.
- I. Pipe Positioning-System Installation: Install support devices to make rigid supply and waste piping connections to each plumbing fixture. See Division 22 plumbing fixture Sections for requirements for pipe positioning systems for plumbing fixtures.
- J. Install hangers and supports complete with necessary attachments, inserts, bolts, rods, nuts, washers, and other accessories.
- K. Equipment Support Installation: Fabricate from welded-structural-steel shapes.

- L. Install hangers and supports to allow controlled thermal and seismic movement of piping systems, to permit freedom of movement between pipe anchors, and to facilitate action of expansion joints, expansion loops, expansion bends, and similar units.
- M. Install lateral bracing with pipe hangers and supports to prevent swaying.
- N. Install building attachments within concrete slabs or attach to structural steel. Install additional attachments at concentrated loads, including valves, flanges, and strainers, NPS 2-1/2 and larger and at changes in direction of piping. Install concrete inserts before concrete is placed; fasten inserts to forms and install reinforcing bars through openings at top of inserts.
- O. Load Distribution: Install hangers and supports so that piping live and dead loads and stresses from movement will not be transmitted to connected equipment.
- P. Pipe Slopes: Install hangers and supports to provide indicated pipe slopes and to not exceed maximum pipe deflections allowed by ASME B31.9 for building services piping.
- Q. Insulated Piping:
 - 1. Attach clamps and spacers to piping.
 - a. Piping Operating above Ambient Air Temperature: Clamp may project through insulation.
 - b. Piping Operating below Ambient Air Temperature: Use thermal-hanger shield insert with clamp sized to match OD of insert.
 - c. Do not exceed pipe stress limits allowed by ASME B31.9 for building services piping.
 - 2. Install MSS SP-58, Type 39, protection saddles if insulation without vapor barrier is indicated. Fill interior voids with insulation that matches adjoining insulation.
 - a. Option: Thermal-hanger shield inserts may be used. Include steel weight-distribution plate for pipe NPS 4 and larger if pipe is installed on rollers.
 - 3. Install MSS SP-58, Type 40, protective shields on cold piping with vapor barrier. Shields shall span an arc of 180 degrees.

- a. Option: Thermal-hanger shield inserts may be used. Include steel weight-distribution plate for pipe NPS 4 and larger if pipe is installed on rollers.
- 4. Shield Dimensions for Pipe: Not less than the following:
 - a. NPS 1/4 to NPS 3-1/2: 12 inches long and 0.048 inch thick.
 - b. NPS 4: 12 inches long and 0.06 inch thick.
 - c. NPS 5 and NPS 6: 18 inches long and 0.06 inch thick.
 - d. NPS 8 to NPS 14 24 inches long and 0.075 inch thick.
 - e. NPS 16 to NPS 24 24 inches long and 0.105 inch thick.
- 5. Pipes NPS 8 and Larger: Include wood or reinforced calcium-silicate-insulation inserts of length at least as long as protective shield.
- 6. Thermal-Hanger Shields: Install with insulation same thickness as piping insulation.

3.2 EQUIPMENT SUPPORTS

- A. Fabricate structural-steel stands to suspend equipment from structure overhead or to support equipment above floor.
- B. Grouting: Place grout under supports for equipment and make bearing surface smooth.
- C. Provide lateral bracing, to prevent swaying, for equipment supports.

3.3 METAL FABRICATIONS

- A. Cut, drill, and fit miscellaneous metal fabrications for trapeze pipe hangers and equipment supports.
- B. Fit exposed connections together to form hairline joints. Field weld connections that cannot be shop welded because of shipping size limitations.
- C. Field Welding: Comply with AWS D1.1/D1.1M procedures for shielded, metal arc welding; appearance and quality of welds; and methods used in correcting welding work; and with the following:
 - 1. Use materials and methods that minimize distortion and develop strength and corrosion resistance of base metals.
 - 2. Obtain fusion without undercut or overlap.

- 3. Remove welding flux immediately.
- 4. Finish welds at exposed connections so no roughness shows after finishing and so contours of welded surfaces match adjacent contours.

3.4 ADJUSTING

- A. Hanger Adjustments: Adjust hangers to distribute loads equally on attachments and to achieve indicated slope of pipe.
- B. Trim excess length of continuous-thread hanger and support rods to 1-1/2 inches.

3.5 PAINTING

- A. Touchup: Clean field welds and abraded areas of shop paint. Paint exposed areas immediately after erecting hangers and supports. Use same materials as used for shop painting. Comply with SSPC-PA 1 requirements for touching up field-painted surfaces.
 - 1. Apply paint by brush or spray to provide a minimum dry film thickness of 2.0 mils.
- B. Touchup: Cleaning and touchup painting of field welds, bolted connections, and abraded areas of shop paint on miscellaneous metal are specified in Division 09 painting Sections.
- C. Galvanized Surfaces: Clean welds, bolted connections, and abraded areas and apply galvanizing-repair paint to comply with ASTM A 780.

3.6 HANGER AND SUPPORT SCHEDULE

- A. Specific hanger and support requirements are in Sections specifying piping systems and equipment.
- B. Comply with MSS SP-69 for pipe-hanger selections and applications that are not specified in piping system Sections.
- C. Use hangers and supports with galvanized metallic coatings for piping and equipment that will not have field-applied finish.
- D. Use nonmetallic coatings on attachments for electrolytic protection where attachments are in direct contact with copper tubing.

- E. Use carbon-steel metal trapeze pipe hangers and metal framing systems and attachments for general service applications.
- F. Use stainless-steel pipe hangers and stainless-steel attachments for hostile environment applications.
- G. Use copper-plated pipe hangers and copper or stainless-steel attachments for copper piping and tubing.
- H. Use padded hangers for piping that is subject to scratching.
- I. Use thermal-hanger shield inserts for insulated piping and tubing.
- J. Horizontal-Piping Hangers and Supports: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
 - 1. Adjustable, Steel Clevis Hangers (MSS Type 1): For suspension of noninsulated or insulated, stationary pipes NPS 1/2 to NPS 30.
 - 2. Yoke-Type Pipe Clamps (MSS Type 2): For suspension of up to 1050 deg F pipes NPS 4 to NPS 24 requiring up to 4 inches of insulation.
 - 3. Carbon- or Alloy-Steel, Double-Bolt Pipe Clamps (MSS Type 3): For suspension of pipes NPS 3/4 to NPS 36 requiring clamp flexibility and up to 4 inches of insulation.
 - 4. Steel Pipe Clamps (MSS Type 4): For suspension of cold and hot pipes NPS 1/2 to NPS 24 if little or no insulation is required.
 - 5. Pipe Hangers (MSS Type 5): For suspension of pipes NPS 1/2 to NPS 4 to allow off-center closure for hanger installation before pipe erection.
 - 6. Adjustable, Swivel Split- or Solid-Ring Hangers (MSS Type 6): For suspension of noninsulated, stationary pipes NPS 3/4 to NPS 8
 - 7. Adjustable, Steel Band Hangers (MSS Type 7): For suspension of noninsulated, stationary pipes NPS 1/2 to NPS 8
 - 8. Adjustable Band Hangers (MSS Type 9): For suspension of noninsulated, stationary pipes NPS 1/2 to NPS 8
 - 9. Adjustable, Swivel-Ring Band Hangers (MSS Type 10): For suspension of noninsulated, stationary pipes NPS 1/2 to NPS 8
 - Split Pipe Ring with or without Turnbuckle Hangers (MSS Type 11): For suspension of noninsulated, stationary pipes NPS 3/8 to NPS 8.
 - 11. Extension Hinged or Two-Bolt Split Pipe Clamps (MSS Type 12): For suspension of noninsulated, stationary pipes NPS 3/8 to NPS 3.
 - 12. U-Bolts (MSS Type 24): For support of heavy pipes NPS 1/2 to NPS 30
 - 13. Clips (MSS Type 26): For support of insulated pipes not subject to expansion or contraction.

- 14. Pipe Saddle Supports (MSS Type 36): For support of pipes NPS 4 to NPS 36 with steel-pipe base stanchion support and cast-iron floor flange or carbon-steel plate.
- 15. Pipe Stanchion Saddles (MSS Type 37): For support of pipes NPS 4 to NPS 36 with steel-pipe base stanchion support and cast-iron floor flange or carbon-steel plate, and with U-bolt to retain pipe.
- 16. Adjustable Pipe Saddle Supports (MSS Type 38): For stanchion-type support for pipes NPS 2-1/2 to NPS 36 if vertical adjustment is required, with steel-pipe base stanchion support and cast-iron floor flange.
- 17. Single-Pipe Rolls (MSS Type 41): For suspension of pipes NPS 1 to NPS 30 from two rods if longitudinal movement caused by expansion and contraction might occur.
- 18. Adjustable Roller Hangers (MSS Type 43): For suspension of pipes NPS 2-1/2 to NPS 24 from single rod if horizontal movement caused by expansion and contraction might occur.
- 19. Complete Pipe Rolls (MSS Type 44): For support of pipes NPS 2 to NPS 42 if longitudinal movement caused by expansion and contraction might occur but vertical adjustment is not necessary.
- 20. Pipe Roll and Plate Units (MSS Type 45): For support of pipes NPS 2 to NPS 24 if small horizontal movement caused by expansion and contraction might occur and vertical adjustment is not necessary.
- 21. Adjustable Pipe Roll and Base Units (MSS Type 46): For support of pipes NPS 2 to NPS 30 if vertical and lateral adjustment during installation might be required in addition to expansion and contraction.
- K. Vertical-Piping Clamps: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
 - 1. Extension Pipe or Riser Clamps (MSS Type 8): For support of pipe risers NPS 3/4 to NPS 24
 - 2. Carbon- or Alloy-Steel Riser Clamps (MSS Type 42): For support of pipe risers NPS 3/4 to NPS 24 if longer ends are required for riser clamps.
- L. Hanger-Rod Attachments: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
 - 1. Steel Turnbuckles (MSS Type 13): For adjustment up to 6 inches for heavy loads.
 - 2. Steel Clevises (MSS Type 14): For 120 to 450 deg F piping installations.
 - 3. Swivel Turnbuckles (MSS Type 15): For use with MSS Type 11, split pipe rings.

- 4. Malleable-Iron Sockets (MSS Type 16): For attaching hanger rods to various types of building attachments.
- 5. Steel Weldless Eye Nuts (MSS Type 17): For 120 to 450 deg F piping installations.
- M. Building Attachments: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
 - 1. Steel or Malleable Concrete Inserts (MSS Type 18): For upper attachment to suspend pipe hangers from concrete ceiling.
 - 2. Top-Beam C-Clamps (MSS Type 19): For use under roof installations with bar-joist construction, to attach to top flange of structural shape.
 - 3. Side-Beam or Channel Clamps (MSS Type 20): For attaching to bottom flange of beams, channels, or angles.
 - 4. Center-Beam Clamps (MSS Type 21): For attaching to center of bottom flange of beams.
 - 5. Welded Beam Attachments (MSS Type 22): For attaching to bottom of beams if loads are considerable and rod sizes are large.
 - 6. C-Clamps (MSS Type 23): For structural shapes.
 - 7. Top-Beam Clamps (MSS Type 25): For top of beams if hanger rod is required tangent to flange edge.
 - 8. Side-Beam Clamps (MSS Type 27): For bottom of steel I-beams.
 - 9. Steel-Beam Clamps with Eye Nuts (MSS Type 28): For attaching to bottom of steel l-beams for heavy loads.
 - 10. Linked-Steel Clamps with Eye Nuts (MSS Type 29): For attaching to bottom of steel I-beams for heavy loads, with link extensions.
 - 11. Malleable-Beam Clamps with Extension Pieces (MSS Type 30): For attaching to structural steel.
 - 12. Welded-Steel Brackets: For support of pipes from below or for suspending from above by using clip and rod. Use one of the following for indicated loads:
 - a. Light (MSS Type 31): 750 lb
 - b. Medium (MSS Type 32): 1500 lb
 - c. Heavy (MSS Type 33): 3000 lb
 - 13. Side-Beam Brackets (MSS Type 34): For sides of steel or wooden beams.
 - 14. Plate Lugs (MSS Type 57): For attaching to steel beams if flexibility at beam is required.

- 15. Horizontal Travelers (MSS Type 58): For supporting piping systems subject to linear horizontal movement where headroom is limited.
- N. Saddles and Shields: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
 - 1. Steel-Pipe-Covering Protection Saddles (MSS Type 39): To fill interior voids with insulation that matches adjoining insulation.
 - 2. Protection Shields (MSS Type 40): Of length recommended in writing by manufacturer to prevent crushing insulation.
 - 3. Thermal-Hanger Shield Inserts: For supporting insulated pipe.
- O. Spring Hangers and Supports: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
 - 1. Restraint-Control Devices (MSS Type 47): Where indicated to control piping movement.
 - 2. Spring Cushions (MSS Type 48): For light loads if vertical movement does not exceed 1-1/4 inches.
 - 3. Spring-Cushion Roll Hangers (MSS Type 49): For equipping Type 41, roll hanger with springs.
 - 4. Spring Sway Braces (MSS Type 50): To retard sway, shock, vibration, or thermal expansion in piping systems.
 - 5. Variable-Spring Hangers (MSS Type 51): Preset to indicated load and limit variability factor to 25 percent to allow expansion and contraction of piping system from hanger.
 - 6. Variable-Spring Base Supports (MSS Type 52): Preset to indicated load and limit variability factor to 25 percent to allow expansion and contraction of piping system from base support.
 - 7. Variable-Spring Trapeze Hangers (MSS Type 53): Preset to indicated load and limit variability factor to 25 percent to allow expansion and contraction of piping system from trapeze support.
 - 8. Constant Supports: For critical piping stress and if necessary to avoid transfer of stress from one support to another support, critical terminal, or connected equipment. Include auxiliary stops for erection, hydrostatic test, and load-adjustment capability. These supports include the following types:
 - a. Horizontal (MSS Type 54): Mounted horizontally.
 - b. Vertical (MSS Type 55): Mounted vertically.
 - c. Trapeze (MSS Type 56): Two vertical-type supports and one trapeze member.

- P. Comply with MSS SP-69 for trapeze pipe-hanger selections and applications that are not specified in piping system Sections.
- Q. Comply with MFMA-103 for metal framing system selections and applications that are not specified in piping system Sections.
- R. Use powder-actuated fasteners or mechanical-expansion anchors instead of building attachments where required in concrete construction.
- S. Use pipe positioning systems in pipe spaces behind plumbing fixtures to support supply and waste piping for plumbing fixtures.

END OF SECTION 220529

SECTION 220553

IDENTIFICATION FOR PLUMBING PIPING AND EQUIPMENT

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

- 1. Equipment labels.
- 2. Warning signs and labels.
- 3. Pipe labels.
- 4. Duct labels.
- 5. Stencils.
- 6. Valve tags.
- 7. Warning tags.

1.3 SUBMITTALS

- A. Product Data: For each type of product indicated.
- B. Samples: For color, letter style, and graphic representation required for each identification material and device.
- C. Equipment Label Schedule: Include a listing of all equipment to be labeled with the proposed content for each label.
- D. Valve numbering scheme.
- E. Valve Schedules: For each piping system to include in maintenance manuals.

1.4 COORDINATION

- A. Coordinate installation of identifying devices with completion of covering and painting of surfaces where devices are to be applied.
- B. Coordinate installation of identifying devices with locations of access panels and doors.
- C. Install identifying devices before installing acoustical ceilings and similar concealment.

PART 2 - PRODUCTS

2.1 EQUIPMENT LABELS

- A. Metal Labels for Equipment:
 - 1. Material and Thickness: Stainless steel, 0.025-inch minimum thickness, and having predrilled or stamped holes for attachment hardware.
 - 2. Minimum Label Size: Length and width vary for required label content, but not less than 2-1/2 by 3/4 inch.
 - 3. Minimum Letter Size: 1/4 inch for name of units if viewing distance is less than 24 inches, 1/2 inch for viewing distances up to 72 inches, and proportionately larger lettering for greater viewing distances. Include secondary lettering two-thirds to three-fourths the size of principal lettering.
 - 4. Fasteners: Stainless-steel self-tapping screws.
 - 5. Adhesive: Contact-type permanent adhesive, compatible with label and with substrate.
- B. Label Content: Include equipment's Drawing designation or unique equipment number, Drawing numbers where equipment is indicated (plans, details, and schedules), plus the Specification Section number and title where equipment is specified.
- C. Equipment Label Schedule: For each item of equipment to be labeled, on 8-1/2-by-11-inch bond paper. Tabulate equipment identification number and identify Drawing numbers where equipment is indicated (plans, details, and schedules), plus the Specification Section number and title where equipment is specified. Equipment schedule shall be included in operation and maintenance data.

2.2 WARNING SIGNS AND LABELS

- A. Material and Thickness: Multilayer, multicolor, plastic labels for mechanical engraving, 1/8 inch thick, and having predrilled holes for attachment hardware.
- B. Letter Color: White
- C. Background Color: Red
- D. Maximum Temperature: Able to withstand temperatures up to 160 deg F.
- E. Minimum Label Size: Length and width vary for required label content, but not less than 2-1/2 by 3/4 inch.
- F. Minimum Letter Size: 1/4 inch for name of units if viewing distance is less than 24 inches, 1/2 inch for viewing distances up to 72 inches, and proportionately larger lettering for greater viewing distances. Include secondary lettering two-thirds to three-fourths the size of principal lettering.
- G. Fasteners: Stainless-steel self-tapping screws.
- H. Adhesive: Contact-type permanent adhesive, compatible with label and with substrate.
- I. Label Content: Include caution and warning information, plus emergency notification instructions.

2.3 PIPE LABELS

- A. General Requirements for Manufactured Pipe Labels: Preprinted, color-coded, with lettering indicating service, and showing flow direction.
- B. Pretensioned Pipe Labels: Precoiled, semirigid plastic formed to cover full circumference of pipe and to attach to pipe without fasteners or adhesive.
- C. Self-Adhesive Pipe Labels: Printed plastic with contact-type, permanent-adhesive backing.
- D. Pipe Label Contents: Include identification of piping service using same designations or abbreviations as used on Drawings, pipe size, and an arrow indicating flow direction.

- 1. Flow-Direction Arrows: Integral with piping system service lettering to accommodate both directions, or as separate unit on each pipe label to indicate flow direction.
- 2. Lettering Size: At least 1-1/2 inches high.

2.4 VALVE TAGS

- A. Valve Tags: Stamped or engraved with 1/4-inch letters for piping system abbreviation and 1/2-inch numbers.
 - 1. Tag Material: Stainless steel, 0.025-inch minimum thickness, and having predrilled or stamped holes for attachment hardware.
 - 2. Fasteners: Brass beaded chain.
- B. Valve Schedules: For each piping system, on 8-1/2-by-11-inch bond paper. Tabulate valve number, piping system, system abbreviation (as shown on valve tag), location of valve (room or space), normal-operating position (open, closed, or modulating), and variations for identification. Mark valves for emergency shutoff and similar special uses.
 - 1. Valve-tag schedule shall be included in operation and maintenance data.

2.5 WARNING TAGS

- A. Warning Tags: Preprinted or partially preprinted, accident-prevention tags, of plasticized card stock with matte finish suitable for writing.
 - 1. Size: Approximately 4 by 7 inches
 - 2. Fasteners: Brass grommet and wire
 - 3. Nomenclature: Large-size primary caption such as "DANGER," "CAUTION," or "DO NOT OPERATE."
 - 4. Color: Yellow background with black lettering.

PART 3 - EXECUTION

3.1 PREPARATION

A. Clean piping and equipment surfaces of substances that could impair bond of identification devices, including dirt, oil, grease, release agents, and incompatible primers, paints, and encapsulants.

3.2 EQUIPMENT LABEL INSTALLATION

- A. Install or permanently fasten labels on each major item of mechanical equipment.
- B. Locate equipment labels where accessible and visible.

3.3 PIPE LABEL INSTALLATION

- A. Piping Color-Coding: Painting of piping is specified in Division 09 Section "Interior Painting".
- B. Locate pipe labels where piping is exposed or above accessible ceilings in finished spaces; machine rooms; accessible maintenance spaces such as shafts, tunnels, and plenums; and exterior exposed locations as follows:
 - 1. Near each valve and control device.
 - 2. Near each branch connection, excluding short takeoffs for fixtures and terminal units. Where flow pattern is not obvious, mark each pipe at branch.
 - 3. Near penetrations through walls, floors, ceilings, and inaccessible enclosures.
 - 4. At access doors, manholes, and similar access points that permit view of concealed piping.
 - 5. Near major equipment items and other points of origination and termination.
 - 6. Spaced at maximum intervals of 50 feet along each run. Reduce intervals to 25 feet in areas of congested piping and equipment.
 - 7. On piping above removable acoustical ceilings. Omit intermediately spaced labels.

C. Pipe Label Color Schedule:

- 1. Domestic Water Piping(Label piping as CWS, HWS, HWR):
 - a. Background Color: White
 - b. Letter Color: Blue
- 2. Sanitary Waste and Storm Drainage Piping:
 - a. Background Color: Black
 - b. Letter Color: White

3. Compressed Air Piping:

a. Background Color: White

b. Letter Color: Green

3.4 VALVE-TAG INSTALLATION

- A. Install tags on valves and control devices in piping systems, except check valves; valves within factory-fabricated equipment units; shutoff valves; faucets; convenience and lawn-watering hose connections; and similar roughing-in connections of end-use fixtures and units. List tagged valves in a valve schedule.
- B. Valve-Tag Application Schedule: Tag valves according to size, shape, and color scheme and with captions similar to those indicated in the following subparagraphs:
 - 1. Valve-Tag Size and Shape:

a. Cold Water: 2 inches , roundb. Hot Water: 2 inches , round

2. Valve-Tag Color:

a. Cold Water: Greenb. Hot Water: Green

3. Letter Color:

a. Cold Water: Whiteb. Hot Water: White

3.5 WARNING-TAG INSTALLATION

A. Write required message on, and attach warning tags to, equipment and other items where required.

END OF SECTION 220553

April 25, 2025 Bid Issue

Addition & Alterations Department of Public Works 10 Hartford Road Delran, New Jersey

SECTION 220700

PLUMBING INSULATION

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

- 1. Insulation Materials:
 - a. Calcium silicate.
 - b. Cellular glass.
 - c. Flexible elastomeric.
 - d. Mineral fiber.
 - e. Phenolic.
 - f. Polyisocyanurate.
 - g. Polyolefin.
 - h. Polystyrene.
- 2. Insulating cements.
- 3. Adhesives.
- 4. Mastics.
- 5. Lagging adhesives.
- 6. Sealants.
- 7. Factory-applied jackets.
- 8. Field-applied fabric-reinforcing mesh.
- 9. Field-applied cloths.
- 10. Field-applied jackets.
- 11. Tapes.
- 12. Securements.
- 13. Corner angles.
- B. Related Sections include the following:
 - 1. Division 23 Section "HVAC Insulation."

1.3 SUBMITTALS

- A. Product Data: For each type of product indicated. Include thermal conductivity, thickness, and jackets (both factory and field applied, if any).
 - 1. Product Data for Credit EQ 4.1: For adhesives and sealants, including printed statement of VOC content.

B. Shop Drawings:

- 1. Detail application of protective shields, saddles, and inserts at hangers for each type of insulation and hanger.
- 2. Detail attachment and covering of heat tracing inside insulation.
- 3. Detail insulation application at pipe expansion joints for each type of insulation.
- 4. Detail insulation application at elbows, fittings, flanges, valves, and specialties for each type of insulation.
- 5. Detail removable insulation at piping specialties, equipment connections, and access panels.
- 6. Detail application of field-applied jackets.
- 7. Detail application at linkages of control devices.
- 8. Detail field application for each equipment type.
- C. Samples: For each type of insulation and jacket indicated. Identify each Sample, describing product and intended use. Sample sizes are as follows:
 - 1. Sample Sizes:
 - a. Preformed Pipe Insulation Materials: 12 inches long by NPS 2.
 - b. Sheet Form Insulation Materials: 12 inches square.
 - c. Jacket Materials for Pipe: 12 inches long by NPS 2.
 - d. Sheet Jacket Materials: 12 inches square.
 - e. Manufacturer's Color Charts: For products where color is specified, show the full range of colors available for each type of finish material.
- D. Qualification Data: For qualified Installer.
- E. Material Test Reports: From a qualified testing agency acceptable to authorities having jurisdiction indicating, interpreting, and certifying test results for compliance of insulation materials, sealers, attachments, cements, and jackets, with requirements indicated. Include dates of tests and test methods employed.
- F. Field quality-control reports.

1.4 QUALITY ASSURANCE

- A. Installer Qualifications: Skilled mechanics who have successfully completed an apprenticeship program or another craft training program certified by the Department of Labor, Bureau of Apprenticeship and Training.
- B. Fire-Test-Response Characteristics: Insulation and related materials shall have fire-test-response characteristics indicated, as determined by testing identical products per ASTM E 84, by a testing and inspecting agency acceptable to authorities having jurisdiction. Factory label insulation and jacket materials and adhesive, mastic, tapes, and cement material containers, with appropriate markings of applicable testing and inspecting agency.
 - 1. Insulation Installed Indoors: Flame-spread index of 25 or less, and smoke-developed index of 50 or less.
 - 2. Insulation Installed Outdoors: Flame-spread index of 75 or less, and smoke-developed index of 150 or less.
- C. Mockups: Before installing insulation, build mockups for each type of insulation and finish listed below to demonstrate quality of insulation application and finishes. Build mockups in the location indicated or, if not indicated, as directed by Architect. Use materials indicated for the completed Work.

1. Piping Mockups:

- a. One 10-foot section of NPS 2 straight pipe.
- b. One each of a 90-degree threaded, welded, and flanged elbow.
- c. One each of a threaded, welded, and flanged tee fitting.
- d. One NPS 2or smaller valve, and one NPS 2-1/2 or larger valve.
- e. Four support hangers including hanger shield and insert.
- f. One threaded strainer and one flanged strainer with removable portion of insulation.
- g. One threaded reducer and one welded reducer.
- h. One pressure temperature tap.
- i. One mechanical coupling.
- 2. Equipment Mockups: One tank or vessel.
- 3. For each mockup, fabricate cutaway sections to allow observation of application details for insulation materials, adhesives, mastics, attachments, and jackets.
- 4. Notify Architect seven days in advance of dates and times when mockups will be constructed.
- 5. Obtain Architect's approval of mockups before starting insulation application.
- 6. Approval of mockups does not constitute approval of deviations from the Contract Documents contained in mockups unless Architect specifically approves such deviations in writing.

- 7. Maintain mockups during construction in an undisturbed condition as a standard for judging the completed Work.
- 8. Demolish and remove mockups when directed.

1.5 DELIVERY, STORAGE, AND HANDLING

A. Packaging: Insulation material containers shall be marked by manufacturer with appropriate ASTM standard designation, type and grade, and maximum use temperature.

1.6 COORDINATION

- A. Coordinate size and location of supports, hangers, and insulation shields specified in Division 22 Section "Hangers and Supports for Plumbing Piping and Equipment."
- B. Coordinate clearance requirements with piping Installer for piping insulation application and equipment Installer for equipment insulation application. Before preparing piping Shop Drawings, establish and maintain clearance requirements for installation of insulation and field-applied jackets and finishes and for space required for maintenance.
- C. Coordinate installation and testing of heat tracing.

1.7 SCHEDULING

- A. Schedule insulation application after pressure testing systems and, where required, after installing and testing heat tracing. Insulation application may begin on segments that have satisfactory test results.
- B. Complete installation and concealment of plastic materials as rapidly as possible in each area of construction.

PART 2 - PRODUCTS

2.1 INSULATION MATERIALS

- A. Comply with requirements in Part 3 schedule articles for where insulating materials shall be applied.
- B. Products shall not contain asbestos, lead, mercury, or mercury compounds.

- C. Products that come in contact with stainless steel shall have a leachable chloride content of less than 50 ppm when tested according to ASTM C 871.
- D. Insulation materials for use on austenitic stainless steel shall be qualified as acceptable according to ASTM C 795.
- E. Foam insulation materials shall not use CFC or HCFC blowing agents in the manufacturing process.
- F. Cellular Glass: Inorganic, incombustible, foamed or cellulated glass with annealed, rigid, hermetically sealed cells. Factory-applied jacket requirements are specified in "Factory-Applied Jackets" Article.
 - 1. Products: Subject to compliance with requirements, provide one of the following
 - a. Cell-U-Foam Corporation; Ultra-CUF.
 - b. Pittsburgh Corning Corporation; Foamglas Super K.
 - 2. Block Insulation: ASTM C 552, Type I.
 - 3. Special-Shaped Insulation: ASTM C 552, Type III.
 - 4. Board Insulation: ASTM C 552, Type IV.
 - 5. Preformed Pipe Insulation without Jacket: Comply with ASTM C 552, Type II, Class 1.
 - 6. Preformed Pipe Insulation with Factory-Applied ASJ: Comply with ASTM C 552, Type II, Class 2.
 - 7. Factory fabricate shapes according to ASTM C 450 and ASTM C 585.
- G. Flexible Elastomeric: Closed-cell, sponge- or expanded-rubber materials. Comply with ASTM C 534, Type I for tubular materials and Type II for sheet materials.
 - 1. Products: Subject to compliance with requirements, provide one of the following
 - a. Aeroflex USA Inc.; Aerocel.
 - b. Armacell LLC; AP Armaflex.
 - c. RBX Corporation; Insul-Sheet 1800 and Insul-Tube 180.
- H. Mineral-Fiber Blanket Insulation: Mineral or glass fibers bonded with a thermosetting resin. Comply with ASTM C 553, Type II and ASTM C 1290, Type I. Factory-applied jacket requirements are specified in "Factory-Applied Jackets" Article.
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. CertainTeed Corp.; Duct Wrap.
 - b. Johns Manville; Microlite.
 - c. Knauf Insulation; Duct Wrap.
 - d. Manson Insulation Inc.; Alley Wrap.

- e. Owens Corning; All-Service Duct Wrap.
- I. Mineral-Fiber Board Insulation: Mineral or glass fibers bonded with a thermosetting resin. Comply with ASTM C 612, Type IA or Type IB. For equipment applications, provide insulation with factory-applied ASJ. Factory-applied jacket requirements are specified in "Factory-Applied Jackets" Article.
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. CertainTeed Corp.; Commercial Board.
 - b. Fibrex Insulations Inc.; FBX.
 - c. Johns Manville; 800 Series Spin-Glas.
 - d. Knauf Insulation; Insulation Board.
 - e. Manson Insulation Inc.; AK Board.
 - f. Owens Corning; Fiberglas 700 Series.
- J. Mineral-Fiber, Preformed Pipe Insulation:
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. Fibrex Insulations Inc.; Coreplus 1200.
 - b. Johns Manville; Micro-Lok.
 - c. Knauf Insulation; 1000(Pipe Insulation.
 - d. Manson Insulation Inc.; Alley-K.
 - e. Owens Corning; Fiberglas Pipe Insulation.
 - 2. Type I, 850 deg F Materials: Mineral or glass fibers bonded with a thermosetting resin. Comply with ASTM C 547, Type I, Grade A, with factory-applied ASJ. Factory-applied jacket requirements are specified in "Factory-Applied Jackets" Article.
- K. Mineral-Fiber, Pipe and Tank Insulation: Mineral or glass fibers bonded with a thermosetting resin. Semirigid board material with factory-applied ASJ complying with ASTM C 1393, Type II or Type IIIA Category 2, or with properties similar to ASTM C 612, Type IB. Nominal density is 3 lb/cu. ft. or more. Thermal conductivity (k-value) at 100 deg F is 0.29 Btu x in./h x sq. ft. x deg F or less. Factory-applied jacket requirements are specified in "Factory-Applied Jackets" Article.
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. CertainTeed Corp.; CrimpWrap.
 - b. Johns Manville; MicroFlex.
 - c. Knauf Insulation; Pipe and Tank Insulation.
 - d. Manson Insulation Inc.; AK Flex.
 - e. Owens Corning; Fiberglas Pipe and Tank Insulation.

2.2 INSULATING CEMENTS

- A. Mineral-Fiber Insulating Cement: Comply with ASTM C 195.
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. Insulco, Division of MFS, Inc.; Triple I.
 - b. P. K. Insulation Mfg. Co., Inc.; Super-Stik.
- B. Mineral-Fiber, Hydraulic-Setting Insulating and Finishing Cement: Comply with ASTM C 449/C 449M.
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. Insulco, Division of MFS, Inc.; SmoothKote.
 - b. P. K. Insulation Mfg. Co., Inc.; PK No. 127, and Quik-Cote.
 - c. Rock Wool Manufacturing Company; Delta One Shot.

2.3 ADHESIVES

- A. Materials shall be compatible with insulation materials, jackets, and substrates and for bonding insulation to itself and to surfaces to be insulated, unless otherwise indicated.
- B. Cellular-Glass, Phenolic, Polyisocyanurate, and Polystyrene Adhesive: Solvent-based resin adhesive, with a service temperature range of minus 75 to plus 300 deg F.
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. Childers Products, Division of ITW; CP-96.
 - b. Foster Products Corporation, H. B. Fuller Company; 81-33.
 - 2. For indoor applications, use adhesive that has a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
- C. Flexible Elastomeric and Polyolefin Adhesive: Comply with MIL-A-24179A, Type II, Class I.
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. Aeroflex USA Inc.; Aeroseal.
 - b. Armacell LCC; 520 Adhesive.
 - c. Foster Products Corporation, H. B. Fuller Company; 85-75.
 - d. RBX Corporation; Rubatex Contact Adhesive.

- 2. For indoor applications, use adhesive that has a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
- D. Mineral-Fiber Adhesive: Comply with MIL-A-3316C, Class 2, Grade A.
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. Childers Products, Division of ITW; CP-82.
 - b. Foster Products Corporation, H. B. Fuller Company; 85-20.
 - c. ITW TACC, Division of Illinois Tool Works; S-90/80.
 - d. Marathon Industries, Inc.; 225.
 - e. Mon-Eco Industries, Inc.; 22-25.
 - 2. For indoor applications, use adhesive that has a VOC content of 80 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
- E. ASJ Adhesive, and FSK and PVDC Jacket Adhesive: Comply with MIL-A-3316C, Class 2, Grade A for bonding insulation jacket lap seams and joints.
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. Childers Products, Division of ITW; CP-82.
 - b. Foster Products Corporation, H. B. Fuller Company; 85-20.
 - c. ITW TACC, Division of Illinois Tool Works; S-90/80.
 - d. Marathon Industries, Inc.; 225.
 - e. Mon-Eco Industries, Inc.; 22-25.
 - 2. For indoor applications, use adhesive that has a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
- F. PVC Jacket Adhesive: Compatible with PVC jacket.
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. Dow Chemical Company (The); 739, Dow Silicone.
 - b. Johns-Manville; Zeston Perma-Weld, CEEL-TITE Solvent Welding Adhesive.
 - c. P.I.C. Plastics, Inc.; Welding Adhesive.
 - d. Speedline Corporation; Speedline Vinyl Adhesive.
 - 2. For indoor applications, use adhesive that has a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

2.4 MASTICS

- A. Materials shall be compatible with insulation materials, jackets, and substrates; comply with MIL-C-19565C, Type II.
 - 1. For indoor applications, use mastics that have a VOC content in compliance with 40 CFR 59, Subpart D (EPA Method 24).
- B. Vapor-Barrier Mastic: Water based; suitable for indoor and outdoor use on below ambient services.
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. Childers Products, Division of ITW; CP-35.
 - b. Foster Products Corporation, H. B. Fuller Company; 30-90.
 - c. ITW TACC, Division of Illinois Tool Works; CB-50.
 - d. Marathon Industries, Inc.; 590.
 - e. Mon-Eco Industries, Inc.; 55-40.
 - f. Vimasco Corporation; 749.
 - 2. Water-Vapor Permeance: ASTM E 96, Procedure B, 0.013 perm at 43-mil dry film thickness.
 - 3. Service Temperature Range: Minus 20 to plus 180 deg F.
 - 4. Solids Content: ASTM D 1644, 59 percent by volume and 71 percent by weight.
 - 5. Color: White.
- C. Vapor-Barrier Mastic: Solvent based; suitable for indoor use on below ambient services.
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. Childers Products, Division of ITW; CP-30.
 - b. Foster Products Corporation, H. B. Fuller Company; 30-35.
 - c. ITW TACC, Division of Illinois Tool Works; CB-25.
 - d. Marathon Industries, Inc.; 501.
 - e. Mon-Eco Industries, Inc.; 55-10.
 - 2. Water-Vapor Permeance: ASTM F 1249, 0.05 perm at 35-mil dry film thickness.
 - 3. Service Temperature Range: 0 to 180 deg F.
 - 4. Solids Content: ASTM D 1644, 44 percent by volume and 62 percent by weight.
 - 5. Color: White.
- D. Vapor-Barrier Mastic: Solvent based; suitable for outdoor use on below ambient services.

- 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. Childers Products, Division of ITW; Encacel.
 - b. Foster Products Corporation, H. B. Fuller Company; 60-95/60-96.
 - c. Marathon Industries, Inc.; 570.
 - d. Mon-Eco Industries, Inc.; 55-70.
- 2. Water-Vapor Permeance: ASTM F 1249, 0.05 perm at 30-mil dry film thickness.
- 3. Service Temperature Range: Minus 50 to plus 220 deg F.
- 4. Solids Content: ASTM D 1644, 33 percent by volume and 46 percent by weight.
- 5. Color: White.
- E. Breather Mastic: Water based; suitable for indoor and outdoor use on above ambient services.
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. Childers Products, Division of ITW; CP-10.
 - b. Foster Products Corporation, H. B. Fuller Company; 35-00.
 - c. ITW TACC, Division of Illinois Tool Works; CB-05/15.
 - d. Marathon Industries, Inc.; 550.
 - e. Mon-Eco Industries, Inc.; 55-50.
 - f. Vimasco Corporation; WC-1/WC-5.
 - 2. Water-Vapor Permeance: ASTM F 1249, 3 perms at 0.0625-inch dry film thickness.
 - 3. Service Temperature Range: Minus 20 to plus 200 deg F
 - 4. Solids Content: 63 percent by volume and 73 percent by weight.
 - 5. Color: White.

2.5 SEALANTS

A. Joint Sealants:

- 1. Joint Sealants for Cellular-Glass, Phenolic, and Polyisocyanurate Products: Subject to compliance with requirements, provide one of the following:
 - a. Childers Products, Division of ITW; CP-76.
 - b. Foster Products Corporation, H. B. Fuller Company; 30-45.
 - c. Marathon Industries, Inc.; 405.
 - d. Mon-Eco Industries, Inc.; 44-05.
 - e. Pittsburgh Corning Corporation; Pittseal 444.
 - f. Vimasco Corporation; 750.

B. FSK and Metal Jacket Flashing Sealants:

- 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. Childers Products, Division of ITW; CP-76-8.
 - b. Foster Products Corporation, H. B. Fuller Company; 95-44.
 - c. Marathon Industries, Inc.; 405.
 - d. Mon-Eco Industries, Inc.; 44-05.
 - e. Vimasco Corporation; 750.
- 2. Materials shall be compatible with insulation materials, jackets, and substrates.
- 3. Fire- and water-resistant, flexible, elastomeric sealant.
- 4. Service Temperature Range: Minus 40 to plus 250 deg F
- 5. Color: Aluminum.
- 6. For indoor applications, use sealants that have a VOC content of 250 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
- C. ASJ Flashing Sealants, and Vinyl, PVDC, and PVC Jacket Flashing Sealants:
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. Childers Products, Division of ITW; CP-76.
 - 2. Materials shall be compatible with insulation materials, jackets, and substrates.
 - 3. Fire- and water-resistant, flexible, elastomeric sealant.
 - 4. Service Temperature Range: Minus 40 to plus 250 deg F
 - 5. Color: White.
 - 6. For indoor applications, use sealants that have a VOC content of 250 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

2.6 FACTORY-APPLIED JACKETS

- A. Insulation system schedules indicate factory-applied jackets on various applications. When factory-applied jackets are indicated, comply with the following:
 - 1. ASJ: White, kraft-paper, fiberglass-reinforced scrim with aluminum-foil backing; complying with ASTM C 1136, Type I.
 - 2. ASJ-SSL: ASJ with self-sealing, pressure-sensitive, acrylic-based adhesive covered by a removable protective strip; complying with ASTM C 1136, Type I.
 - 3. FSK Jacket: Aluminum-foil, fiberglass-reinforced scrim with kraft-paper backing; complying with ASTM C 1136, Type II.
 - 4. PVDC Jacket for Indoor Applications: 4-mil- thick, white PVDC biaxially oriented barrier film with a permeance at 0.02 perms when tested according to ASTM E 96 and with a flame-spread index of 5 and a smoke-developed index of 20 when tested according to ASTM E 84.

- a. Products: Subject to compliance with requirements, provide one of the following:
 - 1) Dow Chemical Company (The); Saran 540 Vapor Retarder Film and Saran 560 Vapor Retarder Film.
- 5. PVDC Jacket for Outdoor Applications: 6-mil- thick, white PVDC biaxially oriented barrier film with a permeance at 0.01 perms when tested according to ASTM E 96 and with a flame-spread index of 5 and a smoke-developed index of 25 when tested according to ASTM E 84.
 - a. Products: Subject to compliance with requirements, provide one of the following:
 - 1) Dow Chemical Company (The); Saran 540 Vapor Retarder Film and Saran 560 Vapor Retarder Film.
- 6. PVDC-SSL Jacket: PVDC jacket with a self-sealing, pressure-sensitive, acrylic-based adhesive covered by a removable protective strip.
 - a. Products: Subject to compliance with requirements, provide one of the following:
 - 1) Dow Chemical Company (The); Saran 540 Vapor Retarder Film and Saran 560 Vapor Retarder Film.

2.7 FIELD-APPLIED JACKETS

- A. Field-applied jackets shall comply with ASTM C 921, Type I, unless otherwise indicated.
- B. PVC Jacket: High-impact-resistant, UV-resistant PVC complying with ASTM D 1784, Class 16354-C; thickness as scheduled; roll stock ready for shop or field cutting and forming. Thickness is indicated in field-applied jacket schedules.
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. Johns Manville; Zeston.
 - b. P.I.C. Plastics, Inc.; FG Series.
 - c. Proto PVC Corporation; LoSmoke.
 - d. Speedline Corporation; SmokeSafe.
 - 2. Adhesive: As recommended by jacket material manufacturer.
 - 3. Color: White Factory-fabricated fitting covers to match jacket if available; otherwise, field fabricate.

- a. Shapes: 45- and 90-degree, short- and long-radius elbows, tees, valves, flanges, unions, reducers, end caps, soil-pipe hubs, traps, mechanical joints, and P-trap and supply covers for lavatories.
- 4. Factory-fabricated tank heads and tank side panels.

C. Metal Jacket:

- 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. Childers Products, Division of ITW; Metal Jacketing Systems.
 - b. PABCO Metals Corporation; Surefit.
 - c. RPR Products, Inc.; Insul-Mate.
- 2. Aluminum Jacket: Comply with ASTM B 209 Alloy 3003, 3005, 3105 or 5005, Temper H-14.
 - a. Factory cut and rolled to size.
 - b. Finish and thickness are indicated in field-applied jacket schedules.
 - c. Moisture Barrier for Indoor Applications: 3-mil- thick, heat-bonded polyethylene and kraft paper.
 - d. Moisture Barrier for Outdoor Applications: 3-mil- thick, heat-bonded polyethylene and kraft paper.
 - e. Factory-Fabricated Fitting Covers:
 - 1) Same material, finish, and thickness as jacket.
 - 2) Preformed 2-piece or gore, 45- and 90-degree, short- and long-radius elbows.
 - 3) Tee covers.
 - 4) Flange and union covers.
 - 5) End caps.
 - 6) Beveled collars.
 - 7) Valve covers.
 - 8) Field fabricate fitting covers only if factory-fabricated fitting covers are not available.
- D. Underground Direct-Buried Jacket: 125-mil- thick vapor barrier and waterproofing membrane consisting of a rubberized bituminous resin reinforced with a woven-glass fiber or polyester scrim and laminated aluminum foil.
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. Pittsburgh Corning Corporation; Pittwrap.
 - b. Polyguard; Insulrap No Torch 125.

2.8 TAPES

- A. ASJ Tape: White vapor-retarder tape matching factory-applied jacket with acrylic adhesive, complying with ASTM C 1136.
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. Avery Dennison Corporation, Specialty Tapes Division; Fasson 0835.
 - b. Compac Corp.; 104 and 105.
 - c. Ideal Tape Co., Inc., an American Biltrite Company; 428 AWF ASJ.
 - d. Venture Tape; 1540 CW Plus, 1542 CW Plus, and 1542 CW Plus/SQ.
 - 2. Width: 3 inches.
 - 3. Thickness: 11.5 mils.
 - 4. Adhesion: 90 ounces force/inch in width.
 - 5. Elongation: 2 percent.
 - 6. Tensile Strength: 40 lbf/inch in width.
 - 7. ASJ Tape Disks and Squares: Precut disks or squares of ASJ tape.
- B. FSK Tape: Foil-face, vapor-retarder tape matching factory-applied jacket with acrylic adhesive; complying with ASTM C 1136.
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. Avery Dennison Corporation, Specialty Tapes Division; Fasson 0827.
 - b. Compac Corp.; 110 and 111.
 - c. Ideal Tape Co., Inc., an American Biltrite Company; 491 AWF FSK.
 - d. Venture Tape; 1525 CW, 1528 CW, and 1528 CW/SQ.
 - 2. Width: 3 inches.
 - 3. Thickness: 6.5 mils.
 - 4. Adhesion: 90 ounces force/inch in width.
 - 5. Elongation: 2 percent.
 - 6. Tensile Strength: 40 lbf/inch in width.
 - 7. FSK Tape Disks and Squares: Precut disks or squares of FSK tape.
- C. PVC Tape: White vapor-retarder tape matching field-applied PVC jacket with acrylic adhesive. Suitable for indoor and outdoor applications.
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. Avery Dennison Corporation, Specialty Tapes Division; Fasson 0555.
 - b. Compac Corp.; 130.
 - c. Ideal Tape Co., Inc., an American Biltrite Company; 370 White PVC tape.
 - d. Venture Tape; 1506 CW NS.

- 2. Width: 2 inches.
- 3. Thickness: 6 mils.
- 4. Adhesion: 64 ounces force/inch in width.
- 5. Elongation: 500 percent.
- 6. Tensile Strength: 18 lbf/inch in width.
- D. Aluminum-Foil Tape: Vapor-retarder tape with acrylic adhesive.
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. Avery Dennison Corporation, Specialty Tapes Division; Fasson 0800.
 - b. Compac Corp.; 120.
 - c. Ideal Tape Co., Inc., an American Biltrite Company; 488 AWF.
 - d. Venture Tape; 3520 CW.
 - 2. Width: 2 inches.
 - 3. Thickness: 3.7 mils.
 - 4. Adhesion: 100 ounces force/inch in width.
 - 5. Elongation: 5 percent.
 - 6. Tensile Strength: 34 lbf/inch in width.
- E. PVDC Tape: White vapor-retarder PVDC tape with acrylic adhesive.
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. Dow Chemical Company (The); Saran 540 Vapor Retarder Tape.
 - 2. Width: 3 inches
 - 3. Film Thickness: 6 mils
 - 4. Adhesive Thickness: 1.5 mils
 - 5. Elongation at Break: 145 percent.
 - 6. Tensile Strength: 55 lbf/inch in width.

2.9 SECUREMENTS

A. Bands:

- 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. Childers Products: Bands.
 - b. PABCO Metals Corporation; Bands.
 - c. RPR Products, Inc.; Bands.
- 2. Stainless Steel: ASTM A 167 or ASTM A 240/A 240M, Type 304 0.015 inch thick, 3/4 inch wide with wing or closed seal.

- 3. Aluminum: ASTM B 209, Alloy 3003, 3005, 3105, or 5005; Temper H-14, 0.020 inch thick, 3/4 inch wide with wing or closed seal.
- 4. Springs: Twin spring set constructed of stainless steel with ends flat and slotted to accept metal bands. Spring size determined by manufacturer for application.

B. Insulation Pins and Hangers:

- 1. Capacitor-Discharge-Weld Pins: Copper- or zinc-coated steel pin, fully annealed for capacitor-discharge welding, 0.135-inch- diameter shank, length to suit depth of insulation indicated.
- 2. Products: Subject to compliance with requirements, provide one of the following:
 - 1) AGM Industries, Inc.; CWP-1.
 - 2) GEMCO; CD.
 - 3) Midwest Fasteners, Inc.; CD.
 - 4) Nelson Stud Welding; TPA, TPC, and TPS.
- 3. Cupped-Head, Capacitor-Discharge-Weld Pins: Copper- or zinc-coated steel pin, fully annealed for capacitor-discharge welding, 0.135-inch- diameter shank, length to suit depth of insulation indicated with integral 1-1/2-inch galvanized carbon-steel washer.
 - a. Products: Subject to compliance with requirements, provide one of the following:
 - 1) AGM Industries, Inc.; CWP-1.
 - 2) GEMCO; Cupped Head Weld Pin.
 - 3) Midwest Fasteners, Inc.; Cupped Head.
 - 4) Nelson Stud Welding; CHP.
- 4. Insulation-Retaining Washers: Self-locking washers formed from 0.016-inchthick, galvanized-steel sheet, with beveled edge sized as required to hold insulation securely in place but not less than 1-1/2 inches in diameter.
 - a. Products: Subject to compliance with requirements, provide one of the following:
 - 1) AGM Industries, Inc.; RC-150.
 - 2) GEMCO; R-150.
 - 3) Midwest Fasteners, Inc.; WA-150.
 - 4) Nelson Stud Welding; Speed Clips.
 - b. Protect ends with capped self-locking washers incorporating a spring steel insert to ensure permanent retention of cap in exposed locations.

- C. Staples: Outward-clinching insulation staples, nominal 3/4-inch- wide, stainless steel or Monel.
- D. Wire: 0.080-inch nickel-copper alloy, 0.062-inch soft-annealed, stainless steel or 0.062-inch soft-annealed, galvanized steel.
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. C & F Wire.
 - b. Childers Products.
 - c. PABCO Metals Corporation.
 - d. RPR Products, Inc.

2.10 CORNER ANGLES

- A. PVC Corner Angles: 30 mils thick, minimum 1 by 1 inch, PVC according to ASTM D 1784, Class 16354-C. White or color-coded to match adjacent surface.
- B. Aluminum Corner Angles: 0.040 inch thick, minimum 1 by 1 inch, aluminum according to ASTM B 209, Alloy 3003, 3005, 3105 or 5005; Temper H-14.
- C. Stainless-Steel Corner Angles: 0.024 inch thick, minimum 1 by 1 inch, stainless steel according to ASTM A 167 or ASTM A 240/A 240M, Type 304.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine substrates and conditions for compliance with requirements for installation and other conditions affecting performance of insulation application.
 - 1. Verify that systems and equipment to be insulated have been tested and are free of defects.
 - 2. Verify that surfaces to be insulated are clean and dry.
 - 3. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

A. Surface Preparation: Clean and dry surfaces to receive insulation. Remove materials that will adversely affect insulation application.

- B. Surface Preparation: Clean and prepare surfaces to be insulated. Before insulating, apply a corrosion coating to insulated surfaces as follows:
 - 1. Stainless Steel: Coat 300 series stainless steel with an epoxy primer 5 mils thick and an epoxy finish 5 mils thick if operating in a temperature range between 140 and 300 deg F Consult coating manufacturer for appropriate coating materials and application methods for operating temperature range.
 - 2. Carbon Steel: Coat carbon steel operating at a service temperature between 32 and 300 deg F with an epoxy coating. Consult coating manufacturer for appropriate coating materials and application methods for operating temperature range.
- C. Coordinate insulation installation with the trade installing heat tracing. Comply with requirements for heat tracing that apply to insulation.
- D. Mix insulating cements with clean potable water; if insulating cements are to be in contact with stainless-steel surfaces, use demineralized water.

3.3 GENERAL INSTALLATION REQUIREMENTS

- A. Install insulation materials, accessories, and finishes with smooth, straight, and even surfaces; free of voids throughout the length of equipment and piping including fittings, valves, and specialties.
- B. Install insulation materials, forms, vapor barriers or retarders, jackets, and thicknesses required for each item of equipment and pipe system as specified in insulation system schedules.
- C. Install accessories compatible with insulation materials and suitable for the service. Install accessories that do not corrode, soften, or otherwise attack insulation or jacket in either wet or dry state.
- D. Install insulation with longitudinal seams at top and bottom of horizontal runs.
- E. Install multiple layers of insulation with longitudinal and end seams staggered.
- F. Do not weld brackets, clips, or other attachment devices to piping, fittings, and specialties.
- G. Keep insulation materials dry during application and finishing.
- H. Install insulation with tight longitudinal seams and end joints. Bond seams and joints with adhesive recommended by insulation material manufacturer.

- I. Provide an additional one hundred feet of preformed insulation and fifty square feet of blanket and board type insulation as well as accessories and labor for each size, thickness and type used on the project to accommodate any changes required to resolve interferences or as directed by the Engineer.
- J. Install insulation with least number of joints practical.
- K. Where vapor barrier is indicated, seal joints, seams, and penetrations in insulation at hangers, supports, anchors, and other projections with vapor-barrier mastic.
 - 1. Install insulation continuously through hangers and around anchor attachments.
 - 2. For insulation application where vapor barriers are indicated, extend insulation on anchor legs from point of attachment to supported item to point of attachment to structure. Taper and seal ends at attachment to structure with vapor-barrier mastic.
 - 3. Install insert materials and install insulation to tightly join the insert. Seal insulation to insulation inserts with adhesive or sealing compound recommended by insulation material manufacturer.
 - 4. Cover inserts with jacket material matching adjacent pipe insulation. Install shields over jacket, arranged to protect jacket from tear or puncture by hanger, support, and shield.
- L. Apply adhesives, mastics, and sealants at manufacturer's recommended coverage rate and wet and dry film thicknesses.
- M. Install insulation with factory-applied jackets as follows:
 - 1. Draw jacket tight and smooth.
 - 2. Cover circumferential joints with 3-inch- wide strips, of same material as insulation jacket. Secure strips with adhesive and outward clinching staples along both edges of strip, spaced 4 inches o.c.
 - 3. Overlap jacket longitudinal seams at least 1-1/2 inches Install insulation with longitudinal seams at bottom of pipe. Clean and dry surface to receive self-sealing lap. Staple laps with outward clinching staples along edge at 4 inches o.c.
 - a. For below ambient services, apply vapor-barrier mastic over staples.
 - 4. Cover joints and seams with tape as recommended by insulation material manufacturer to maintain vapor seal.
 - 5. Where vapor barriers are indicated, apply vapor-barrier mastic on seams and joints and at ends adjacent to pipe flanges and fittings.
- N. Cut insulation in a manner to avoid compressing insulation more than 75 percent of its nominal thickness.

- O. Finish installation with systems at operating conditions. Repair joint separations and cracking due to thermal movement.
- P. Repair damaged insulation facings by applying same facing material over damaged areas. Extend patches at least 4 inches beyond damaged areas. Adhere, staple, and seal patches similar to butt joints.
- Q. For above ambient services, do not install insulation to the following:
 - 1. Vibration-control devices.
 - 2. Testing agency labels and stamps.
 - 3. Nameplates and data plates.
 - 4. Manholes.
 - 5. Handholes.
 - 6. Cleanouts.

3.4 PENETRATIONS

- A. Insulation Installation at Roof Penetrations: Install insulation continuously through roof penetrations.
 - 1. Seal penetrations with flashing sealant.
 - 2. For applications requiring only indoor insulation, terminate insulation above roof surface and seal with joint sealant. For applications requiring indoor and outdoor insulation, install insulation for outdoor applications tightly joined to indoor insulation ends. Seal joint with joint sealant.
 - 3. Extend jacket of outdoor insulation outside roof flashing at least 2 inches below top of roof flashing.
 - 4. Seal jacket to roof flashing with flashing sealant.
- B. Insulation Installation at Underground Exterior Wall Penetrations: Terminate insulation flush with sleeve seal. Seal terminations with flashing sealant.
- C. Insulation Installation at Aboveground Exterior Wall Penetrations: Install insulation continuously through wall penetrations.
 - 1. Seal penetrations with flashing sealant.
 - 2. For applications requiring only indoor insulation, terminate insulation inside wall surface and seal with joint sealant. For applications requiring indoor and outdoor insulation, install insulation for outdoor applications tightly joined to indoor insulation ends. Seal joint with joint sealant.
 - 3. Extend jacket of outdoor insulation outside wall flashing and overlap wall flashing at least 2 inches.
 - 4. Seal jacket to wall flashing with flashing sealant.

- D. Insulation Installation at Interior Wall and Partition Penetrations (That Are Not Fire Rated): Install insulation continuously through walls and partitions.
- E. Insulation Installation at Fire-Rated Wall and Partition Penetrations: Install insulation continuously through penetrations of fire-rated walls and partitions.
 - 1. Comply with requirements in Division 07 Section "Penetration Firestopping" irestopping and fire-resistive joint sealers.
- F. Insulation Installation at Floor Penetrations:
 - 1. Pipe: Install insulation continuously through floor penetrations.
 - 2. Seal penetrations through fire-rated assemblies. Comply with requirements in Division 07 Section "Penetration Firestopping."

3.5 EQUIPMENT, TANK, AND VESSEL INSULATION INSTALLATION

- A. Mineral Fiber, Pipe and Tank Insulation Installation for Tanks and Vessels: Secure insulation with adhesive and anchor pins and speed washers.
 - 1. Apply adhesives according to manufacturer's recommended coverage rates per unit area, for 100 percent coverage of tank and vessel surfaces.
 - 2. Groove and score insulation materials to fit as closely as possible to equipment, including contours. Bevel insulation edges for cylindrical surfaces for tight joints. Stagger end joints.
 - 3. Protect exposed corners with secured corner angles.
 - 4. Install adhesively attached or self-sticking insulation hangers and speed washers on sides of tanks and vessels as follows:
 - a. Do not weld anchor pins to ASME-labeled pressure vessels.
 - b. Select insulation hangers and adhesive that are compatible with service temperature and with substrate.
 - c. On tanks and vessels, maximum anchor-pin spacing is 3 inches from insulation end joints, and 16 inches o.c. in both directions.
 - d. Do not overcompress insulation during installation.
 - e. Cut and miter insulation segments to fit curved sides and domed heads of tanks and vessels.
 - f. Impale insulation over anchor pins and attach speed washers.
 - g. Cut excess portion of pins extending beyond speed washers or bend parallel with insulation surface. Cover exposed pins and washers with tape matching insulation facing.
 - 5. Secure each layer of insulation with stainless-steel or aluminum bands. Select band material compatible with insulation materials.

- 6. Where insulation hangers on equipment and vessels are not permitted or practical and where insulation support rings are not provided, install a girdle network for securing insulation. Stretch prestressed aircraft cable around the diameter of vessel and make taut with clamps, turnbuckles, or breather springs. Place one circumferential girdle around equipment approximately 6 inches from each end. Install wire or cable between two circumferential girdles 12 inches o.c. Install a wire ring around each end and around outer periphery of center openings, and stretch prestressed aircraft cable radially from the wire ring to nearest circumferential girdle. Install additional circumferential girdles along the body of equipment or tank at a minimum spacing of 48 inches o.c. Use this network for securing insulation with tie wire or bands.
- 7. Stagger joints between insulation layers at least 3 inches
- 8. Install insulation in removable segments on equipment access doors, manholes, handholes, and other elements that require frequent removal for service and inspection.
- 9. Bevel and seal insulation ends around manholes, handholes, ASME stamps, and nameplates.
- 10. For equipment with surface temperatures below ambient, apply mastic to open ends, joints, seams, breaks, and punctures in insulation.
- B. Flexible Elastomeric Thermal Insulation Installation for Tanks and Vessels: Install insulation over entire surface of tanks and vessels.
 - 1. Apply 100 percent coverage of adhesive to surface with manufacturer's recommended adhesive.
 - 2. Seal longitudinal seams and end joints.

C. Insulation Installation on Pumps:

- 1. Fabricate metal boxes lined with insulation. Fit boxes around pumps and coincide box joints with splits in pump casings. Fabricate joints with outward bolted flanges. Bolt flanges on 6-inch centers, starting at corners. Install 3/8-inch-diameter fasteners with wing nuts. Alternatively, secure the box sections together using a latching mechanism.
- 2. Fabricate boxes from aluminum, at least 0.060 inch thick.
- 3. For below ambient services, install a vapor barrier at seams, joints, and penetrations. Seal between flanges with replaceable gasket material to form a vapor barrier.

3.6 GENERAL PIPE INSULATION INSTALLATION

A. Requirements in this article generally apply to all insulation materials except where more specific requirements are specified in various pipe insulation material installation articles.

- B. Insulation Installation on Fittings, Valves, Strainers, Flanges, and Unions:
 - 1. Install insulation over fittings, valves, strainers, flanges, unions, and other specialties with continuous thermal and vapor-retarder integrity, unless otherwise indicated.
 - 2. Insulate pipe elbows using preformed fitting insulation or mitered fittings made from same material and density as adjacent pipe insulation. Each piece shall be butted tightly against adjoining piece and bonded with adhesive. Fill joints, seams, voids, and irregular surfaces with insulating cement finished to a smooth, hard, and uniform contour that is uniform with adjoining pipe insulation.
 - 3. Insulate tee fittings with preformed fitting insulation or sectional pipe insulation of same material and thickness as used for adjacent pipe. Cut sectional pipe insulation to fit. Butt each section closely to the next and hold in place with tie wire. Bond pieces with adhesive.
 - 4. Insulate valves using preformed fitting insulation or sectional pipe insulation of same material, density, and thickness as used for adjacent pipe. Overlap adjoining pipe insulation by not less than two times the thickness of pipe insulation, or one pipe diameter, whichever is thicker. For valves, insulate up to and including the bonnets, valve stuffing-box studs, bolts, and nuts. Fill joints, seams, and irregular surfaces with insulating cement.
 - 5. Insulate strainers using preformed fitting insulation or sectional pipe insulation of same material, density, and thickness as used for adjacent pipe. Overlap adjoining pipe insulation by not less than two times the thickness of pipe insulation, or one pipe diameter, whichever is thicker. Fill joints, seams, and irregular surfaces with insulating cement. Insulate strainers so strainer basket flange or plug can be easily removed and replaced without damaging the insulation and jacket. Provide a removable reusable insulation cover. For below ambient services, provide a design that maintains vapor barrier.
 - 6. Insulate flanges and unions using a section of oversized preformed pipe insulation. Overlap adjoining pipe insulation by not less than two times the thickness of pipe insulation, or one pipe diameter, whichever is thicker.
 - 7. Cover segmented insulated surfaces with a layer of finishing cement and coat with a mastic. Install vapor-barrier mastic for below ambient services and a breather mastic for above ambient services. Reinforce the mastic with fabric-reinforcing mesh. Trowel the mastic to a smooth and well-shaped contour.
 - 8. For services not specified to receive a field-applied jacket except for flexible elastomeric and polyolefin, install fitted PVC cover over elbows, tees, strainers, valves, flanges, and unions. Terminate ends with PVC end caps. Tape PVC covers to adjoining insulation facing using PVC tape.
 - 9. Stencil or label the outside insulation jacket of each union with the word "UNION." Match size and color of pipe labels.
- C. Insulate instrument connections for thermometers, pressure gages, pressure temperature taps, test connections, flow meters, sensors, switches, and transmitters on insulated pipes, vessels, and equipment. Shape insulation at these connections by tapering it to

and around the connection with insulating cement and finish with finishing cement, mastic, and flashing sealant.

- D. Install removable insulation covers at locations indicated. Installation shall conform to the following:
 - 1. Make removable flange and union insulation from sectional pipe insulation of same thickness as that on adjoining pipe. Install same insulation jacket as adjoining pipe insulation.
 - 2. When flange and union covers are made from sectional pipe insulation, extend insulation from flanges or union long at least two times the insulation thickness over adjacent pipe insulation on each side of flange or union. Secure flange cover in place with stainless-steel or aluminum bands. Select band material compatible with insulation and jacket.
 - 3. Construct removable valve insulation covers in same manner as for flanges except divide the two-part section on the vertical center line of valve body.
 - 4. When covers are made from block insulation, make two halves, each consisting of mitered blocks wired to stainless-steel fabric. Secure this wire frame, with its attached insulation, to flanges with tie wire. Extend insulation at least 2 inches (50 mm) over adjacent pipe insulation on each side of valve. Fill space between flange or union cover and pipe insulation with insulating cement. Finish cover assembly with insulating cement applied in two coats. After first coat is dry, apply and trowel second coat to a smooth finish.
 - 5. Unless a PVC jacket is indicated in field-applied jacket schedules, finish exposed surfaces with a metal jacket.

3.7 CELLULAR-GLASS INSULATION INSTALLATION

- A. Insulation Installation on Straight Pipes and Tubes:
 - 1. Secure each layer of insulation to pipe with wire or bands and tighten bands without deforming insulation materials.
 - 2. Where vapor barriers are indicated, seal longitudinal seams, end joints, and protrusions with vapor-barrier mastic and joint sealant.
 - 3. For insulation with factory-applied jackets on above ambient services, secure laps with outward clinched staples at 6 inches o.c.
 - 4. For insulation with factory-applied jackets on below ambient services, do not staple longitudinal tabs but secure tabs with additional adhesive as recommended by insulation material manufacturer and seal with vapor-barrier mastic and flashing sealant.
- B. Insulation Installation on Pipe Flanges:
 - 1. Install preformed pipe insulation to outer diameter of pipe flange.

- 2. Make width of insulation section same as overall width of flange and bolts, plus twice the thickness of pipe insulation.
- 3. Fill voids between inner circumference of flange insulation and outer circumference of adjacent straight pipe segments with cut sections of cellular-glass block insulation of same thickness as pipe insulation.
- 4. Install jacket material with manufacturer's recommended adhesive, overlap seams at least 1 inch, and seal joints with flashing sealant.

C. Insulation Installation on Pipe Fittings and Elbows:

- 1. Install preformed sections of same material as straight segments of pipe insulation when available. Secure according to manufacturer's written instructions.
- 2. When preformed sections of insulation are not available, install mitered sections of cellular-glass insulation. Secure insulation materials with wire or bands.

D. Insulation Installation on Valves and Pipe Specialties:

- 1. Install preformed sections of cellular-glass insulation to valve body.
- 2. Arrange insulation to permit access to packing and to allow valve operation without disturbing insulation.
- 3. Install insulation to flanges as specified for flange insulation application.

3.8 FLEXIBLE ELASTOMERIC INSULATION INSTALLATION

- A. Seal longitudinal seams and end joints with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.
- B. Insulation Installation on Pipe Flanges:
 - 1. Install pipe insulation to outer diameter of pipe flange.
 - 2. Make width of insulation section same as overall width of flange and bolts, plus twice the thickness of pipe insulation.
 - 3. Fill voids between inner circumference of flange insulation and outer circumference of adjacent straight pipe segments with cut sections of sheet insulation of same thickness as pipe insulation.
 - 4. Secure insulation to flanges and seal seams with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.

C. Insulation Installation on Pipe Fittings and Elbows:

- 1. Install mitered sections of pipe insulation.
- 2. Secure insulation materials and seal seams with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.

D. Insulation Installation on Valves and Pipe Specialties:

- 1. Install preformed valve covers manufactured of same material as pipe insulation when available.
- 2. When preformed valve covers are not available, install cut sections of pipe and sheet insulation to valve body. Arrange insulation to permit access to packing and to allow valve operation without disturbing insulation.
- 3. Install insulation to flanges as specified for flange insulation application.
- 4. Secure insulation to valves and specialties and seal seams with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.

3.9 MINERAL-FIBER INSULATION INSTALLATION

A. Insulation Installation on Straight Pipes and Tubes:

- 1. Secure each layer of preformed pipe insulation to pipe with wire or bands and tighten bands without deforming insulation materials.
- 2. Where vapor barriers are indicated, seal longitudinal seams, end joints, and protrusions with vapor-barrier mastic and joint sealant.
- 3. For insulation with factory-applied jackets on above ambient surfaces, secure laps with outward clinched staples at 6 inches o.c.
- 4. For insulation with factory-applied jackets on below ambient surfaces, do not staple longitudinal tabs but secure tabs with additional adhesive as recommended by insulation material manufacturer and seal with vapor-barrier mastic and flashing sealant.

B. Insulation Installation on Pipe Flanges:

- 1. Install preformed pipe insulation to outer diameter of pipe flange.
- 2. Make width of insulation section same as overall width of flange and bolts, plus twice the thickness of pipe insulation.
- 3. Fill voids between inner circumference of flange insulation and outer circumference of adjacent straight pipe segments with mineral-fiber blanket insulation.
- 4. Install jacket material with manufacturer's recommended adhesive, overlap seams at least 1 inch and seal joints with flashing sealant.

C. Insulation Installation on Pipe Fittings and Elbows:

- 1. Install preformed sections of same material as straight segments of pipe insulation when available.
- 2. When preformed insulation elbows and fittings are not available, install mitered sections of pipe insulation, to a thickness equal to adjoining pipe insulation. Secure insulation materials with wire or bands.

- D. Insulation Installation on Valves and Pipe Specialties:
 - 1. Install preformed sections of same material as straight segments of pipe insulation when available.
 - 2. When preformed sections are not available, install mitered sections of pipe insulation to valve body.
 - 3. Arrange insulation to permit access to packing and to allow valve operation without disturbing insulation.
 - 4. Install insulation to flanges as specified for flange insulation application.

3.10 FIELD-APPLIED JACKET INSTALLATION

- A. Where glass-cloth jackets are indicated, install directly over bare insulation or insulation with factory-applied jackets.
 - 1. Draw jacket smooth and tight to surface with 2-inch overlap at seams and joints.
 - 2. Embed glass cloth between two 0.062-inch- thick coats of lagging adhesive.
 - 3. Completely encapsulate insulation with coating, leaving no exposed insulation.
- B. Where FSK jackets are indicated, install as follows:
 - 1. Draw jacket material smooth and tight.
 - 2. Install lap or joint strips with same material as jacket.
 - 3. Secure jacket to insulation with manufacturer's recommended adhesive.
 - 4. Install jacket with 1-1/2-inch laps at longitudinal seams and 3-inch- wide joint strips at end joints.
 - 5. Seal openings, punctures, and breaks in vapor-retarder jackets and exposed insulation with vapor-barrier mastic.
- C. Where PVC jackets are indicated, install with 1-inch overlap at longitudinal seams and end joints; for horizontal applications, install with longitudinal seams along top and bottom of tanks and vessels. Seal with manufacturer's recommended adhesive.
 - 1. Apply two continuous beads of adhesive to seams and joints, one bead under lap and the finish bead along seam and joint edge.
- D. Where metal jackets are indicated, install with 2-inch overlap at longitudinal seams and end joints. Overlap longitudinal seams arranged to shed water. Seal end joints with weatherproof sealant recommended by insulation manufacturer. Secure jacket with stainless-steel bands 12 inches o.c. and at end joints.
- E. Where PVDC jackets are indicated, install as follows:
 - 1. Apply three separate wraps of filament tape per insulation section to secure pipe insulation to pipe prior to installation of PVDC jacket.

- 2. Wrap factory-presized jackets around individual pipe insulation sections with one end overlapping the previously installed sheet. Install presized jacket with an approximate overlap at butt joint of 2 inches over the previous section. Adhere lap seal using adhesive or SSL, and then apply 1-1/4 circumferences of appropriate PVDC tape around overlapped butt joint.
- 3. Continuous jacket can be spiral wrapped around a length of pipe insulation. Apply adhesive or PVDC tape at overlapped spiral edge. When electing to use adhesives, refer to manufacturer's written instructions for application of adhesives along this spiral edge to maintain a permanent bond.
- 4. Jacket can be wrapped in cigarette fashion along length of roll for insulation systems with an outer circumference of 33-1/2 inches or less. The 33-1/2-inch-circumference limit allows for 2-inch- overlap seal. Using the length of roll allows for longer sections of jacket to be installed at one time. Use adhesive on the lap seal. Visually inspect lap seal for "fishmouthing," and use PVDC tape along lap seal to secure joint.
- 5. Repair holes or tears in PVDC jacket by placing PVDC tape over the hole or tear and wrapping a minimum of 1-1/4 circumferences to avoid damage to tape edges.

3.11 FINISHES

- A. Equipment and Pipe Insulation with ASJ, Glass-Cloth, or Other Paintable Jacket Material: Paint jacket with paint system identified below and as specified in Division 09 painting Sections.
 - 1. Flat Acrylic Finish: Two finish coats over a primer that is compatible with jacket material and finish coat paint. Add fungicidal agent to render fabric mildew proof.
 - a. Finish Coat Material: Interior, flat, latex-emulsion size.
- B. Flexible Elastomeric Thermal Insulation: After adhesive has fully cured, apply two coats of insulation manufacturer's recommended protective coating.
- C. Color: Final color as selected by Architect. Vary first and second coats to allow visual inspection of the completed Work.
- D. Do not field paint aluminum or stainless-steel jackets.

3.12 FIELD QUALITY CONTROL

- A. Testing Agency: Engage a qualified testing agency to perform tests and inspections.
- B. Perform tests and inspections.

C. Tests and Inspections:

- 1. Inspect field-insulated equipment, randomly selected by the Engineer, by removing field-applied jacket and insulation in layers in reverse order of their installation. Extent of inspection shall be limited to ten location(s) for each type of equipment defined in the "Equipment Insulation Schedule" Article. For large equipment, remove only a portion adequate to determine compliance.
- 2. Inspect pipe, fittings, strainers, and valves, randomly selected by Architect, by removing field-applied jacket and insulation in layers in reverse order of their installation. Extent of inspection shall be limited to ten locations of straight pipe, ten locations of threaded fittings, ten locations of welded fittings, five locations of threaded strainers, five locations of welded strainers, five locations of threaded valves, and five locations of flanged valves for each pipe service defined in the "Piping Insulation Schedule, General" Article.
- D. All insulation applications will be considered defective Work if sample inspection reveals noncompliance with requirements.

3.13 EQUIPMENT INSULATION SCHEDULE

- A. Insulation materials and thicknesses are identified below. If more than one material is listed for a type of equipment, selection from materials listed is Contractor's option.
- B. Insulate indoor and outdoor equipment in paragraphs below that is not factory insulated.
- C. Domestic water pump insulation shall be the following:
 - 1. Mineral-Fiber Board: 2 inches thick and 3-lb/cu. ft. nominal density.
- D. Domestic chilled-water (potable) pump insulation shall be the following:
 - 1. Mineral-Fiber Board: 2 inches thick and 3-lb/cu. ft. nominal density.
- E. Domestic hot-water pump insulation shall be the following:
 - 1. Mineral-Fiber Board: 2 inches thick and 3-lb/cu. ft. nominal density.
- F. Domestic water, domestic chilled-water (potable), and domestic hot-water hydropneumatic tank insulation shall be the following:
 - 1. Mineral-Fiber Pipe and Tank: 2 inches thick.
- G. Domestic hot-water storage tank insulation shall be the following, of thickness to provide an R-value of 12.5:
 - 1. Mineral-fiber pipe and tank.
- H. Domestic water storage tank insulation shall be the following:
 - 1. Mineral-Fiber Pipe and Tank: 2 inches thick.

- I. Domestic chilled-water (potable) storage tank insulation shall be the following:
 - 1. Mineral-Fiber Pipe and Tank: 2 inches thick.
- J. Piping system filter-housing insulation shall be the following:
 - 1. Mineral-Fiber Pipe and Tank: 2 inches thick.

3.14 PIPING INSULATION SCHEDULE, GENERAL

- A. Acceptable preformed pipe and tubular insulation materials and thicknesses are identified for each piping system and pipe size range. If more than one material is listed for a piping system, selection from materials listed is Contractor's option.
- B. Items Not Insulated: Unless otherwise indicated, do not install insulation on the following:
 - 1. Drainage piping located in crawl spaces.
 - 2. Underground piping.
 - 3. Chrome-plated pipes and fittings unless there is a potential for personnel injury.

3.15 INDOOR PIPING INSULATION SCHEDULE

- A. Domestic Cold Water:
 - 1. NPS 1 and Smaller: Insulation shall be the following:
 - a. Mineral-Fiber, Preformed Pipe Insulation, Type I: 1-1/2 inches thick.
 - 2. NPS 1-1/4 and Larger: Insulation shall be the following:
 - a. Mineral-Fiber, Preformed Pipe Insulation, Type I: 1-1/2 inches thick.
- B. Domestic Hot and Recirculated Hot Water:
 - 1. NPS 1-1/4 and Smaller: Insulation shall be the following:
 - a. Mineral-Fiber, Preformed Pipe Insulation, Type I: 1-1/2 inches thick.
 - 2. NPS 1-1/2 and Larger: Insulation shall be the following:
 - a. Mineral-Fiber, Preformed Pipe Insulation, Type I: 1-1/2 inches thick.
- C. Domestic Chilled Water (Potable):
 - 1. All Pipe Sizes: Insulation shall be the following:
 - a. Mineral-Fiber, Preformed Pipe Insulation, Type I: 1-1/2 inches thick.
- D. Stormwater and Overflow:
 - 1. All Pipe Sizes: Insulation shall be the following:

- a. Mineral-Fiber, Preformed Pipe Insulation, Type I: 1-1/2 inches thick.
- E. Roof Drain and Overflow Drain Bodies:
 - 1. All Pipe Sizes: Insulation shall be the following:
 - a. Mineral-Fiber, Preformed Pipe Insulation, Type I: 1-1/2 inches thick.
- F. Exposed Sanitary Drains, Domestic Water, Domestic Hot Water, and Stops for Plumbing Fixtures for People with Disabilities:
 - 1. All Pipe Sizes: Insulation shall be the following:
 - a. Mineral-Fiber, Preformed Pipe Insulation, Type I: 1-1/2 inches thick.
- G. Sanitary Waste Piping Where Heat Tracing Is Installed:
 - 1. All Pipe Sizes: Insulation shall be the following:
 - a. Mineral-Fiber, Preformed Pipe Insulation, Type I: 1-1/2 inches thick.
- H. Condensate and Equipment Drain Water below 60 Deg F:
 - 1. All Pipe Sizes: Insulation shall be the following:
 - a. Mineral-Fiber, Preformed Pipe Insulation, Type I: 1- inch thick.
- I. Floor Drains, Traps, and Sanitary Drain Piping within 10 Feet of Drain Receiving Condensate and Equipment Drain Water below 60 Deg F:
 - 1. All Pipe Sizes: Insulation shall be the following:
 - a. Mineral-Fiber, Preformed Pipe Insulation, Type I: 1-1/2 inches thick.
- J. Hot Service Drains:
 - 1. All Pipe Sizes: Insulation shall be the following:
 - a. Mineral-Fiber, Preformed Pipe, Type I or II: 1-1/2 inches thick.
- 3.16 OUTDOOR, ABOVEGROUND PIPING INSULATION SCHEDULE
 - A. Domestic Water Piping:
 - 1. All Pipe Sizes: Insulation shall be the following:
 - a. Mineral-Fiber, Preformed Pipe Insulation, Type I: 2 inches thick.
 - B. Domestic Hot and Recirculated Hot Water:
 - 1. All Pipe Sizes: Insulation shall be the following:
 - a. Mineral-Fiber, Preformed Pipe Insulation, Type I: 2 inches thick.

- C. Sanitary Waste Piping Where Heat Tracing Is Installed:
 - 1. All Pipe Sizes: Insulation shall be the following:
 - a. Mineral-Fiber, Preformed Pipe Insulation, Type I: 2 inches thick.
- D. Hot Service Drains:
 - 1. All Pipe Sizes: Insulation shall be the following:
 - a. Mineral-Fiber, Preformed Pipe Insulation, Type I: 2 inches thick.

3.17 OUTDOOR, UNDERGROUND PIPING INSULATION SCHEDULE

- A. Loose-fill insulation, for belowground piping, is specified in Division 33 piping distribution Sections.
- B. Sanitary Waste Piping, All Sizes, Where Heat Tracing Is Installed: Cellular glass, 2 inches thick.
- C. Chilled Domestic Water, All Sizes: Cellular glass, 2 inches thick.

3.18 INDOOR, FIELD-APPLIED JACKET SCHEDULE

- A. Install jacket over insulation material. For insulation with factory-applied jacket, install the field-applied jacket over the factory-applied jacket.
- B. If more than one material is listed, selection from materials listed is Contractor's option.
- C. Equipment, Concealed:
 - 1. Paper & Foil with Vapor Retarder
- D. Equipment, Exposed, up to 48 Inches in Diameter or with Flat Surfaces up to 72 Inches :
 - 1. PVC 30 mils thick.
- E. Equipment, Exposed, Larger Than 48 Inches in Diameter or with Flat Surfaces Larger Than 72 Inches:
 - 1. Painted Aluminum Smooth 0.032 inch thick.
- F. Piping, Concealed:
 - 1. Paper & Foil with Vapor Retarder
- G. Piping, Exposed:
 - 1. PVC 30 mils thick

3.19 OUTDOOR, FIELD-APPLIED JACKET SCHEDULE

- A. Install jacket over insulation material. For insulation with factory-applied jacket, install the field-applied jacket over the factory-applied jacket.
- B. If more than one material is listed, selection from materials listed is Contractor's option.
- C. Equipment, Concealed:
 - 1. Aluminum, Smooth 0.040 inch thick.
- D. Equipment, Exposed, up to 48 Inches in Diameter or with Flat Surfaces up to 72 Inches :
 - 1. Aluminum, Smooth 0.040 inch thick.
- E. Equipment, Exposed, Larger Than 48 Inches in Diameter or with Flat Surfaces Larger Than 72 Inches
 - 1. Aluminum, Smooth 0.040 inch thick.
- F. Piping, Concealed:
 - 1. Aluminum, Smooth 0.040 inch thick.
- G. Piping, Exposed:
 - 1. Aluminum, Smooth 0.040 inch thick.

3.20 UNDERGROUND, FIELD-INSTALLED INSULATION JACKET

A. For underground direct-buried piping applications, install underground direct-buried jacket over insulation material.

END OF SECTION 220700

SECTION 221116

DOMESTIC WATER PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

- 1. Under-building slab and aboveground domestic water pipes, tubes, fittings, and specialties inside the building.
- 2. Encasement for piping.
- 3. Specialty valves.
- 4. Flexible connectors.
- 5. Water meters furnished by utility company for installation by Contractor.
- 6. Water meters.

1.3 PERFORMANCE REQUIREMENTS

- A. Seismic Performance: Domestic water piping and support and installation shall withstand effects of earthquake motions determined according to ASCE/SEI 7.
- B. Performance Requirements: Provide components and installation capable of producing domestic water piping systems with the following minimum working-pressure ratings, unless otherwise indicated:
 - 1. Domestic Water Service Piping: 160 psig.
 - 2. Domestic Water Distribution Piping: 125 psig.

1.4 SUBMITTALS

- A. Product Data: For the following products:
 - 1. Specialty valves.

- 2. Transition fittings.
- 3. Dielectric fittings.
- 4. Flexible connectors.
- 5. Water meters.
- 6. Backflow preventers and vacuum breakers.
- 7. Water penetration systems.
- B. Water Samples: Specified in "Cleaning" Article.
- C. Coordination Drawings: For piping in equipment rooms and other congested areas, drawn to scale, on which the following items are shown and coordinated with each other, using input from Installers of the items involved:
 - 1. Fire-suppression-water piping.
 - 2. Domestic water piping.
 - 3. Compressed air piping.
 - 4. HVAC equipment.
- D. Field quality-control reports.

1.5 QUALITY ASSURANCE

- A. Piping materials shall bear label, stamp, or other markings of specified testing agency.
- B. Comply with NSF 61 for potable domestic water piping and components.

1.6 PROJECT CONDITIONS

- A. Interruption of Existing Water Service: Do not interrupt water service to facilities occupied by Owner or others unless permitted under the following conditions and then only after arranging to provide temporary water service according to requirements indicated:
 - 1. Do not proceed with interruption of water service without Architect's, Construction Manager's, Engineers and Owner's written permission.

1.7 COORDINATION

A. Coordinate sizes and locations of concrete bases with actual equipment provided.

PART 2 - PRODUCTS

2.1 PIPING MATERIALS

A. Comply with requirements in "Piping Schedule" Article for applications of pipe, tube, fitting materials, and joining methods for specific services, service locations, and pipe sizes.

2.2 COPPER TUBE AND FITTINGS

- A. Hard Copper Tube: ASTM B 88, Type L water tube, drawn temper.
 - 1. Cast-Copper Solder-Joint Fittings: ASME B16.18, pressure fittings.
 - 2. Wrought-Copper Solder-Joint Fittings: ASME B16.22, wrought-copper pressure fittings.
 - 3. Bronze Flanges: ASME B16.24, Class 150, with solder-joint ends.
 - 4. Copper Unions: MSS SP-123, cast-copper-alloy, hexagonal-stock body, with ball-and-socket, metal-to-metal seating surfaces, and solder-joint or threaded ends.
- B. Soft Copper Tube: ASTM B 88, Type L water tube, annealed temper.
 - 1. Copper Solder-Joint Fittings: ASME B16.22, wrought-copper pressure fittings.

2.3 PIPING JOINING MATERIALS

A. Solder Filler Metals: ASTM B 32, lead-free alloys. Include water-flushable flux according to ASTM B 813.

2.4 ENCASEMENT FOR PIPING

- A. Standard: ASTM A 674 or AWWA C105.
- B. Form: Tube.
- C. Material: High-density, cross-laminated PE film of 0.004-inch minimum thickness.
- D. Color: Black.

2.5 SPECIALTY VALVES

- A. Comply with requirements in Division 22 Section "General-Duty Valves for Plumbing Piping" for general-duty metal valves.
- B. Comply with requirements in Division 22 Section "Domestic Water Piping Specialties" for balancing valves, drain valves, backflow preventers, and vacuum breakers.

2.6 TRANSITION FITTINGS

- A. General Requirements:
 - 1. Same size as pipes to be joined.
 - 2. Pressure rating at least equal to pipes to be joined.
 - 3. End connections compatible with pipes to be joined.
- B. Fitting-Type Transition Couplings: Manufactured piping coupling or specified piping system fitting.
- C. Sleeve-Type Transition Coupling: AWWA C219.
 - 1. Manufacturers: Subject to compliance with requirements, [provide products by one of the following.
 - a. Cascade Waterworks Manufacturing.
 - b. Dresser, Inc.; Dresser Piping Specialties.
 - c. Ford Meter Box Company, Inc. (The).
 - d. JCM Industries.
 - e. Romac Industries, Inc.
 - f. Smith-Blair, Inc; a Sensus company.
 - g. Viking Johnson; c/o Mueller Co.

D. Plastic-to-Metal Transition Fittings:

- 1. Manufacturers: Subject to compliance with requirements, [provide products by one of the following] [available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following]:
 - a. Charlotte Pipe and Foundry Company.
 - b. Harvel Plastics, Inc.
 - c. Spears Manufacturing Company.

2. Description: CPVC one-piece fitting with manufacturer's Schedule 80 equivalent dimensions; one end with threaded brass insert and one solvent-cement-socket[or threaded] end.

E. Plastic-to-Metal Transition Unions:

- 1. Manufacturers: Subject to compliance with requirements, [provide products by one of the following] [available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following]:
 - a. Colonial Engineering, Inc.
 - b. NIBCO INC.
 - c. Spears Manufacturing Company.
- 2. Description: CPVC or PVC four-part union. Include brass[or stainless-steel] threaded end, solvent-cement-joint or threaded plastic end, rubber O-ring, and union nut.

2.7 DIELECTRIC FITTINGS

- A. General Requirements: Assembly of copper alloy and ferrous materials or ferrous material body with separating nonconductive insulating material suitable for system fluid, pressure, and temperature.
- B. Dielectric Unions:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Capitol Manufacturing Company.
 - b. Central Plastics Company.
 - c. EPCO Sales, Inc.
 - d. Hart Industries International, Inc.
 - e. Watts Regulator Co.; a division of Watts Water Technologies, Inc.
 - f. Zurn Plumbing Products Group; Wilkins Water Control Products.
 - 2. Description:
 - a. Pressure Rating: 150 psig at 180 deg F.
 - b. End Connections: Solder-joint copper alloy and threaded ferrous.
- C. Dielectric Flanges:

- 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Capitol Manufacturing Company.
 - b. Central Plastics Company.
 - c. EPCO Sales, Inc.
 - d. Watts Regulator Co.; a division of Watts Water Technologies, Inc.

2. Description:

- a. Factory-fabricated, bolted, companion-flange assembly.
- b. Pressure Rating: 150 psig minimum.
- c. End Connections: Solder-joint copper alloy and threaded ferrous; threaded solder-joint copper alloy and threaded ferrous.

D. Dielectric-Flange Kits:

- 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Advance Products & Systems, Inc.
 - b. Calpico, Inc.
 - c. Central Plastics Company.
 - d. Pipeline Seal and Insulator, Inc.

2. Description:

- a. Nonconducting materials for field assembly of companion flanges.
- b. Pressure Rating: 150 psig.
- c. Gasket: Neoprene or phenolic.
- d. Bolt Sleeves: Phenolic or polyethylene.
- e. Washers: Phenolic with steel backing washers.

E. Dielectric Couplings:

- 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Calpico, Inc.
 - b. Lochinvar Corporation.

2. Description:

- a. Galvanized-steel coupling.
- b. Pressure Rating: 300 psig at 225 deg F.

- c. End Connections: Female threaded.
- d. Lining: Inert and noncorrosive, thermoplastic.

F. Dielectric Nipples:

- 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Perfection Corporation; a subsidiary of American Meter Company.
 - b. Precision Plumbing Products, Inc.
 - c. Victaulic Company.

2. Description:

- a. Electroplated steel nipple complying with ASTM F 1545.
- b. Pressure Rating: 300 psig at 225 deg F.
- c. End Connections: Male threaded or grooved.
- d. Lining: Inert and noncorrosive, propylene.

2.8 FLEXIBLE CONNECTORS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Flex-Hose Co., Inc.
 - 2. Flexicraft Industries.
 - 3. Flex Pression, Ltd.
 - 4. Flex-Weld, Inc.
 - 5. Hyspan Precision Products, Inc.
 - 6. Mercer Rubber Co.
 - 7. Metraflex, Inc.
 - 8. Proco Products, Inc.
 - 9. Tozen Corporation.
 - 10. Unaflex, Inc.
 - 11. Universal Metal Hose; a Hyspan company
- B. Bronze-Hose Flexible Connectors: Corrugated-bronze tubing with bronze wire-braid covering and ends brazed to inner tubing.
 - 1. Working-Pressure Rating: Minimum 200 psig.
 - 2. End Connections NPS 2 and Smaller: Threaded copper pipe or plain-end copper tube.
 - 3. End Connections NPS 2-1/2 and Larger: Flanged copper alloy.

- C. Stainless-Steel-Hose Flexible Connectors: Corrugated-stainless-steel tubing with stainless-steel wire-braid covering and ends welded to inner tubing.
 - 1. Working-Pressure Rating: Minimum 200 psig.
 - 2. End Connections NPS 2 and Smaller: Threaded steel-pipe nipple.
 - 3. End Connections NPS 2-1/2 and Larger: Flanged steel nipple.

2.9 WATER METERS

- A. Displacement-Type Water Meters:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. AALIANT; a Venture Measurement Product Line.
 - b. ABB.
 - c. Badger Meter, Inc.
 - d. Carlon Meter.
 - e. Mueller Company; Water Products Division.
 - f. Schlumberger Limited; Water Division.
 - g. Sensus Metering Systems.

2. Description:

- a. Standard: AWWA C700.
- b. Pressure Rating: 150-psig working pressure.
- c. Body Design: Nutating disc; totalization meter.
- d. Registration: In gallons or cubic feet as required by utility.
- e. Case: Bronze.
- f. End Connections: Threaded.
- B. Turbine-Type Water Meters:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. AALIANT; a Venture Measurement Product Line.
 - b. ABB.
 - c. Badger Meter, Inc.
 - d. Hays Fluid Controls.
 - e. Master Meter, Inc.
 - f. McCrometer.
 - g. Mueller Company; Water Products Division.
 - h. Schlumberger Limited; Water Division.

- i. SeaMetrics Inc.
- j. Sensus Metering Systems.

2. Description:

- a. Standard: AWWA C701.
- b. Pressure Rating: 150-psig working pressure.
- c. Body Design: Turbine; totalization meter.
- d. Registration: In gallons or cubic feet as required by utility company.
- e. Case: Bronze.
- f. End Connections for Meters NPS 2 and Smaller: Threaded.
- g. End Connections for Meters NPS 2-1/2 and Larger: Flanged.

C. Compound-Type Water Meters:

- 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. ABB.
 - b. Badger Meter, Inc.
 - c. Master Meter, Inc.
 - d. Mueller Company; Water Products Division.
 - e. Schlumberger Limited; Water Division.
 - f. Sensus Metering Systems.

2. Description:

- a. Standard: AWWA C702.
- b. Pressure Rating: 150-psig working pressure.
- c. Body Design: With integral mainline and bypass meters; totalization meter.
- d. Registration: In gallons or cubic feet as required by utility company.
- e. Case: Bronze.
- f. Pipe Connections: Flanged.

D. Fire-Service-Type Water Meters:

- 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Badger Meter, Inc.
 - b. Mueller Company; Water Products Division.
 - c. Schlumberger Limited; Water Division.
 - d. Sensus Metering Systems.
- 2. Description:

- a. Standard: AWWA C703 and UL listing.
- b. Pressure Rating: 175-psig working pressure.
- c. Body Design:
 - 1) Proportional, Detector-Type Water Meters: With meter on bypass.
 - a) Bypass Meter: AWWA C701, turbine or AWWA C702, compound type with bronze case; size not less than one-half nominal size of main-line meter.
 - 2) Turbine-Type Water Meters: With strainer, and with meter on bypass.
 - a) Strainer: Full size, matching water meter.
 - b) Bypass Meter: AWWA C701, turbine type with bronze case; not less than NPS 2.
- d. Registration: In gallons or cubic feet as required by utility company.
- e. Case: Bronze.
- f. Pipe Connections for Meters NPS 2 and Smaller: Threaded.
- g. Pipe Connections for Meters NPS 2-1/2 and Larger: Flanged.
- E. Remote Registration System: Direct-reading type complying with AWWA C706; modified with signal transmitting assembly, low-voltage connecting wiring, and remote register assembly as required by utility company.
- F. Remote Registration System: Encoder type complying with AWWA C707; modified with signal transmitting assembly, low-voltage connecting wiring, and remote register assembly as required by utility company.

PART 3 - EXECUTION

3.1 EARTHWORK

A. Comply with requirements in Division 31 Section "Earth Moving" for excavating, trenching, and backfilling.

3.2 PIPING INSTALLATION

A. Drawing plans, schematics, and diagrams indicate general location and arrangement of domestic water piping. Indicated locations and arrangements are used to size pipe and calculate friction loss, expansion, and other design considerations. Install piping as indicated unless deviations to layout are approved on Coordination Drawings.

- B. Install copper tubing under building slab according to CDA's "Copper Tube Handbook."
- C. Install underground copper tube in PE encasement according to ASTM A 674 or AWWA C105.
- D. Install shutoff valve, hose-end drain valve, strainer, pressure gage, and test tee with valve, inside the building at each domestic water service entrance. Comply with requirements in Division 22 Section "Meters and Gages for Plumbing Piping" for pressure gages and Division 22 Section "Domestic Water Piping Specialties" for drain valves and strainers.
- E. Install shutoff valve immediately upstream of each dielectric fitting.
- F. Install water-pressure-reducing valves downstream from shutoff valves. Comply with requirements in Division 22 Section "Domestic Water Piping Specialties" for pressure-reducing valves.
- G. Install domestic water piping level with 0.25 percent slope downward toward drain and plumb.
- H. Rough-in domestic water piping for water-meter installation according to utility company's requirements.
- I. Install seismic restraints on piping. Comply with requirements in Division 22 Section "Vibration and Seismic Controls for Plumbing Piping and Equipment" for seismic-restraint devices.
- J. Install piping concealed from view and protected from physical contact by building occupants unless otherwise indicated and except in equipment rooms and service areas.
- K. Install piping indicated to be exposed and piping in equipment rooms and service areas at right angles or parallel to building walls. Diagonal runs are prohibited unless specifically indicated otherwise.
- L. Install piping above accessible ceilings to allow sufficient space for ceiling panel removal, and coordinate with other services occupying that space.
- M. Install piping adjacent to equipment and specialties to allow service and maintenance.
- N. Install piping to permit valve servicing.

- O. Install nipples, unions, special fittings, and valves with pressure ratings the same as or higher than system pressure rating used in applications below unless otherwise indicated.
- P. Install piping free of sags and bends.
- Q. Provide an additional 10 feet of piping and accessories and labor for each size of pipe used on the project to accommodate any changes required to resolve interferences or as directed by the Engineer.
- R. Install fittings for changes in direction and branch connections.
- S. Install PEX piping with loop at each change of direction of more than 90 degrees.
- T. Install unions in copper tubing at final connection to each piece of equipment, machine, and specialty.
- U. Install pressure gages on suction and discharge piping from each plumbing pump and packaged booster pump. Comply with requirements in Division 22 Section "Meters and Gages for Plumbing Piping" for pressure gages.
- V. Install thermostats in hot-water circulation piping. Comply with requirements in Division 22 Section "Domestic Water Pumps" for thermostats.
- W. Install thermometers on inlet and outlet piping from each water heater. Comply with requirements in Division 22 Section "Meters and Gages for Plumbing Piping" for thermometers.
- X. Install sleeves for piping penetrations of walls, ceilings, and floors. Comply with requirements for sleeves specified in Division 22 Section "Sleeves and Sleeve Seals for Plumbing Piping."
- Y. Install sleeve seals for piping penetrations of concrete walls and slabs. Comply with requirements for sleeve seals specified in Division 22 Section "Sleeves and Sleeve Seals for Plumbing Piping."
- Z. Install escutcheons for piping penetrations of walls, ceilings, and floors. Comply with requirements for escutcheons specified in Division 22 Section "Escutcheons for Plumbing Piping."

3.3 JOINT CONSTRUCTION

A. Ream ends of pipes and tubes and remove burrs. Bevel plain ends of steel pipe.

- B. Remove scale, slag, dirt, and debris from inside and outside of pipes, tubes, and fittings before assembly.
- C. Threaded Joints: Thread pipe with tapered pipe threads according to ASME B1.20.1. Cut threads full and clean using sharp dies. Ream threaded pipe ends to remove burrs and restore full ID. Join pipe fittings and valves as follows:
 - 1. Apply appropriate tape or thread compound to external pipe threads.
 - 2. Damaged Threads: Do not use pipe or pipe fittings with threads that are corroded or damaged.
- D. Brazed Joints: Join copper tube and fittings according to CDA's "Copper Tube Handbook," "Brazed Joints" Chapter.
- E. Soldered Joints: Apply ASTM B 813, water-flushable flux to end of tube. Join copper tube and fittings according to ASTM B 828 or CDA's "Copper Tube Handbook."
- F. Flanged Joints: Select appropriate asbestos-free, nonmetallic gasket material in size, type, and thickness suitable for domestic water service. Join flanges with gasket and bolts according to ASME B31.9.

3.4 VALVE INSTALLATION

- A. General-Duty Valves: Comply with requirements in Division 22 Section "General-Duty Valves for Plumbing Piping" for valve installations.
- B. Install shutoff valve close to water main on each branch and riser serving plumbing fixtures or equipment, on each water supply to equipment, and on each water supply to plumbing fixtures that do not have supply stops. Use ball or gate valves for piping NPS 2 and smaller. Use butterfly or gate valves for piping NPS 2-1/2 and larger.
- C. Install drain valves for equipment at base of each water riser, at low points in horizontal piping, and where required to drain water piping. Drain valves are specified in Division 22 Section "Domestic Water Piping Specialties."
 - 1. Hose-End Drain Valves: At low points in water mains, risers, and branches.
 - 2. Stop-and-Waste Drain Valves: Instead of hose-end drain valves where indicated.
- D. Install balancing valve in each hot-water circulation return branch and discharge side of each pump and circulator. Set balancing valves partly open to restrict but not stop flow. Use ball valves for piping NPS 2 and smaller and butterfly valves for piping NPS 2-1/2 and larger. Comply with requirements in Division 22 Section "Domestic Water Piping Specialties" for balancing valves.

E. Install calibrated balancing valves in each hot-water circulation return branch and discharge side of each pump and circulator. Set calibrated balancing valves partly open to restrict but not stop flow. Comply with requirements in Division 22 Section "Domestic Water Piping Specialties" for calibrated balancing valves.

3.5 TRANSITION FITTING INSTALLATION

- A. Install transition couplings at joints of dissimilar piping.
- B. Transition Fittings in Underground Domestic Water Piping:
 - 1. NPS 1-1/2 and Smaller: Fitting-type coupling.
 - 2. NPS 2 and Larger: Sleeve-type coupling.

3.6 DIELECTRIC FITTING INSTALLATION

- A. Install dielectric fittings in piping at connections of dissimilar metal piping and tubing.
- B. Dielectric Fittings for NPS 2 and Smaller: Use dielectric couplings or nipples.
- C. Dielectric Fittings for NPS 2-1/2 to NPS 4: Use dielectric flanges.
- D. Dielectric Fittings for NPS 5 and Larger: Use dielectric flange kits.

3.7 FLEXIBLE CONNECTOR INSTALLATION

- A. Install flexible connectors in suction and discharge piping connections to each domestic water pump and in suction and discharge manifold connections to each domestic water booster pump.
- B. Install bronze-hose flexible connectors in copper domestic water tubing.
- C. Install stainless-steel-hose flexible connectors in steel domestic water piping.

3.8 WATER METER INSTALLATION

- A. Rough-in domestic water piping for water meter installation and install water meters according to utility company's requirements.
- B. Water meters will be furnished and installed by utility company.

- C. Install water meters according to AWWA M6, utility company's requirements, and the following:
- D. Install displacement-type water meters with shutoff valve on water-meter inlet. Install valve on water-meter outlet and valved bypass around meter unless prohibited by authorities having jurisdiction.
- E. Install turbine-type water meters with shutoff valve on water-meter inlet. Install valve on water-meter outlet and valved bypass around meter unless prohibited by authorities having jurisdiction.
- F. Install compound-type water meters with shutoff valves on water-meter inlet and outlet and on valved bypass around meter. Support meters, valves, and piping on brick or concrete piers.
- G. Install fire-service water meters with shutoff valves on water-meter inlet and outlet and on full-size valved bypass around meter. Support meter, valves, and piping on brick or concrete piers.
- H. Install remote registration system according to standards of utility company and of authorities having jurisdiction.

3.9 HANGER AND SUPPORT INSTALLATION

- A. Comply with requirements in Division 22 Section "Vibration and Seismic Controls for Plumbing Piping and Equipment" for seismic-restraint devices.
- B. Comply with requirements in Division 22 Section "Hangers and Supports for Plumbing Piping and Equipment" for pipe hanger and support products and installation.
 - 1. Vertical Piping: MSS Type 8 or 42, clamps.
 - 2. Individual, Straight, Horizontal Piping Runs:
 - a. 100 Feet and Less: MSS Type 1, adjustable, steel clevis hangers.
 - b. Longer Than 100 Feet: MSS Type 43, adjustable roller hangers.
 - c. Longer Than 100 Feet If Indicated: MSS Type 49, spring cushion rolls.
 - 3. Multiple, Straight, Horizontal Piping Runs 100 Feet or Longer: MSS Type 44, pipe rolls. Support pipe rolls on trapeze.
 - 4. Base of Vertical Piping: MSS Type 52, spring hangers.
- C. Support vertical piping and tubing at base and at each floor.

- D. Rod diameter may be reduced one size for double-rod hangers, to a minimum of 3/8 inch.
- E. Install hangers for copper tubing with the following maximum horizontal spacing and minimum rod diameters:
 - 1. NPS 3/4 and Smaller: 60 inches with 3/8-inch rod.
 - 2. NPS 1 and NPS 1-1/4: 72 inches with 3/8-inch rod.
 - 3. NPS 1-1/2 and NPS 2: 96 inches with 3/8-inch rod.
 - 4. NPS 2-1/2: 108 inches with 1/2-inch rod.
 - 5. NPS 3 to NPS 5: 10 feet with 1/2-inch rod.
 - 6. NPS 6: 10 feet with 5/8-inch rod.
 - 7. NPS 8: 10 feet with 3/4-inch rod.
- F. Install supports for vertical copper tubing every 10 feet.
- G. Install hangers for steel piping with the following maximum horizontal spacing and minimum rod diameters:
 - 1. NPS 1-1/4 and Smaller: 84 inches with 3/8-inch rod.
 - 2. NPS 1-1/2: 108 inches with 3/8-inch rod.
 - 3. NPS 2: 10 feet with 3/8-inch rod.
 - 4. NPS 2-1/2: 11 feet with 1/2-inch rod.
 - 5. NPS 3 and NPS 3-1/2: 12 feet with 1/2-inch rod.
 - 6. NPS 4 and NPS 5: 12 feet with 5/8-inch rod.
 - 7. NPS 6: 12 feet with 3/4-inch rod.
 - 8. NPS 8 to NPS 12: 12 feet with 7/8-inch rod.
- H. Install supports for vertical steel piping every 15 feet.
- I. Install vinyl-coated hangers for CPVC piping with the following maximum horizontal spacing and minimum rod diameters:
 - 1. NPS 1 and Smaller: 36 inches with 3/8-inch rod.
 - 2. NPS 1-1/4 to NPS 2: 48 inches with 3/8-inch rod.
 - 3. NPS 2-1/2 to NPS 3-1/2: 48 inches with 1/2-inch rod.
 - 4. NPS 4 and NPS 5: 48 inches with 5/8-inch rod.
 - 5. NPS 6: 48 inches with 3/4-inch rod.
 - 6. NPS 8: 48 inches with 7/8-inch rod.
- J. Install supports for vertical CPVC piping every 60 inches for NPS 1 and smaller, and every 72 inches for NPS 1-1/4 and larger.

- K. Install vinyl-coated hangers for PEX piping with the following maximum horizontal spacing and minimum rod diameters:
 - 1. NPS 1 and Smaller: 32 inches with 3/8-inch rod.
- L. Install hangers for vertical PEX piping every 48 inches.
- M. Install vinyl-coated hangers for PVC piping with the following maximum horizontal spacing and minimum rod diameters:
 - 1. NPS 2 and Smaller: 48 inches with 3/8-inch rod.
 - 2. NPS 2-1/2 to NPS 3-1/2: 48 inches with 1/2-inch rod.
 - 3. NPS 4 and NPS 5: 48 inches with 5/8-inch rod.
 - 4. NPS 6: 48 inches with 3/4-inch rod.
 - 5. NPS 8: 48 inches with 7/8-inch rod.
- N. Install supports for vertical PVC piping every 48 inches.
- O. Support piping and tubing not listed in this article according to MSS SP-69 and manufacturer's written instructions.

3.10 CONNECTIONS

- A. Drawings indicate general arrangement of piping, fittings, and specialties.
- B. Install piping adjacent to equipment and machines to allow service and maintenance.
- C. Connect domestic water piping to exterior water-service piping. Use transition fitting to join dissimilar piping materials.
- D. Connect domestic water piping to water-service piping with shutoff valve; extend and connect to the following:
 - 1. Domestic Water Booster Pumps: Cold-water suction and discharge piping.
 - 2. Water Heaters: Cold-water inlet and hot-water outlet piping in sizes indicated, but not smaller than sizes of water heater connections.
 - 3. Plumbing Fixtures: Cold- and hot-water supply piping in sizes indicated, but not smaller than required by plumbing code. Comply with requirements in Division 22 plumbing fixture Sections for connection sizes.
 - 4. Equipment: Cold- and hot-water supply piping as indicated, but not smaller than equipment connections. Provide shutoff valve and union for each connection. Use flanges instead of unions for NPS 2-1/2 and larger.

3.11 IDENTIFICATION

- A. Identify system components. Comply with requirements in Division 22 Section "Identification for Plumbing Piping and Equipment" for identification materials and installation.
- B. Label pressure piping with system operating pressure.

3.12 FIELD QUALITY CONTROL

- A. Perform tests and inspections.
- B. Piping Inspections:
 - 1. Do not enclose, cover, or put piping into operation until it has been inspected and approved by authorities having jurisdiction.
 - 2. During installation, notify authorities having jurisdiction at least one day before inspection must be made. Perform tests specified below in presence of authorities having jurisdiction:
 - a. Roughing-in Inspection: Arrange for inspection of piping before concealing or closing-in after roughing-in and before setting fixtures.
 - b. Final Inspection: Arrange final inspection for authorities having jurisdiction to observe tests specified below and to ensure compliance with requirements.
 - 3. Reinspection: If authorities having jurisdiction find that piping will not pass tests or inspections, make required corrections and arrange for reinspection.
 - 4. Reports: Prepare inspection reports and have them signed by authorities having jurisdiction.

C. Piping Tests:

- 1. Fill domestic water piping. Check components to determine that they are not air bound and that piping is full of water.
- 2. Test for leaks and defects in new piping and parts of existing piping that have been altered, extended, or repaired. If testing is performed in segments, submit a separate report for each test, complete with diagram of portion of piping tested.
- 3. Leave new, altered, extended, or replaced domestic water piping uncovered and unconcealed until it has been tested and approved. Expose work that was covered or concealed before it was tested.
- 4. Cap and subject piping to static water pressure of 50 psig above operating pressure, without exceeding pressure rating of piping system materials. Isolate

- test source and allow to stand for four hours. Leaks and loss in test pressure constitute defects that must be repaired.
- 5. Repair leaks and defects with new materials and retest piping or portion thereof until satisfactory results are obtained.
- 6. Prepare reports for tests and for corrective action required.
- D. Domestic water piping will be considered defective if it does not pass tests and inspections.
- E. Prepare test and inspection reports.

3.13 ADJUSTING

- A. Perform the following adjustments before operation:
 - 1. Close drain valves, hydrants, and hose bibbs.
 - 2. Open shutoff valves to fully open position.
 - 3. Open throttling valves to proper setting.
 - 4. Adjust balancing valves in hot-water-circulation return piping to provide adequate flow.
 - a. Manually adjust ball-type balancing valves in hot-water-circulation return piping to provide flow of hot water in each branch.
 - b. Adjust calibrated balancing valves to flows indicated.
 - 5. Remove plugs used during testing of piping and for temporary sealing of piping during installation.
 - 6. Remove and clean strainer screens. Close drain valves and replace drain plugs.
 - 7. Remove filter cartridges from housings and verify that cartridges are as specified for application where used and are clean and ready for use.
 - 8. Check plumbing specialties and verify proper settings, adjustments, and operation.

3.14 CLEANING

- A. Clean and disinfect potable and non-potable domestic water piping as follows:
 - 1. Purge new piping and parts of existing piping that have been altered, extended, or repaired before using.
 - 2. Use purging and disinfecting procedures prescribed by authorities having jurisdiction; if methods are not prescribed, use procedures described in either AWWA C651 or AWWA C652 or follow procedures described below:

- a. Flush piping system with clean, potable water until dirty water does not appear at outlets.
- b. Fill and isolate system according to either of the following:
 - 1) Fill system or part thereof with water/chlorine solution with at least 50 ppm of chlorine. Isolate with valves and allow to stand for 24 hours.
 - 2) Fill system or part thereof with water/chlorine solution with at least 200 ppm of chlorine. Isolate and allow to stand for three hours.
- c. Flush system with clean, potable water until no chlorine is in water coming from system after the standing time.
- d. Submit water samples in sterile bottles to authorities having jurisdiction. Repeat procedures if biological examination shows contamination.
- B. Clean non-potable domestic water piping as follows:
 - 1. Purge new piping and parts of existing piping that have been altered, extended, or repaired before using.
 - 2. Use purging procedures prescribed by authorities having jurisdiction or; if methods are not prescribed, follow procedures described below:
 - a. Flush piping system with clean, potable water until dirty water does not appear at outlets.
 - b. Submit water samples in sterile bottles to authorities having jurisdiction. Repeat procedures if biological examination shows contamination.
- C. Prepare and submit reports of purging and disinfecting activities.
- D. Clean interior of domestic water piping system. Remove dirt and debris as work progresses.

3.15 PIPING SCHEDULE

- A. Transition and special fittings with pressure ratings at least equal to piping rating may be used in applications below unless otherwise indicated.
- B. Flanges and unions may be used for aboveground piping joints unless otherwise indicated.
- C. Fitting Option: Extruded-tee connections and brazed joints may be used on aboveground copper tubing.

- 1. Underground Domestic Water piping materials shall match those used for the underground site main to the building Soft copper tube, ASTM B 88, Type L; wrought-copper solder-joint fittings and brazed joints.
- D. Aboveground domestic water piping, NPS 2 and smaller, shall be the following:
 - 1. Hard copper tube, ASTM B 88, Type L; wrought-copper solder-joint fittings; and soldered joints.
- E. Aboveground domestic water piping, NPS 2-1/2 to NPS 4, shall be the following:
 - 1. Hard copper tube, ASTM B 88, Type L; wrought-copper solder-joint fittings; and soldered joints.
- F. Aboveground domestic water piping, NPS 5 to NPS 8, shall be the following:
 - 1. Hard copper tube, ASTM B 88, Type L; wrought-copper solder-joint fittings; and soldered joints.
- G. Underground Domestic Water piping materials shall match those used for the underground site main to the building:

3.16 VALVE SCHEDULE

- A. Drawings indicate valve types to be used. Where specific valve types are not indicated, the following requirements apply:
 - 1. Shutoff Duty: Use ball or gate valves for piping NPS 2 and smaller. Use butterfly, ball, or gate valves with flanged ends for piping NPS 2-1/2 and larger.
 - 2. Throttling Duty: Use ball or globe valves for piping NPS 2 and smaller. Use butterfly or ball valves with flanged ends for piping NPS 2-1/2 and larger.
 - 3. Hot-Water Circulation Piping, Balancing Duty: [Calibrated] [Memory-stop] balancing valves.
 - 4. Drain Duty: Hose-end drain valves.
- B. Use check valves to maintain correct direction of domestic water flow to and from equipment.
- C. Iron grooved-end valves may be used with grooved-end piping.

END OF SECTION 221116

SECTION 221119

DOMESTIC WATER PIPING SPECIALTIES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. This Section includes the following domestic water piping specialties:
 - 1. Vacuum breakers.
 - 2. Backflow preventers.
 - 3. Water pressure-reducing valves.
 - 4. Balancing valves.
 - 5. Temperature-actuated water mixing valves.
 - 6. Strainers.
 - 7. Outlet boxes.
 - 8. Hose stations.
 - 9. Hose bibbs.
 - 10. Wall hydrants.
 - 11. Ground hydrants.
 - 12. Post hydrants.
 - 13. Drain valves.
 - 14. Water hammer arresters.
 - 15. Air vents.
 - 16. Trap-seal primer valves.
 - 17. Trap-seal primer systems.
- B. Related Sections include the following:
 - 1. Division 22 Section "Domestic Water Piping" for water meters.

1.3 PERFORMANCE REQUIREMENTS

A. Minimum Working Pressure for Domestic Water Piping Specialties: 125 psig, unless otherwise indicated.

1.4 SUBMITTALS

- A. Product Data: For each type of product indicated.
- B. Shop Drawings: Diagram power, signal, and control wiring.
- C. Field quality-control test reports.
- D. Operation and Maintenance Data: For domestic water piping specialties to include in emergency, operation, and maintenance manuals.

1.5 QUALITY ASSURANCE

- A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.
- B. NSF Compliance:
 - 1. Comply with NSF 14, "Plastics Piping Components and Related Materials," for plastic domestic water piping components.
 - 2. Comply with NSF 61, "Drinking Water System Components Health Effects; Sections 1 through 9 "

PART 2 - PRODUCTS

2.1 VACUUM BREAKERS

- A. Pipe-Applied, Atmospheric-Type Vacuum Breakers:
 - 1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - 2. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Ames Co.
 - b. Cash Acme.
 - c. Conbraco Industries, Inc.
 - d. FEBCO; SPX Valves & Controls.
 - e. Rain Bird Corporation.
 - f. Toro Company (The); Irrigation Div.
 - g. Watts Industries, Inc.; Water Products Div.
 - h. Zurn Plumbing Products Group; Wilkins Div.

- 3. Standard: ASSE 1001.
- 4. Size: NPS 1/4 to NPS 3, as required to match connected piping.
- 5. Body: Bronze.
- 6. Inlet and Outlet Connections: Threaded.
- 7. Finish: Rough bronze or Chrome plated.

B. Hose-Connection Vacuum Breakers:

- 1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
- 2. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Arrowhead Brass Products, Inc.
 - b. Cash Acme.
 - c. Conbraco Industries, Inc.
 - d. Legend Valve.
 - e. MIFAB, Inc.
 - f. Prier Products, Inc.
 - g. Watts Industries, Inc.; Water Products Div.
 - h. Woodford Manufacturing Company.
 - i. Zurn Plumbing Products Group; Light Commercial Operation.
 - j. Zurn Plumbing Products Group; Wilkins Div.
- 3. Standard: ASSE 1011.
- 4. Body: Bronze, nonremovable, with manual drain.
- 5. Outlet Connection: Garden-hose threaded complying with ASME B1.20.7.
- 6. Finish: Chrome, nickel plated or rough bronze.

C. Pressure Vacuum Breakers:

- 1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
- 2. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
- 3. Basis-of-Design Product: Subject to compliance with requirements, provide by one of the following:
 - a. Ames Co.
 - b. Conbraco Industries, Inc.
 - c. FEBCO; SPX Valves & Controls.
 - d. Flomatic Corporation.
 - e. Toro Company (The); Irrigation Div.
 - f. Watts Industries, Inc.; Water Products Div.

- g. Zurn Plumbing Products Group; Wilkins Div.
- 4. Standard: ASSE 1020.
- 5. Operation: Continuous-pressure applications.
- 6. Pressure Loss: 5 psig maximum, through middle 1/3 of flow range.
- 7. Accessories:
 - a. Valves: Ball type, on inlet and outlet.

D. Laboratory-Faucet Vacuum Breakers:

- 1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
- 2. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Conbraco Industries, Inc.
 - b. Watts Industries, Inc.; Water Products Div.
 - c. Woodford Manufacturing Company.
 - d. Zurn Plumbing Products Group; Wilkins Div.
- 3. Standard: ASSE 1035.
- 4. Size: NPS 1/4 or NPS 3/8 matching faucet size.
- 5. Body: Bronze.
- 6. End Connections: Threaded.
- 7. Finish: Chrome plated.

E. Spill-Resistant Vacuum Breakers:

- 1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
- 2. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Conbraco Industries, Inc.
 - b. Watts Industries, Inc.; Water Products Div.
- 3. Standard: ASSE 1056.
- 4. Operation: Continuous-pressure applications.
- 5. Accessories:
 - a. Valves: Ball type, on inlet and outlet.

2.2 BACKFLOW PREVENTERS

A. Reduced-Pressure-Principle Backflow Preventers:

- 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Ames Co.
 - b. Conbraco Industries, Inc.
 - c. FEBCO; SPX Valves & Controls.
 - d. Flomatic Corporation.
 - e. Watts Industries, Inc.; Water Products Div.
 - f. Zurn Plumbing Products Group; Wilkins Div.
- 2. Standard: ASSE 1013.
- 3. Operation: Continuous-pressure applications.
- 4. Pressure Loss: 12 psig maximum, through middle 1/3 of flow range.
- 5. Body: Bronze for NPS 2 and smaller; cast iron with interior lining complying with AWWA C550 or that is FDA approved for NPS 2-1/2 and larger.
- 6. End Connections: Threaded for NPS 2 and smaller; flanged for NPS 2-1/2 and larger.
- 7. Configuration: Designed for horizontal, straight through flow.
- 8. Accessories:
 - a. Valves: Ball type with threaded ends on inlet and outlet of NPS 2 and smaller; outside screw and yoke gate-type with flanged ends on inlet and outlet of NPS 2-1/2 and larger.
 - b. Air-Gap Fitting: ASME A112.1.2, matching backflow-preventer connection.

B. Double-Check Backflow-Prevention Assemblies:

- 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Ames Co.
 - b. Conbraco Industries, Inc.
 - c. FEBCO; SPX Valves & Controls.
 - d. Flomatic Corporation.
 - e. Watts Industries, Inc.; Water Products Div.
 - f. Zurn Plumbing Products Group; Wilkins Div.
- 2. Standard: ASSE 1015.
- 3. Operation: Continuous-pressure applications, unless otherwise indicated.
- 4. Pressure Loss: 5 psig maximum, through middle 1/3 of flow range.

- 5. Body: Bronze for NPS 2 and smaller; [cast iron with interior lining complying with AWWA C550 or that is FDA approved] [steel with interior lining complying with AWWA C550 or that is FDA approved] [stainless steel] for NPS 2-1/2 and larger.
- 6. End Connections: Threaded for NPS 2 and smaller; [flanged] <Insert type> for NPS 2-1/2 and larger.
- 7. Configuration: Designed for horizontal, straight through flow.
- 8. Accessories:
 - a. Valves: Ball type with threaded ends on inlet and outlet of NPS 2 and smaller; outside screw and yoke gate-type with flanged ends on inlet and outlet of NPS 2-1/2 and larger.
- C. Reduced-Pressure-Detector, Fire-Protection Backflow-Preventer Assemblies:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Ames Co.
 - b. Conbraco Industries, Inc.
 - c. FEBCO; SPX Valves & Controls.
 - d. Watts Industries, Inc.; Water Products Div.
 - e. Zurn Plumbing Products Group; Wilkins Div.
 - 2. Standard: ASSE 1047 and FMG approved or UL listed.
 - 3. Operation: Continuous-pressure applications.
 - 4. Pressure Loss: 12 psig maximum, through middle 1/3 of flow range.
 - 5. Body: Cast iron with interior lining complying with AWWA C550 or that is FDA approved].
 - 6. End Connections: Flanged.
 - 7. Configuration: Designed for horizontal, straight through flow.
 - 8. Accessories:
 - a. Valves: Outside screw and yoke gate-type with flanged ends on inlet and outlet.
 - b. Air-Gap Fitting: ASME A112.1.2, matching backflow-preventer connection.
 - c. Bypass: With displacement-type water meter, shutoff valves, and reduced-pressure backflow preventer.
- D. Double-Check, Detector-Assembly Backflow Preventers:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Ames Co.

- b. Conbraco Industries, Inc.
- c. FEBCO; SPX Valves & Controls.
- d. Watts Industries, Inc.; Water Products Div.
- e. Zurn Plumbing Products Group; Wilkins Div.
- 2. Standard: ASSE 1048 and FMG approved or UL listed.
- 3. Operation: Continuous-pressure applications.
- 4. Pressure Loss: 5 psig maximum, through middle 1/3 of flow range.
- 5. Body: Cast iron with interior lining complying with AWWA C550 or that is FDA approved.
- 6. End Connections: Flanged.
- 7. Configuration: Designed for horizontal, straight through flow.
- 8. Accessories:
 - a. Valves: Outside screw and yoke gate-type with flanged ends on inlet and outlet.
 - b. Bypass: With displacement-type water meter, shutoff valves, and reduced-pressure backflow preventer.

E. Backflow-Preventer Test Kits:

- 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Conbraco Industries, Inc.
 - b. FEBCO; SPX Valves & Controls.
 - c. Flomatic Corporation.
 - d. Watts Industries, Inc.; Water Products Div.
 - e. Zurn Plumbing Products Group; Wilkins Div.
- 2. Description: Factory calibrated, with gages, fittings, hoses, and carrying case with test-procedure instructions.

2.3 WATER PRESSURE-REDUCING VALVES

A. Water Regulators:

- 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Cash Acme.
 - b. Conbraco Industries, Inc.
 - c. Honeywell Water Controls.
 - d. Watts Industries, Inc.; Water Products Div.
 - e. Zurn Plumbing Products Group; Wilkins Div.

- 2. Standard: ASSE 1003.
- 3. Pressure Rating: Initial working pressure of 150 psig.
- 4. Body: Bronze with chrome-plated finish for NPS 2 and smaller; cast iron with interior lining complying with AWWA C550 or that is FDA approved for NPS 2-1/2 and NPS 3.
- 5. Valves for Booster Heater Water Supply: Include integral bypass.
- 6. End Connections: Threaded for NPS 2 and smaller; flanged for NPS 2-1/2 and NPS 3.

B. Water Control Valves:

- 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. CLA-VAL Automatic Control Valves.
 - b. Flomatic Corporation.
 - c. OCV Control Valves.
 - d. Watts Industries, Inc.; Ames Fluid Control Systems.
 - e. Watts Industries, Inc.; Watts ACV.
 - f. Zurn Plumbing Products Group; Wilkins Div.
- 2. Description: Pilot-operation, diaphragm-type, single-seated main water control valve.
- 3. Pressure Rating: Initial working pressure of 150 psig minimum with AWWA C550 or FDA-approved, interior epoxy coating. Include small pilot-control valve, restrictor device, specialty fittings, and sensor piping.
- 4. Main Valve Body: Cast- or ductile-iron body with AWWA C550 or FDA-approved, interior epoxy coating; or stainless-steel body.
 - a. Pattern: Angle or Globe-valve design
 - b. Trim: Stainless steel.
- 5. End Connections: Threaded for NPS 2 and smaller; flanged for NPS 2-1/2 and larger.

2.4 BALANCING VALVES

- A. Copper-Alloy Calibrated Balancing Valves:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Armstrong International, Inc.
 - b. Flo Fab Inc.
 - c. ITT Industries; Bell & Gossett Div.

- d. NIBCO INC.
- e. TAC Americas.
- f. Taco, Inc.
- g. Watts Industries, Inc.; Water Products Div.
- 2. Type: Ball or Y-pattern globe valve with two readout ports and memory setting indicator.
- 3. Body: Brass or bronze,
- 4. Size: Same as connected piping, but not larger than NPS 2.
- 5. Accessories: Meter hoses, fittings, valves, differential pressure meter, and carrying case.
- B. Cast-Iron Calibrated Balancing Valves:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Armstrong International, Inc.
 - b. Flo Fab Inc.
 - c. ITT Industries; Bell & Gossett Div.
 - d. NIBCO INC.
 - e. TAC Americas.
 - f. Watts Industries, Inc.; Water Products Div.
 - 2. Type: Adjustable with Y-pattern globe valve, two readout ports, and memory-setting indicator.
 - 3. Size: Same as connected piping, but not smaller than NPS 2-1/2.
- C. Accessories: Meter hoses, fittings, valves, differential pressure meter, and carrying case.
- D. Memory-Stop Balancing Valves:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Conbraco Industries, Inc.
 - b. Crane Co.; Crane Valve Group; Crane Valves.
 - c. Crane Co.; Crane Valve Group; Jenkins Valves.
 - d. Crane Co.; Crane Valve Group; Stockham Div.
 - e. Hammond Valve.
 - f. Milwaukee Valve Company.
 - g. NIBCO INC.
 - h. Red-White Valve Corp.

- 2. Standard: MSS SP-110 for two-piece, copper-alloy ball valves.
- 3. Pressure Rating: 400-psig minimum CWP.
- 4. Size: NPS 2 or smaller.
- 5. Body: Copper alloy.
- 6. Port: Standard or full port.
- 7. Ball: Chrome-plated brass.
- 8. Seats and Seals: Replaceable.
- 9. End Connections: Solder joint or threaded.
- 10. Handle: Vinyl-covered steel with memory-setting device.

2.5 TEMPERATURE-ACTUATED WATER MIXING VALVES

A. Water-Temperature Limiting Devices:

- 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Armstrong International, Inc.
 - b. Cash Acme.
 - c. Conbraco Industries, Inc.
 - d. Honeywell Water Controls.
 - e. Legend Valve.
 - f. Leonard Valve Company.
 - g. Powers; a Watts Industries Co.
 - h. Symmons Industries, Inc.
 - i. Taco, Inc.
 - j. Watts Industries, Inc.; Water Products Div.
 - k. Zurn Plumbing Products Group; Wilkins Div.
- 2. Standard: ASSE 1017.
- 3. Pressure Rating: 125 psig.
- 4. Type: Thermostatically controlled water mixing valve.
- 5. Material: Bronze body with corrosion-resistant interior components.
- 6. Connections: Threaded inlets and outlet.
- 7. Accessories: Check stops on hot- and cold-water supplies, and adjustable, temperature-control handle.
- 8. Valve Finish: Chrome plated or Rough bronze.

B. Primary, Thermostatic, Water Mixing Valves:

- 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
- 2.
- a. Armstrong International, Inc.

- b. Lawler Manufacturing Company, Inc.
- c. Leonard Valve Company.
- d. Powers; a Watts Industries Co.
- e. Symmons Industries, Inc.
- 3. Standard: ASSE 1017.
- 4. Pressure Rating: 125 psig.
- 5. Type: Exposed-mounting, thermostatically controlled water mixing valve.
- 6. Material: Bronze body with corrosion-resistant interior components.
- 7. Connections: Threaded inlets and outlet.
- 8. Accessories: Manual temperature control, check stops on hot- and cold-water supplies, and adjustable, temperature-control handle.
- 9. Valve Pressure Rating: 125 psig minimum, unless otherwise indicated.
- 10. Pressure Drop at Design Flow Rate: 15 psig.
- 11. Valve Finish: Chrome plated or Rough bronze.
- 12. Piping Finish: Copper.

C. Manifold, Thermostatic, Water-Mixing-Valve Assemblies:

- 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Leonard Valve Company.
 - b. Powers; a Watts Industries Co.
 - c. Symmons Industries, Inc.
- 2. Description: Factory-fabricated, exposed-mounting, thermostatically controlled, water-mixing-valve assembly in three-valve parallel arrangement.
- 3. Large-Flow Parallel: Thermostatic water mixing valve and downstream pressure regulator with pressure gages on inlet and outlet.
- 4. Intermediate-Flow Parallel: Thermostatic water mixing valve and downstream pressure regulator with pressure gages on inlet and outlet.
- 5. Small-Flow Parallel: Thermostatic water mixing valve.
- 6. Thermostatic Mixing Valves: Comply with ASSE 1017. Include check stops on hot- and cold-water inlets and shutoff valve on outlet.
- 7. Water Regulator(s): Comply with ASSE 1003. Include pressure gage on inlet and outlet.
- 8. Component Pressure Ratings: 125 psig minimum, unless otherwise indicated.
- 9. Cabinet: Factory-fabricated, stainless steel, for surface mounting and with hinged, stainless-steel door.
- 10. Unit Pressure Drop at Design Flow Rate: 15 psig.
- 11. Thermostatic Mixing Valve and Water Regulator Finish: Chrome plated or rough bronze.
- 12. Piping Finish: Copper.
- D. Individual-Fixture, Water Tempering Valve:

- 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Cash Acme.
 - b. Conbraco Industries, Inc.
 - c. Honeywell Water Controls.
 - d. Lawler Manufacturing Company, Inc.
 - e. Leonard Valve Company.
 - f. Powers; a Watts Industries Co.
 - g. Watts Industries, Inc.; Water Products Div.
 - h. Zurn Plumbing Products Group; Wilkins Div.
- 2. Standard: ASSE 1016, thermostatically controlled water tempering valve.
- 3. Pressure Rating: 125 psig minimum, unless otherwise indicated.
- 4. Body: Bronze body with corrosion-resistant interior components.
- 5. Temperature Control: Adjustable.
- 6. Inlets and Outlet: Threaded.
- 7. Finish: Rough or chrome-plated bronze.

E. Primary Water Tempering Valves:

- 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Heat-Timer Corporation.
 - b. Holby Valve Co., Inc.
- 2. Standard: ASSE 1017, thermostatically controlled tempering valve, listed as tempering valve.
- 3. Pressure Rating: 125 psig minimum, unless otherwise indicated.
- 4. Body: Bronze.
- 5. Temperature Control: Manual.
- 6. Inlets and Outlet: Threaded.
- 7. Valve Finish: Rough bronze.

2.6 STRAINERS FOR DOMESTIC WATER PIPING

A. Y-Pattern Strainers:

- 1. Pressure Rating: 125 psig minimum, unless otherwise indicated.
- 2. Body: Bronze for NPS 2 and smaller; cast iron with interior lining complying with AWWA C550 or FDA-approved, epoxy coating and for NPS 2-1/2 and larger.
- 3. End Connections: Threaded for NPS 2 and smaller; flanged for NPS 2-1/2 and larger.

- 4. Screen: Stainless steel with round perforations, unless otherwise indicated.
- 5. Perforation Size:
 - a. StrainersNPS 2 and Smaller: 0.033 inch.
 - b. Strainers NPS 2-1/2 to NPS 4: 0.045 inch.
 - c. Strainers NPS 5 and Larger: 0.125 inch.
- 6. Drain: Factory-installed, hose-end drain valve.

2.7 OUTLET BOXES

A. Clothes Washer Outlet Boxes:

- 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Acorn Engineering Company.
 - b. Guy Gray Manufacturing Co., Inc.
 - c. IPS Corporation.
 - d. LSP Products Group, Inc.
 - e. Oatey.
 - f. Plastic Oddities; a division of Diverse Corporate Technologies.
 - g. Symmons Industries, Inc.
 - h. Watts Industries, Inc.; Water Products Div.
 - i. Whitehall Manufacturing; a div. of Acorn Engineering Company.
 - j. Zurn Plumbing Products Group; Light Commercial Operation.
- 2. Mounting: Recessed.
- 3. Material and Finish: Stainless-steel box and faceplate.
- 4. Faucet: Combination, valved fitting or separate hot- and cold-water, valved fittings complying with ASME A112.18.1. Include garden-hose thread complying with ASME B1.20.7 on outlets.
- 5. Supply Shutoff Fittings: NPS 1/2 gate, globe, or ball valves and NPS 1/2 copper, water tubing.
- 6. Drain: NPS 2 standpipe and P-trap for direct waste connection to drainage piping.
- 7. Inlet Hoses: Two 60-inch- long, rubber household clothes washer inlet hoses with female, gardenhose-thread couplings. Include rubber washers.
- 8. Drain Hose: One 48-inch-long, rubber household clothes washer drain hose with hooked end.

B. Icemaker Outlet Boxes:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

- a. Acorn Engineering Company.
- b. IPS Corporation.
- c. LSP Products Group, Inc.
- d. Oatey.
- e. Plastic Oddities; a division of Diverse Corporate Technologies.
- 2. Mounting: Recessed.
- 3. Material and Finish: Stainless-steel box and faceplate.
- 4. Faucet: Valved fitting complying with ASME A112.18.1. Include NPS 1/2 or smaller copper tube outlet.
- 5. Supply Shutoff Fitting: NPS 1/2 gate, globe, or ball valve and NPS 1/2 copper, water tubing.

2.8 HOSE STATIONS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. ARCHON Industries, Inc.
 - 2. Armstrong International, Inc.
 - 3. Cooney Brothers, Inc.
 - 4. DynaFluid Ltd.
 - 5. Leonard Valve Company.
 - 6. Strahman Valves, Inc.
 - 7. T & S Brass and Bronze Works, Inc.
- B. Single-Temperature-Water Hose Stations:
 - 1. Standard: ASME A112.18.1.
 - 2. Cabinet: Stainless-steel enclosure with exposed valve handle, hose connection, and hose rack. Include thermometer in front.
 - 3. Hose-Rack Material: Stainless steel.
 - 4. Body Material: Bronze with stainless-steel wetted parts.
 - 5. Body Finish: Rough bronze or chrome plated.
 - 6. Mounting: Wall, with reinforcement.
 - 7. Supply Fitting: NPS 3/4 gate, globe, or ball valve and check valve and NPS 3/4 copper, water tubing. Omit check valve if check stop is included with fitting.
 - 8. Hose: Manufacturer's standard, for service fluid, temperature, and pressure; 50 feet long.
 - 9. Nozzle: With hand squeeze on-off control.
 - 10. Vacuum Breaker: Integral or factory-installed, nonremovable, manual-drain-type, hose-connection vacuum breaker complying with ASSE 1011 or backflow preventer complying with ASSE 1052; and garden-hose thread complying with ASME B1.20.7 on outlet.

C. Hot- and Cold-Water Hose Stations:

- 1. Standard: ASME A112.18.1.
- 2. Type Faucet: Blending valve.
- 3. Cabinet: Stainless-steel enclosure with exposed valve handles, hose connection, and hose rack. Include thermometer in front.
- 4. Hose-Rack Material: Stainless steel.
- 5. Body Material: Bronze with stainless-steel wetted parts.
- 6. Body Finish: Rough bronze or chrome plate.
- 7. Mounting: Wall, with reinforcement.
- 8. Supply Fittings: TwoNPS 3/4 gate, globe, or ball valves and check valves and NPS 3/4 copper, water tubing. Omit check valves if check stops are included with fitting.
- 9. Hose: Manufacturer's standard, for service fluid, temperature, and pressure; 50 feet long.
- 10. Nozzle: With hand squeeze on-off control.
- 11. Vacuum Breaker: Integral or factory-installed, nonremovable, manual-drain-type, hose-connection vacuum breaker complying with ASSE 1011 or backflow preventer complying with ASSE 1052; and garden-hose thread complying with ASME B1.20.7 on outlet.

2.9 HOSE BIBBS

A. Hose Bibbs:

- 1. Standard: ASME A112.18.1 for sediment faucets.
- 2. Body Material: Bronze.
- 3. Seat: Bronze, replaceable.
- 4. Supply Connections: NPS 1/2 or NPS 3/4 threaded or solder-joint inlet.
- 5. Outlet Connection: Garden-hose thread complying with ASME B1.20.7.
- 6. Pressure Rating: 125 psig.
- 7. Vacuum Breaker: Integral nonremovable, drainable, hose-connection vacuum breaker complying with ASSE 1011.
- 8. Finish for Equipment Rooms: Rough bronze, or chrome or nickel plated.
- 9. Finish for Service Areas: Rough bronze, Chrome or nickel plated.
- 10. Finish for Finished Rooms: Chrome or nickel plated.
- 11. Operation for Equipment Rooms: Wheel handle or operating key.
- 12. Operation for Service Areas: Wheel handle.
- 13. Operation for Finished Rooms: Wheel handle.
- 14. Include operating key with each operating-key hose bibb.
- 15. Include integral wall flange with each chrome- or nickel-plated hose bibb.

2.10 WALL HYDRANTS

A. Nonfreeze Wall Hydrants:

- 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Josam Company.
 - b. MIFAB, Inc.
 - c. Prier Products, Inc.
 - d. Smith, Jay R. Mfg. Co.; Division of Smith Industries, Inc.
 - e. Tyler Pipe; Wade Div.
 - f. Watts Drainage Products Inc.
 - g. Woodford Manufacturing Company.
 - h. Zurn Plumbing Products Group; Light Commercial Operation.
 - i. Zurn Plumbing Products Group; Specification Drainage Operation.
- 2. Standard: ASME A112.21.3M for concealed-outlet, self-draining wall hydrants.
- 3. Pressure Rating: 125 psig.
- 4. Operation: Loose key.
- 5. Casing and Operating Rod: Of length required to match wall thickness. Include wall clamp.
- 6. Inlet: NPS 3/4 or NPS 1.
- 7. Outlet: Concealed, with integral vacuum breaker and garden-hose thread complying with ASME B1.20.7.
- 8. Box: Deep, flush mounting with cover.
- 9. Box and Cover Finish: Polished nickel bronze.
- 10. Outlet: Exposed, with integral vacuum breaker and garden-hose thread complying with ASME B1.20.7.
- 11. Nozzle and Wall-Plate Finish: Polished nickel bronze.
- 12. Operating Keys(s): Two with each wall hydrant.

2.11 DRAIN VALVES

- A. Ball-Valve-Type, Hose-End Drain Valves:
 - 1. Standard: MSS SP-110 for standard-port, two-piece ball valves.
 - 2. Pressure Rating: 400-psig minimum CWP.
 - 3. Size: NPS 3/4.
 - 4. Body: Copper alloy.
 - 5. Ball: Chrome-plated brass.
 - 6. Seats and Seals: Replaceable.
 - 7. Handle: Vinyl-covered steel.
 - 8. Inlet: Threaded or solder joint.

9. Outlet: Threaded, short nipple with garden-hose thread complying with ASME B1.20.7 and cap with brass chain.

B. Gate-Valve-Type, Hose-End Drain Valve:

- 1. Standard: MSS SP-80 for gate valves.
- 2. Pressure Rating: Class 125.
- 3. Size: NPS 3/4.
- 4. Body: ASTM B 62 bronze.
- 5. Inlet: NPS 3/4 threaded or solder joint.
- 6. Outlet: Garden-hose thread complying with ASME B1.20.7 and cap with brass chain.

C. Stop-and-Waste Drain Valves:

- 1. Standard: MSS SP-110 for ball valves or MSS SP-80 for gate valves.
- 2. Pressure Rating: 200-psig minimum CWP or Class 125.
- 3. Size: NPS 3/4.
- 4. Body: Copper alloy or ASTM B 62 bronze.
- 5. Drain: NPS 1/8 side outlet with cap.

2.12 WATER HAMMER ARRESTERS

A. Water Hammer Arresters:

- 1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
- 2. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. AMTROL, Inc.
 - b. Josam Company.
 - c. MIFAB, Inc.
 - d. PPP Inc.
 - e. Sioux Chief Manufacturing Company, Inc.
 - f. Smith, Jay R. Mfg. Co.; Division of Smith Industries, Inc.
 - g. Tyler Pipe; Wade Div.
 - h. Watts Drainage Products Inc.
 - i. Zurn Plumbing Products Group; Specification Drainage Operation.
- 3. Standard: ASSE 1010 or PDI-WH 201.
- 4. Type: Metal Bellows, see fixture schedule.
- 5. Size: ASSE 1010, Sizes AA and A through F or PDI-WH 201, Sizes A through F.

2.13 AIR VENTS

A. Bolted-Construction Automatic Air Vents:

- 1. Body: Bronze.
- 2. Pressure Rating: 125-psig minimum pressure rating at 140 deg F.
- 3. Float: Replaceable, corrosion-resistant metal.
- 4. Mechanism and Seat: Stainless steel.
- 5. Size: NPS 3/8 or NPS 1/2 minimum inlet.
- 6. Inlet and Vent Outlet End Connections: Threaded.

B. Welded-Construction Automatic Air Vents:

- 1. Body: Stainless steel.
- 2. Pressure Rating: 150-psig minimum pressure rating.
- 3. Float: Replaceable, corrosion-resistant metal.
- 4. Mechanism and Seat: Stainless steel.
- 5. Size: NPS 3/8 minimum inlet.
- 6. Inlet and Vent Outlet End Connections: Threaded.

2.14 TRAP-SEAL PRIMER VALVES

A. Supply-Type, Trap-Seal Primer Valves:

- 1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
- 2. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. MIFAB, Inc.
 - b. PPP Inc.
 - c. Sioux Chief Manufacturing Company, Inc.
 - d. Smith, Jay R. Mfg. Co.; Division of Smith Industries, Inc.
 - e. Watts Industries, Inc.; Water Products Div.
- 3. Standard: ASSE 1018.
- 4. Pressure Rating: 125 psig minimum.
- 5. Body: Bronze.
- 6. Inlet and Outlet Connections: NPS 1/2 threaded, union, or solder joint.
- 7. Gravity Drain Outlet Connection: NPS 1/2 threaded or solder joint.
- 8. Finish: Chrome plated, or rough bronze for units used with pipe or tube that is not chrome finished.

B. Drainage-Type, Trap-Seal Primer Valves:

- 1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
- 2. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Smith, Jay R. Mfg. Co.; Division of Smith Industries, Inc.
- 3. Standard: ASSE 1044, lavatory P-trap with NPS 3/8 minimum, trap makeup connection.
- 4. Size: NPS 1-1/4 minimum.
- 5. Material: Chrome-plated, cast brass.

2.15 TRAP-SEAL PRIMER SYSTEMS

A. Trap-Seal Primer Systems:

- 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. PPP Inc.
- 2. Standard: ASSE 1044,
- 3. Piping: NPS 3/4, ASTM B 88, Type L; copper, water tubing.
- 4. Cabinet: Recessed-mounting steel box with stainless-steel cover.
- 5. Electric Controls: 24-hour timer, solenoid valve, and manual switch for 120-V ac power.
- 6. Vacuum Breaker: ASSE 1001.
- 7. Number Outlets: Six.
- 8. Size Outlets: NPS 1/2.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Refer to Division 22 Section "Common Work Results for Plumbing" for piping joining materials, joint construction, and basic installation requirements.
- B. Install backflow preventers in each water supply to mechanical equipment and systems and to other equipment and water systems that may be sources of contamination. Comply with authorities having jurisdiction.

- 1. Locate backflow preventers in same room as connected equipment or system.
- 2. Install drain for backflow preventers with atmospheric-vent drain connection with air-gap fitting, fixed air-gap fitting, or equivalent positive pipe separation of at least two pipe diameters in drain piping and pipe to floor drain. Locate air-gap device attached to or under backflow preventer. Simple air breaks are not acceptable for this application.
- 3. Do not install bypass piping around backflow preventers.
- C. Install water regulators with inlet and outlet shutoff valves and bypass with memory-stop balancing valve. Install pressure gages on inlet and outlet.
- D. Install water control valves with inlet and outlet shutoff valves and bypass with globe valve. Install pressure gages on inlet and outlet.
- E. Install balancing valves in locations where they can easily be adjusted.
- F. Install temperature-actuated water mixing valves with check stops or shutoff valves on inlets and with shutoff valve on outlet.
 - 1. Install thermometers and water regulators if specified.
 - 2. Install cabinet-type units recessed in or surface mounted on wall as specified.
- G. Install Y-pattern strainers for water on supply side of each control valve, water pressure-reducing valve, solenoid valve and pump].
- H. Install outlet boxes recessed in wall. Install 2-by-4-inch fire-retardant-treated-wood blocking wall reinforcement between studs. Fire-retardant-treated-wood blocking is specified in Division 06 Section "Rough Carpentry."
- I. Install hose stations with check stops or shutoff valves on inlets and with thermometer on outlet.
 - 1. Install shutoff valve on outlet if specified.
 - 2. Install cabinet-type units recessed in or surface mounted on wall as specified. Install 2-by-4-inch fire-retardant-treated-wood blocking wall reinforcement between studs. Fire-retardant-treated-wood blocking is specified in Division 06 Section "Rough Carpentry."
- J. Install ground hydrants with [1 cu. yd.] <Insert dimension> of crushed gravel around drain hole. Set ground hydrants with box flush with grade.
- K. Install draining-type post hydrants with [1 cu. yd.] <Insert dimension> of crushed gravel around drain hole. Set post hydrants in concrete paving or in [1 cu. ft.] <Insert dimension> of concrete block at grade.
- L. Install nonfreeze, nondraining-type post hydrants set in concrete or pavement.

- M. Install freeze-resistant yard hydrants with riser pipe set in concrete or pavement. Do not encase canister in concrete.
- N. Install water hammer arresters in water piping according to PDI-WH 201.
- O. Install air vents at high points of water piping. Install drain piping and discharge onto floor drain.
- P. Install supply-type, trap-seal primer valves with outlet piping pitched down toward drain trap a minimum of 1 percent, and connect to floor-drain body, trap, or inlet fitting. Adjust valve for proper flow.
- Q. Install drainage-type, trap-seal primer valves as lavatory trap with outlet piping pitched down toward drain trap a minimum of 1 percent, and connect to floor-drain body, trap, or inlet fitting.
- R. Install trap-seal primer systems with outlet piping pitched down toward drain trap a minimum of 1 percent, and connect to floor-drain body, trap, or inlet fitting. Adjust system for proper flow.

3.2 CONNECTIONS

- A. Piping installation requirements are specified in other Division 22 Sections. Drawings indicate general arrangement of piping and specialties.
- B. Ground equipment according to Division 26 Section "Grounding and Bonding for Electrical Systems."
- C. Connect wiring according to Division 26 Section "Low-Voltage Electrical Power Conductors and Cables."

3.3 LABELING AND IDENTIFYING

- A. Equipment Nameplates and Signs: Install engraved plastic-laminate equipment nameplate or sign on or near each of the following:
 - 1. Pressure vacuum breakers.
 - 2. Reduced-pressure-principle backflow preventers.
 - 3. Double-check backflow-prevention assemblies.
 - 4. Dual-check-valve backflow preventers.
 - 5. Double-check, detector-assembly backflow preventers.
 - 6. Water pressure-reducing valves.
 - 7. Calibrated balancing valves.
 - 8. Primary, thermostatic, water mixing valves.
 - 9. Manifold, thermostatic, water-mixing-valve assemblies.

- 10. Primary water tempering valves.
- 11. Outlet boxes.
- 12. Hose stations.
- 13. Supply-type, trap-seal primer valves.
- 14. Trap-seal primer systems.
- B. Distinguish among multiple units, inform operator of operational requirements, indicate safety and emergency precautions, and warn of hazards and improper operations, in addition to identifying unit. Nameplates and signs are specified in Division 22 Section "Identification for Plumbing Piping and Equipment."

3.4 FIELD QUALITY CONTROL

- A. Perform the following tests and prepare test reports:
 - 1. Test each pressure vacuum breaker, reduced-pressure-principle backflow preventer, double-check backflow-prevention assembly and double-check, detector-assembly backflow preventer according to authorities having jurisdiction and the device's reference standard.
- B. Remove and replace malfunctioning domestic water piping specialties and retest as specified above.

3.5 ADJUSTING

- A. Set field-adjustable pressure set points of water pressure-reducing valves.
- B. Set field-adjustable flow set points of balancing valves.
- C. Set field-adjustable temperature set points of temperature-actuated water mixing valves.

END OF SECTION 221119

SECTION 221316

SANITARY WASTE AND VENT PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. This Section includes the following for soil, waste, and vent piping inside the building:
 - 1. Pipe, tube, and fittings.
 - 2. Special pipe fittings.
 - 3. Encasement for underground metal piping.
- B. Any sanitary piping located above a drop ceiling or within a wall adjacent to an occupied space is to be insulated cast iron.

1.3 DEFINITIONS

- A. ABS: Acrylonitrile-butadiene-styrene plastic.
- B. EPDM: Ethylene-propylene-diene terpolymer rubber.
- C. LLDPE: Linear, low-density polyethylene plastic.
- D. NBR: Acrylonitrile-butadiene rubber.
- E. PE: Polyethylene plastic.
- F. PVC: Polyvinyl chloride plastic.
- G. TPE: Thermoplastic elastomer.

1.4 PERFORMANCE REQUIREMENTS

A. Components and installation shall be capable of withstanding the following minimum working pressure, unless otherwise indicated:

- 1. Soil, Waste, and Vent Piping: 10-foot head of water.
- B. Seismic Performance: Soil, waste, and vent piping and support and installation shall be capable of withstanding the effects of seismic events determined according to ASCE 7, "Minimum Design Loads for Buildings and Other Structures."

1.5 SUBMITTALS

- A. Product Data: For pipe, tube, fittings, and couplings.
- B. Shop Drawings:
 - 1. Design Calculations: Signed and sealed by a qualified professional engineer for selecting seismic restraints.
- C. Coordination Drawings: Plans and details, drawn to scale, on which above and below ground sanitary and vent piping is shown and coordinated with other installations, using input from installers of the items involved. Clearly indicate all inverts and coordinate with site contractors.
- D. Field quality-control inspection and test reports.

1.6 QUALITY ASSURANCE

- A. Piping materials shall bear label, stamp, or other markings of specified testing agency.
- B. Comply with NSF 14, "Plastics Piping Systems Components and Related Materials," for plastic piping components. Include marking with "NSF-dwv" for plastic drain, waste, and vent piping; "NSF-drain" for plastic drain piping; "NSF-tubular" for plastic continuous waste piping; and "NSF-sewer" for plastic sewer piping.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

- A. In other Part 2 articles where titles below introduce lists, the following requirements apply to product selection:
 - 1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, manufacturers specified.
 - 2. Manufacturers: Subject to compliance with requirements, provide products by one of the manufacturers specified.

2.2 PIPING MATERIALS

A. Refer to Part 3 "Piping Applications" Article for applications of pipe, tube, fitting, and joining materials.

2.3 HUB-AND-SPIGOT, CAST-IRON SOIL PIPE AND FITTINGS

- A. Pipe and Fittings: ASTM A 74, Service class.
- B. Gaskets: ASTM C 564, rubber.

2.4 HUBLESS CAST-IRON SOIL PIPE AND FITTINGS

- A. Pipe and Fittings: ASTM A 888 or CISPI 301.
- B. Sovent Stack Fittings: ASME B16.45 or ASSE 1043, hubless, cast-iron aerator and deaerator drainage fittings.
- C. Shielded Couplings: ASTM C 1277 assembly of metal shield or housing, corrosion-resistant fasteners, and rubber sleeve with integral, center pipe stop.
 - 1. Heavy-Duty, Shielded, Stainless-Steel Couplings: With stainless-steel shield, stainless-steel bands and tightening devices, and ASTM C 564, rubber sleeve.
 - a. Available Manufacturers:
 - 1) ANACO.
 - 2) Clamp-All Corp.
 - 3) Ideal Div.; Stant Corp.
 - 4) Mission Rubber Co.
 - 5) Tyler Pipe; Soil Pipe Div.

2.5 STEEL PIPE AND FITTINGS

- A. Steel Pipe: ASTM A 53/A 53M, Type E or S, Grade A or B, Standard Weight or Schedule 40, galvanized. Include ends matching joining method.
- B. Drainage Fittings: ASME B16.12, threaded, cast-iron drainage pattern.

2.6 STAINLESS-STEEL PIPE AND FITTINGS

A. Pipe and Fittings: ASME A112.3.1, drainage pattern with socket and spigot ends.

- B. Gaskets: Lip seals shaped to fit socket groove, with plastic backup ring.
 - 1. Material: EPDM, unless NBR is indicated.

2.7 ENCASEMENT FOR UNDERGROUND METAL PIPING

- A. Description: ASTM A 674 or AWWA C105, high-density, crosslaminated PE film of 0.004-inch minimum thickness.
- B. Form: Sheet.
- C. Color: Black.

PART 3 - EXECUTION

3.1 EXCAVATION

A. Refer to Division 31 Section "Earth Moving" for excavating, trenching, and backfilling.

3.2 PIPING APPLICATIONS

- A. Flanges and unions may be used on aboveground pressure piping, unless otherwise indicated.
- B. Aboveground, soil and waste piping NPS 4 and smaller shall be the following:
 - 1. Service class, cast-iron soil pipe and fittings; gaskets; and gasketed joints.
 - 2. Hubless cast-iron soil pipe and fittings heavy-duty shielded, couplings; and hubless-coupling joints.
- C. Aboveground, soil and waste piping NPS 5 and larger shall be the following:
 - 1. Service class, cast-iron soil pipe and fittings; gaskets; and gasketed joints.
 - 2. Hubless cast-iron soil pipe and fittings and heavy-duty shielded, stainless-steel couplings; and hubless-coupling joints.
- D. Aboveground, vent piping NPS 4 and smaller shall be the following:
 - 1. Service class, cast-iron soil pipe and fittings; gaskets; and gasketed joints.
 - 2. Hubless cast-iron soil pipe and fittings; heavy-duty shielded, stainless-steel couplings; and hubless-coupling joints.
- E. Aboveground, vent piping NPS 5 and larger shall be the following:

- 1. Service class, cast-iron soil pipe and fittings; gaskets; and gasketed joints.
- 2. Hubless cast-iron soil pipe and fittings; heavy-duty shielded, stainless-steel couplings; and hubless-coupling joints.
- F. Underground, soil, waste, and vent piping NPS 4 and smaller shall be the following:
 - 1. Service class, cast-iron soil piping; gaskets; and gasketed joints.
- G. Underground, soil and waste piping NPS 5 and larger shall be the following:
 - 1. Service class, cast-iron soil piping; gaskets; and gasketed joints.

3.3 PIPING INSTALLATION

- A. Sanitary sewer piping outside the building is specified in Division 22 Section "Facility Sanitary Sewers."
- B. Basic piping installation requirements are specified in Division 22 Section "Common Work Results for Plumbing."
- C. Install seismic restraints on piping. Seismic-restraint devices are specified in Division 22 Section "Vibration and Seismic Controls for Plumbing Piping and Equipment."
- D. Install cleanouts at grade and extend to where building sanitary drains connect to building sanitary sewers.
- E. Install cleanout fitting with closure plug inside the building in sanitary force-main piping.
- F. Provide an additional one hundred feet of drainage and vent piping for each size used on the project to resolve interferences or as directed by the Engineer.
- G. Install underground, steel, force-main piping. Install encasement on piping according to ASTM A 674 or AWWA C105.
- H. Install underground, ductile-iron, force-main piping according to AWWA C600. Install buried piping inside the building between wall and floor penetrations and connection to sanitary sewer piping outside the building with restrained joints. Anchor pipe to wall or floor. Install thrust-block supports at vertical and horizontal offsets.
 - 1. Install encasement on piping according to ASTM A 674 or AWWA C105.
- I. Install underground, copper, force-main tubing according to CDA's "Copper Tube Handbook."

- 1. Install encasement on piping according to ASTM A 674 or AWWA C105.
- J. Install underground, ductile-iron, special pipe fittings according to AWWA C600.
 - 1. Install encasement on piping according to ASTM A 674 or AWWA C105.
- K. Install cast-iron soil piping according to CISPI's "Cast Iron Soil Pipe and Fittings Handbook," Chapter IV, "Installation of Cast Iron Soil Pipe and Fittings."
 - 1. Install encasement on underground piping according to ASTM A 674 or AWWA C105.
- L. Make changes in direction for soil and waste drainage and vent piping using appropriate branches, bends, and long-sweep bends. Sanitary tees and short-sweep 1/4 bends may be used on vertical stacks if change in direction of flow is from horizontal to vertical. Use long-turn, double Y-branch and 1/8-bend fittings if 2 fixtures are installed back to back or side by side with common drain pipe. Straight tees, elbows, and crosses may be used on vent lines. Do not change direction of flow more than 90 degrees. Use proper size of standard increasers and reducers if pipes of different sizes are connected. Reducing size of drainage piping in direction of flow is prohibited.
- M. Lay buried building drainage piping beginning at low point of each system. Install true to grades and alignment indicated, with unbroken continuity of invert. Place hub ends of piping upstream. Install required gaskets according to manufacturer's written instructions for use of lubricants, cements, and other installation requirements. Maintain swab in piping and pull past each joint as completed.
- N. Install soil and waste drainage and vent piping at the following minimum slopes, unless otherwise indicated:
 - 1. Building Sanitary Drain: 2 percent downward in direction of flow for piping NPS 3 and smaller; 1 percent downward in direction of flow for piping NPS 4 and larger.
 - 2. Horizontal Sanitary Drainage Piping: 2 percent downward in direction of flow.
 - 3. Vent Piping: 1 percent down toward vertical fixture vent or toward vent stack.
- O. Install engineered soil and waste drainage and vent piping systems as follows:
 - 1. Combination Waste and Vent: Comply with standards of authorities having jurisdiction.
 - 2. Sovent Drainage System: Comply with ASSE 1043 and sovent fitting manufacturer's written installation instructions.
 - 3. Reduced-Size Venting: Comply with standards of authorities having jurisdiction.
- P. Sleeves are not required for cast-iron soil piping passing through concrete slabs-on-grade if slab is without membrane waterproofing.

- Q. Do not enclose, cover, or put piping into operation until it is inspected and approved by authorities having jurisdiction.
- R. Install sleeves for piping penetrations of walls, ceilings, and floors. Comply with requirements for sleeves specified in Division 22 Section "Sleeves and Sleeve Seals for Plumbing Piping."
- S. Install sleeve seals for piping penetrations of concrete walls and slabs. Comply with requirements for sleeve seals specified in Division 22 Section "Sleeves and Sleeve Seals for Plumbing Piping."
- T. Install escutcheons for piping penetrations of walls, ceilings, and floors. Comply with requirements for escutcheons specified in Division 22 Section "Escutcheons for Plumbing Piping."

3.4 JOINT CONSTRUCTION

- A. Basic piping joint construction requirements are specified in Division 22 Section "Common Work Results for Plumbing."
- B. Join hub-and-spigot, cast-iron soil piping with gasket joints according to CISPI's "Cast Iron Soil Pipe and Fittings Handbook" for compression joints.
- C. Join hubless cast-iron soil piping according to CISPI 310 and CISPI's "Cast Iron Soil Pipe and Fittings Handbook" for hubless-coupling joints.

3.5 VALVE INSTALLATION

- A. General valve installation requirements are specified in Division 22 Section "General-Duty Valves for Plumbing Piping."
- B. Backwater Valves: Install backwater valves in piping subject to sewage backflow.
 - 1. Horizontal Piping: Horizontal backwater valves. Use normally closed type, unless otherwise indicated.
 - 2. Floor Drains: Drain outlet backwater valves, unless drain has integral backwater valve.
 - 3. Install backwater valves in accessible locations.
 - 4. Backwater valve are specified in Division 22 Section "Sanitary Waste Piping Specialties."

3.6 HANGER AND SUPPORT INSTALLATION

- A. Seismic-restraint devices are specified in Division 22 Section "Vibration and Seismic Controls for Plumbing Piping and Equipment."
- B. Pipe hangers and supports are specified in Division 22 Section "Hangers and Supports for Plumbing Piping and Equipment." Install the following:
 - 1. Vertical Piping: MSS Type 8 or Type 42, clamps.
 - 2. Install individual, straight, horizontal piping runs according to the following:
 - a. 100 Feet and Less: MSS Type 1, adjustable, steel clevis hangers.
 - b. Longer Than 100 Feet: MSS Type 43, adjustable roller hangers.
 - c. Longer Than 100 Feet, if Indicated: MSS Type 49, spring cushion rolls.
 - 3. Multiple, Straight, Horizontal Piping Runs 100 Feet or Longer: MSS Type 44, pipe rolls. Support pipe rolls on trapeze.
 - 4. Base of Vertical Piping: MSS Type 52, spring hangers.
- C. Install supports according to Division 22 Section "Hangers and Supports for Plumbing Piping and Equipment."
- D. Support vertical piping and tubing at base and at each floor.
- E. Rod diameter may be reduced 1 size for double-rod hangers, with 3/8-inch minimum rods.
- F. Install hangers for cast-iron soil piping with the following maximum horizontal spacing and minimum rod diameters:
 - 1. NPS 1-1/2 and NPS 2: 60 inches with 3/8-inch rod.
 - 2. NPS 3: 60 inches with 1/2-inch rod.
 - 3. NPS 4 and NPS 5: 60 inches with 5/8-inch rod.
 - 4. NPS 6: 60 inches with 3/4-inch rod.
 - 5. NPS 8 to NPS 12: 60 inches with 7/8-inch rod.
- G. Install supports for vertical cast-iron soil piping every 15 feet.
- H. Install hangers for steel piping with the following maximum horizontal spacing and minimum rod diameters:
 - 1. NPS 1-1/4: 84 inches with 3/8-inch rod.
 - 2. NPS 1-1/2: 108 inches with 3/8-inch rod.
 - 3. NPS 2: 10 feet with 3/8-inch rod.
 - 4. NPS 2-1/2: 11 feet with 1/2-inch rod.
 - 5. NPS 3: 12 feet with 1/2-inch rod.

- 6. NPS 4 and NPS 5: 12 feet with 5/8-inch rod.
- 7. NPS 6: 12 feet with 3/4-inch rod.
- 8. NPS 8 to NPS 12: 12 feet with 7/8-inch rod.
- I. Install supports for vertical steel piping every 15 feet.
- J. Install hangers for stainless-steel piping with the following maximum horizontal spacing and minimum rod diameters:
 - 1. NPS 2: 84 inches with 3/8-inch rod.
 - 2. NPS 3: 96 inches with 1/2-inch rod.
 - 3. NPS 4: 108 inches with 1/2-inch rod.
 - 4. NPS 6: 10 feet with 5/8-inch rod.
- K. Install supports for vertical stainless-steel piping every 10 feet.
- L. Support piping and tubing not listed above according to MSS SP-69 and manufacturer's written instructions.

3.7 CONNECTIONS

- A. Drawings indicate general arrangement of piping, fittings, and specialties.
- B. Connect soil and waste piping to exterior sanitary sewerage piping. Use transition fitting to join dissimilar piping materials.
- C. Connect drainage and vent piping to the following:
 - 1. Plumbing Fixtures: Connect drainage piping in sizes indicated, but not smaller than required by plumbing code.
 - 2. Plumbing Fixtures and Equipment: Connect atmospheric vent piping in sizes indicated, but not smaller than required by authorities having jurisdiction.
 - 3. Plumbing Specialties: Connect drainage and vent piping in sizes indicated, but not smaller than required by plumbing code.
 - 4. Equipment: Connect drainage piping as indicated. Provide shutoff valve, if indicated, and union for each connection. Use flanges instead of unions for connections NPS 2-1/2 and larger.

3.8 FIELD QUALITY CONTROL

A. During installation, notify authorities having jurisdiction at least 24 hours before inspection must be made. Perform tests specified below in presence of authorities having jurisdiction.

- 1. Roughing-in Inspection: Arrange for inspection of piping before concealing or closing-in after roughing-in and before setting fixtures.
- 2. Final Inspection: Arrange for final inspection by authorities having jurisdiction to observe tests specified below and to ensure compliance with requirements.
- B. Reinspection: If authorities having jurisdiction find that piping will not pass test or inspection, make required corrections and arrange for reinspection.
- C. Reports: Prepare inspection reports and have them signed by authorities having jurisdiction.
- D. Test sanitary drainage and vent piping according to procedures of authorities having jurisdiction or, in absence of published procedures, as follows:
 - 1. Test for leaks and defects in new piping and parts of existing piping that have been altered, extended, or repaired. If testing is performed in segments, submit separate report for each test, complete with diagram of portion of piping tested.
 - 2. Leave uncovered and unconcealed new, altered, extended, or replaced drainage and vent piping until it has been tested and approved. Expose work that was covered or concealed before it was tested.
 - 3. Roughing-in Plumbing Test Procedure: Test drainage and vent piping, except outside leaders, on completion of roughing-in. Close openings in piping system and fill with water to point of overflow, but not less than 10-foot head of water. From 15 minutes before inspection starts to completion of inspection, water level must not drop. Inspect joints for leaks.
 - 4. Finished Plumbing Test Procedure: After plumbing fixtures have been set and traps filled with water, test connections and prove they are gastight and watertight. Plug vent-stack openings on roof and building drains where they leave building. Introduce air into piping system equal to pressure of 1-inch wg. Use U-tube or manometer inserted in trap of water closet to measure this pressure. Air pressure must remain constant without introducing additional air throughout period of inspection. Inspect plumbing fixture connections for gas and water leaks.
 - 5. Repair leaks and defects with new materials and retest piping, or portion thereof, until satisfactory results are obtained.
 - 6. Prepare reports for tests and required corrective action.

3.9 CLEANING

- A. Clean interior of piping. Remove dirt and debris as work progresses.
- B. Protect drains during remainder of construction period to avoid clogging with dirt and debris and to prevent damage from traffic and construction work.
- C. Place plugs in ends of uncompleted piping at end of day and when work stops.

April 25, 2025 Bid Issue

Addition & Alterations Department of Public Works 10 Hartford Road Delran, New Jersey

END OF SECTION 221316

SECTION 221319

SANITARY WASTE PIPING SPECIALTIES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. This Section includes the following sanitary drainage piping specialties:
 - 1. Cleanouts.
 - 2. Floor drains.
 - 3. Trench drains.
 - 4. Air-admittance valves.
 - 5. Roof flashing assemblies.
 - 6. Through-penetration firestop assemblies.
 - 7. Miscellaneous sanitary drainage piping specialties.
 - 8. Flashing materials.
 - 9. Grease interceptors.
 - 10. Grease removal devices.
 - 11. Oil interceptors.
 - 12. Solids interceptors.

B. Related Sections include the following:

1. Division 22 Section "Storm Drainage Piping Specialties" for trench drains for storm water, and catch basins.

1.3 DEFINITIONS

- A. ABS: Acrylonitrile-butadiene-styrene plastic.
- B. FOG: Fats, oils, and greases.
- C. FRP: Fiberglass-reinforced plastic.
- D. HDPE: High-density polyethylene plastic.

- E. PE: Polyethylene plastic.
- F. PP: Polypropylene plastic.
- G. PVC: Polyvinyl chloride plastic.

1.4 SUBMITTALS

- A. Product Data: For each type of product indicated. Include rated capacities, operating characteristics, and accessories for the following:
 - 1. Grease interceptors.
 - 2. Grease removal devices.
 - 3. Oil interceptors.
- B. Shop Drawings: Show fabrication and installation details for frost-resistant vent terminals.
 - 1. Wiring Diagrams: Power, signal, and control wiring.
- C. Manufacturer Seismic Qualification Certification: Submit certification that interceptors and accessories, and components will withstand seismic forces defined in Division 22 Section "Vibration and Seismic Controls for Plumbing Piping and Equipment." Include the following:
 - 1. Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculation.
 - a. The term "withstand" means "the unit will remain in place without separation of any parts from the device when subjected to the seismic forces specified."
 - b. The term "withstand" means "the unit will remain in place without separation of any parts from the device when subjected to the seismic forces specified and the unit will be fully operational after the seismic event."
 - 2. Dimensioned Outline Drawings of Equipment Unit: Identify center of gravity and locate and describe mounting and anchorage provisions.
 - 3. Detailed description of equipment anchorage devices on which the certification is based and their installation requirements.
- D. Field quality-control test reports.
- E. Operation and Maintenance Data: For drainage piping specialties to include in emergency, operation, and maintenance manuals.

1.5 QUALITY ASSURANCE

- A. Drainage piping specialties shall bear label, stamp, or other markings of specified testing agency.
- B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.
- C. Comply with NSF 14, "Plastics Piping Components and Related Materials," for plastic sanitary piping specialty components.

1.6 COORDINATION

- A. Coordinate size and location of concrete bases. Cast anchor-bolt inserts into bases. Concrete, reinforcement, and formwork requirements are specified in Division 03.
- B. Coordinate size and location of roof penetrations.

1.7 EXTRA MATERIALS

A. Furnish extra materials described below that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.

PART 2 - PRODUCTS

2.1 CLEANOUTS

- A. Exposed Metal Cleanouts:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Josam Company; Josam Div.
 - b. Smith, Jay R. Mfg. Co.; Division of Smith Industries, Inc.
 - c. Tyler Pipe; Wade Div.
 - d. Watts Drainage Products Inc.
 - e. Zurn Plumbing Products Group; Specification Drainage Operation.
 - f. Josam Company; Blucher-Josam Div.
 - 2. Standard: ASME A112.36.2M for cast iron & ASME A112.3.1 for stainless steel for cleanout test tee.
 - 3. Size: Same as connected drainage piping

- 4. Body Material: Hub-and-spigot, cast-iron soil pipe T-branch as required to match connected piping.
- 5. Closure: Countersun brass plug.
- 6. Closure Plug Size: Same as or not more than one size smaller than cleanout size.
- 7. Closure: Stainless-steel plug with seal.
- 8. See plumbing fixture schedule for additional requirements

B. Metal Floor Cleanouts:

- 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Josam Company; Josam Div.
 - b. Smith, Jay R. Mfg. Co.; Division of Smith Industries, Inc.
 - c. Tyler Pipe; Wade Div.
 - d. Watts Drainage Products Inc.
 - e. Zurn Plumbing Products Group; Light Commercial Operation.
 - f. Zurn Plumbing Products Group; Specification Drainage Operation.
 - g. Josam Company; Josam Div.
- 2. Standard: ASME A112.36.2M for cleanout.
- 3. Size: Same as connected branch.
- 4. Closure: Brass plug with straight threads and gasket
- 5. Riser: ASTM A 74, Service class, cast-iron drainage pipe fitting and riser to cleanout.
- 6. Standard: ASME A112.3.1.
- 7. Size: Same as connected branch.
- 8. Housing: Stainless steel.
- 9. Closure: Stainless steel with seal.
- 10. Riser: Stainless-steel drainage pipe fitting to cleanout.
- 11. See plumbing fixture schedule for additional requirements

C. Cast-Iron Wall Cleanouts

- 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Josam Company; Josam Div.
 - b. Smith, Jay R. Mfg. Co.; Division of Smith Industries, Inc.
 - c. Tyler Pipe; Wade Div.
 - d. Watts Drainage Products Inc.
 - e. Zurn Plumbing Products Group; Specification Drainage Operation.
- 2. Standard: ASME A112.36.2M. Include wall access.
- 3. Size: Same as connected drainage piping.
- 4. Body: As required to match connected piping.
- 5. Closure: Countersunk brass plug.

- 6. Closure Plug Size: Same as or not more than one size smaller than cleanout size.
- 7. Wall Access: Round, flat, chrome-plated brass or stainless-steel cover plate with screw.
- 8. Wall Access: Round stainless-steel wall-installation frame and cover.
- 9. See plumbing fixture schedule for additional requirements

2.2 FLOOR DRAINS

A. Cast-Iron Floor Drains

- 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Josam Company; Josam Div.
 - b. Smith, Jay R. Mfg. Co.; Division of Smith Industries, Inc.
 - c. Tyler Pipe; Wade Div.
 - d. Watts Drainage Products Inc.
 - e. Zurn Plumbing Products Group; Light Commercial Operation.
 - f. Zurn Plumbing Products Group; Specification Drainage Operation.
- 2. Standard: ASME A112.6.3.
- 3. Body Material: See Fixture Schedule.
- 4. Seepage Flange: See Fixture Schedule
- 5. Anchor Flange: See Fixture Schedule.
- 6. Clamping Device: See Fixture Schedule.
- 7. Outlet: Bottom
- 8. Trap Pattern: Deep-seal P-trap
- 9. See plumbing fixture schedule for additional requirements

2.3 TRENCH DRAINS

A. Trench Drains

- 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Josam Company; Josam Div.
 - b. Smith, Jay R. Mfg. Co.; Division of Smith Industries, Inc.
 - c. Tyler Pipe; Wade Div.
 - d. Watts Drainage Products Inc.
 - e. Zurn Plumbing Products Group; Specification Drainage Operation.
- 2. Standard: ASME A112.6.3 for trench drains.
- 3. Material: Ductile or gray iron.
- 4. Outlet: See drawings
- 5. See plumbing fixture schedule for additional requirements

2.4 ROOF FLASHING ASSEMBLIES

- A. Roof Flashing Assemblies
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Acorn Engineering Company; Elmdor/Stoneman Div.
 - b. Thaler Metal Industries Ltd.
- B. Description: Lead flashing collar and skirt extending at least 8 inches from pipe, with galvanized-steel boot reinforcement and counterflashing fitting.
 - 1. Open-Top Vent Cap: Without cap.
 - 2. Low-Silhouette Vent Cap: With vandal-proof vent cap.
 - 3. Extended Vent Cap: With field-installed, vandal-proof vent cap.

2.5 THROUGH-PENETRATION FIRESTOP ASSEMBLIES

- A. Through-Penetration Firestop Assemblies:
 - 1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - a. ProSet Systems Inc.
 - 2. Standard: UL 1479 assembly of sleeve and stack fitting with firestopping plug.
 - 3. Size: Same as connected soil, waste, or vent stack.
 - 4. Sleeve: Molded PVC plastic, of length to match slab thickness and with integral nailing flange on one end for installation in cast-in-place concrete slabs.
 - 5. Stack Fitting: ASTM A 48/A 48M, gray-iron, hubless-pattern, wye branch with neoprene Oring at base and gray-iron plug in thermal-release harness. Include PVC protective cap for plug.
 - 6. Special Coating: Corrosion resistant on interior of fittings.

2.6 MISCELLANEOUS SANITARY DRAINAGE PIPING SPECIALTIES

A. Deep-Seal Traps:

- 1. Description: Cast-iron or bronze casting, with inlet and outlet matching connected piping and cleanout trap-seal primer valve connection.
- 2. Size: Same as connected waste piping.

- a. NPS 2: 4-inch- minimum water seal.
- b. NPS 2-1/2 and Larger: 5-inch-minimum water seal.

B. Floor-Drain, Trap-Seal Primer Fittings:

- 1. Description: Cast iron, with threaded inlet and threaded or spigot outlet, and trap-seal primer valve connection.
- 2. Size: Same as floor drain outlet with NPS 1/2 side inlet.

C. Air-Gap Fittings:

- 1. Standard: ASME A112.1.2, for fitting designed to ensure fixed, positive air gap between installed inlet and outlet piping.
- 2. Body: Bronze or cast iron.
- 3. Inlet: Opening in top of body.
- 4. Outlet: Larger than inlet.
- 5. Size: Same as connected waste piping and with inlet large enough for associated indirect waste piping.

D. Sleeve Flashing Device:

- 1. Description: Manufactured, cast-iron fitting, with clamping device, that forms sleeve for pipe floor penetrations of floor membrane. Include galvanized-steel pipe extension in top of fitting that will extend 2 inches above finished floor and galvanized-steel pipe extension in bottom of fitting that will extend through floor slab.
- 2. Size: As required for close fit to riser or stack piping.

E. Stack Flashing Fittings

- 1. Description: Counterflashing-type, cast-iron fitting, with bottom recess for terminating roof membrane, and with threaded or hub top for extending vent pipe.
- 2. Size: Same as connected stack vent or vent stack.

F. Vent Caps

- 1. Description: Cast-iron body with threaded or hub inlet and vandal-proof design. Include vented hood and setscrews to secure to vent pipe.
- 2. Size: Same as connected stack vent or vent stack.

G. Frost-Resistant Vent Terminals

- 1. Description: Manufactured or shop-fabricated assembly constructed of copper, lead-coated copper, or galvanized steel.
- 2. Design: To provide 1-inch enclosed air space between outside of pipe and inside of flashing collar extension, with counterflashing.

H. Expansion Joints

- 1. Standard: ASME A112.21.2M.
- 2. Body: Cast iron with bronze sleeve, packing, and gland.
- 3. End Connections: Matching connected piping.
- 4. Size: Same as connected soil, waste, or vent piping.

2.7 FLASHING MATERIALS

- A. Lead Sheet: ASTM B 749, Type L51121, copper bearing, with the following minimum weights and thicknesses, unless otherwise indicated:
 - 1. General Use: 4.0-lb/sq. ft., 0.0625-inch thickness.
 - 2. Vent Pipe Flashing: 3.0-lb/sq. ft., 0.0469-inch thickness.
 - 3. Burning: 6-lb/sq. ft., 0.0938-inch thickness.
- B. Copper Sheet: ASTM B 152/B 152M, of the following minimum weights and thicknesses, unless otherwise indicated:
 - 1. General Applications: 12 oz./sq. ft. thickness.
 - 2. Vent Pipe Flashing: 8 oz./sq. ft. thickness.
- C. Zinc-Coated Steel Sheet: ASTM A 653/A 653M, with 0.20 percent copper content and 0.04-inch minimum thickness, unless otherwise indicated. Include G90 hot-dip galvanized, mill-phosphatized finish for painting if indicated.
- D. Elastic Membrane Sheet: ASTM D 4068, flexible, chlorinated polyethylene, 40-mil minimum thickness.
- E. Fasteners: Metal compatible with material and substrate being fastened.
- F. Metal Accessories: Sheet metal strips, clamps, anchoring devices, and similar accessory units required for installation; matching or compatible with material being installed.
- G. Solder: ASTM B 32, lead-free alloy.
- H. Bituminous Coating: SSPC-Paint 12, solvent-type, bituminous mastic.

PART 3 - EXECUTION

3.1 CONCRETE BASES

A. Anchor grease interceptors and solids interceptors to concrete bases.

- 1. Install dowel rods to connect concrete base to concrete floor. Unless otherwise indicated, install dowel rods on 19-inch centers around full perimeter of base.
- 2. For installed equipment, install epoxy-coated anchor bolts that extend through concrete base and anchor into structural concrete floor.
- 3. Place and secure anchorage devices. Use setting drawings, templates, diagrams, instructions, and directions furnished with items to be imbedded.
- 4. Install anchor bolts to elevations required for proper attachment to supported equipment.
- 5. Concrete base construction requirements are specified in Division 22 Section "Common Work Results for Plumbing."
- 6. Cast-in-place concrete materials and placement requirements are specified in Division 03.

3.2 INSTALLATION

- A. Refer to Division 22 Section "Common Work Results for Plumbing" for piping joining materials, joint construction, and basic installation requirements.
- B. Install backwater valves in building drain piping where noted. For interior installation, provide cleanout deck plate flush with floor and centered over backwater valve cover, and of adequate size to remove valve cover for servicing.
- C. Install cleanouts in aboveground piping and building drain piping according to the following, unless otherwise indicated:
 - 1. Size same as drainage piping up to NPS 4. Use NPS 4 for larger drainage piping unless larger cleanout is indicated.
 - 2. Locate at each change in direction of piping greater than 45 degrees.
 - 3. Locate at minimum intervals of 50 feet for piping NPS 4 and smaller and 100 feet for larger piping.
 - 4. Locate at base of each vertical soil and waste stack.
- D. For floor cleanouts for piping below floors, install cleanout deck plates with top flush with finished floor.
- E. For cleanouts located in concealed piping, install cleanout wall access covers, of types indicated, with frame and cover flush with finished wall.
- F. Install floor drains at low points of surface areas to be drained. Set grates of drains flush with finished floor, unless otherwise indicated.
 - 1. Position floor drains for easy access and maintenance.
 - 2. Set floor drains below elevation of surrounding finished floor to allow floor drainage. Set with grates depressed according to the following drainage area radii:

- a. Radius, 30 Inches or Less: Equivalent to 1 percent slope, but not less than 1/4-inch total depression.
- b. Radius, 30 to 60 Inches: Equivalent to 1 percent slope.
- c. Radius, 60 Inches or Larger: Equivalent to 1 percent slope, but not greater than 1-inch total depression.
- 3. Install floor-drain flashing collar or flange so no leakage occurs between drain and adjoining flooring. Maintain integrity of waterproof membranes where penetrated.
- 4. Install individual traps for floor drains connected to sanitary building drain, unless otherwise indicated.
- G. Install trench drains at low points of surface areas to be drained. Set grates of drains flush with finished surface, unless otherwise indicated.
- H. Assemble and install ASME A112.3.1, stainless-steel channel drainage systems according to ASME A112.3.1. Install on support devices so that top will be flush with surface.
- I. Assemble non-ASME A112.3.1, stainless-steel channel drainage system components according to manufacturer's written instructions. Install on support devices so that top will be flush with adjacent surface.
- J. Assemble FRP channel drainage system components according to manufacturer's written instructions. Install on support devices so that top will be flush with adjacent surface.
- K. Assemble plastic channel drainage system components according to manufacturer's written instructions. Install on support devices so that top will be flush with adjacent surface.
- L. Install fixture air-admittance valves on fixture drain piping.
- M. Install stack air-admittance valves at top of stack vent and vent stack piping.
- N. Install air-admittance-valve wall boxes recessed in wall.
- O. Install roof flashing assemblies on sanitary stack vents and vent stacks that extend through roof.
- P. Install flashing fittings on sanitary stack vents and vent stacks that extend through roof.
- Q. Install through-penetration firestop assemblies in plastic at floor penetrations.
- R. Assemble open drain fittings and install with top of hub 2 inches above floor.
- S. Install deep-seal traps on floor drains and other waste outlets, if indicated.

- T. Install floor-drain, trap-seal primer fittings on inlet to floor drains that require trap-seal primer connection.
 - 1. Exception: Fitting may be omitted if trap has trap-seal primer connection.
 - 2. Size: Same as floor drain inlet.
- U. Install air-gap fittings on draining-type backflow preventers and on indirect-waste piping discharge into sanitary drainage system.
- V. Install sleeve flashing device with each riser and stack passing through floors with waterproof membrane.
- W. Install vent caps on each vent pipe passing through roof.
- X. Install frost-resistant vent terminals on each vent pipe passing through roof. Maintain 1-inch clearance between vent pipe and roof substrate.
- Y. Install expansion joints on vertical stacks and conductors. Position expansion joints for easy access and maintenance.
- Z. Install frost-proof vent caps on each vent pipe passing through roof. Maintain 1-inch clearance between vent pipe and roof substrate.
- AA. Install cleanout immediately downstream from all interceptors that do not have integral cleanout on outlet. Install trap on interceptors that do not have integral trap and are connected to sanitary drainage and vent systems.
- BB. Install traps on plumbing specialty drain outlets. Omit traps on indirect wastes unless trap is indicated.

3.3 CONNECTIONS

- A. Piping installation requirements are specified in other Division 22 Sections. Drawings indicate general arrangement of piping, fittings, and specialties.
- B. Install piping adjacent to equipment to allow service and maintenance.
- C. Ground equipment according to Division 26 Section "Grounding and Bonding for Electrical Systems."
- D. Connect wiring according to Division 26 Section "Low-Voltage Electrical Power Conductors and Cables."

3.4 FLASHING INSTALLATION

- A. Fabricate flashing from single piece unless large pans, sumps, or other drainage shapes are required. Join flashing according to the following if required:
 - 1. Lead Sheets: Burn joints of lead sheets 6.0-lb/sq. ft., 0.0938-inch thickness or thicker. Solder joints of lead sheets 4.0-lb/sq. ft., 0.0625-inch thickness or thinner.
 - 2. Copper Sheets: Solder joints of copper sheets.
- B. Install sheet flashing on pipes, sleeves, and specialties passing through or embedded in floors and roofs with waterproof membrane.
 - 1. Pipe Flashing: Sleeve type, matching pipe size, with minimum length of 10 inches, and skirt or flange extending at least 8 inches around pipe.
 - 2. Sleeve Flashing: Flat sheet, with skirt or flange extending at least 8 inches around sleeve.
 - 3. Embedded Specialty Flashing: Flat sheet, with skirt or flange extending at least 8 inches around specialty.
- C. Set flashing on floors and roofs in solid coating of bituminous cement.
- D. Secure flashing into sleeve and specialty clamping ring or device.
- E. Install flashing for piping passing through roofs with counterflashing or commercially made flashing fittings, according to Division 07 Section "Sheet Metal Flashing and Trim."
- F. Extend flashing up vent pipe passing through roofs and turn down into pipe, or secure flashing into cast-iron sleeve having calking recess.
- G. Fabricate and install flashing and pans, sumps, and other drainage shapes.

3.5 LABELING AND IDENTIFYING

- A. Equipment Nameplates and Signs: Install engraved plastic-laminate equipment nameplate or sign on or near each of the following:
 - 1. Oil interceptors.
 - 2. Sand/Sediment interceptors.
- B. Distinguish among multiple units, inform operator of operational requirements, indicate safety and emergency precautions, and warn of hazards and improper operations, in addition to identifying unit. Nameplates and signs are specified in Division 22 Section "Identification for Plumbing Piping and Equipment."

3.6 FIELD QUALITY CONTROL

A. Tests and Inspections:

- 1. Leak Test: After installation, charge system and test for leaks. Repair leaks and retest until no leaks exist.
- 2. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.

3.7 PROTECTION

- A. Protect drains during remainder of construction period to avoid clogging with dirt or debris and to prevent damage from traffic or construction work.
- B. Place plugs in ends of uncompleted piping at end of each day or when work stops.

3.8 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain oil and sand interceptors.

END OF SECTION 221319

SECTION 223401

FUEL-FIRED, DOMESTIC WATER HEATERS

1.1 RELATED DOCUMENTS

- A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 1 Specification Sections, apply to this Section.
- B. The plumbing equipment schedules.

1.2 SUMMARY

- A. This Section includes the following for domestic water systems:
 - 1. Light Commercial, High Efficiency, Gas-Fired Water Heaters.
 - 2. Accessories.

1.3 SUBMITTALS

- A. Product Data: For each type and size of water heater. Include rated capacities; shipping, installed, and operating weights; furnished specialties; and accessories.
- B. Shop Drawings: Detail water heater assemblies and indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
 - 1. Wiring Diagrams: Power, signal, and control systems. Differentiate between manufacturer-installed and field-installed wiring.
- C. Product Certificates: Signed by manufacturers of water heaters certifying that products furnished comply with requirements.
- D. Coordination Drawings: Plans and details, drawn to scale, on which the location of the water heater, drain pan, drain piping, and intake and vent piping is shown and coordinated with other installations, using input from installers of the trades involved.
- E. Maintenance Data: For water heaters to include in maintenance manuals specified in Division 1.
- F. Warranties: Special warranties specified in this Section.

1.4 QUALITY ASSURANCE

- A. Source Limitations: Obtain same type of water heaters through one source from a single manufacturer.
- B. Product Options: Drawings indicate size, profiles, and dimensional requirements of water heaters and are based on specific units indicated. Other manufacturers' products complying with requirements may be considered. Refer to Division 1 Section "Substitutions."
- C. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by testing agency acceptable to authorities having jurisdiction, and marked for intended use.
- D. ANSI Compliance: Provide gas water heaters that comply with ANSI standards for gas water heaters and related products and that bear AGA certification label.
- E. ASME Compliance: Fabricate and label water heater, hot-water storage tanks to comply with ASME Boiler and Pressure Vessel Code: Section VIII, "Pressure Vessels," Division 1.
- F. ASHRAE Standards: Comply with performance efficiencies prescribed for the following:
 - 1. ASHRAE 90.1, "Energy Efficient Design of New Buildings except Low-Rise Residential Buildings," for commercial water heaters.
 - 2. ASHRAE 90.2, "Energy Efficient Design of New Low-Rise Residential Buildings," for household water heaters.

1.5 WARRANTY

- A. General Warranty: Special warranty specified in this Article shall not deprive Owner of other rights Owner may have under other provisions of the Contract Documents and shall be in addition to, and run concurrent with, other warranties made by Contractor under requirements of the Contract Documents.
- B. Special Warranty: Written warranty, executed by manufacturer agreeing to repair or replace components of water heaters that fail in materials or workmanship within specified warranty period. See General Conditions specification section for requirements of special extended 1 year warranty for water heater from date of issuance of Certificate of Occupancy.
 - 1. Failures include storage tanks and burner assemblies.
 - 2. Warranty Period: From date of Substantial Completion:

- a. Storage Tanks: 5 years (min.).
- b. Burner Assemblies/Heat Exchangers: One year (min.)

PART 2 - PRODUCTS

2.1 MANUFACTURERS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Light Commercial, High Efficiency, Tube Type Gas-Fired Water Heaters:
 - a. Lochinvar Corp.
 - b. Bradford White
 - c. Patterson-Kelley Co.
 - d. Or Approved Equal
 - 2. Expansion Tanks:
 - a. Amtrol, Inc.
 - b. Armstrong Pumps, Inc.
 - c. Zurn Industries, Inc.; Wilkins Div.
 - d. Or Approved Equal

2.2 LIGHT COMMERCIAL, HIGH EFFICIENCY GAS WATER HEATERS

- A. Description: Comply with UL 795 and ANSI Z21.13; include storage tank, circulator, piping, and controls.
- B. Water Heater: Enclosed, insulated unit with controls.
 - 1. Construction: According to ASME Boiler and Pressure Vessel Code: Section IV with 160-psig working-pressure rating.
 - 2. Heat Exchanger: Copper, finned tube with bronze or glass-lined cast-iron headers. There shall be no bolts, gaskets, or "O" rings in the header configuration. Heat exchanger shall be hydrostatically tested to 240 psig. The heat exchanger shall be equipped with an outlet thermometer to monitor discharge water temperature.
 - 3. Burner: High-temperature stainless steel construction, for use with tube-type water heaters and natural-gas fuel capable of 100% "On/Off" operation.
 - a. Combustion Air Chamber: The combustion air chamber shall be sealed and enclosed in ceramic fiberboard insulation. A flame observation port shall

- be provided. A combustion air blower shall be provided to control fuel/air mixture.
- b. Automatic Ignition: Intermittent electronic ignition complying with ANSI Z21.20.
- c. Gas Valve: Main combination gas valve shall have redundant seats and a built-in low gas pressure regulator. The gas pressure regulator shall be referenced to the combustion air fan.
- d. Safety Controls: Automatic, high-temperature-limit cutoff device or system, a combination low air and blocked flue pressure switch to monitor fan operation, and an ASME temperature/pressure relief valve.
- 4. Control Panel: Provide with master power switch, (4) four ignition control LED lights to indicate sequential operation and diagnostics on control sensed malfunctions, low voltage transformer, and terminal strip for field connection of remote devices/controls. All components shall be easily accessed and serviceable from the front of the jacket through the control panel cover.
- 5. Temperature Controls: Standard immersion type operating aquastat with high limit control.
- 6. Draft Hood: Heater jacket design shall allow single unit venting connection without the use of external draft hood devices.
- C. Hot-Water Storage Tank: Connected with piping to circulator and water heater.
 - 1. Construction: According to ASME Boiler and Pressure Vessel Code: Section VIII, steel with 150-psig working-pressure rating.
 - a. Tappings: Factory fabricated of materials compatible with tank for piping connections, relief valve, pressure gage, thermometer, drain, anode rods, and controls as required. Attach tappings to tank shell before testing and labeling.
 - 1) NPS 2 and Smaller: Threaded ends according to ASME B1.20.1, pipe threads.
 - 2) NPS 2-1/2 and Larger: Flanged ends according to ASME B16.5 for steel and stainless-steel flanges and according to ASME B16.24 for copper and copper-alloy flanges.
 - b. Interior Finish: Materials and thicknesses complying with NSF 61, barrier materials for potable-water tank linings. Extend finish into and through tank fittings and outlets.
 - c. Insulation: Comply with ASHRAE 90.1. Surround entire storage tank except connections and controls.
 - d. Jacket: Steel, with enameled finish.
 - e. ASME temperature/pressure relief valve.

- 2. Anode Rods: Factory installed, magnesium.
- 3. Drain Valve: ASSE 1005, corrosion-resistant metal, factory installed.
- D. Mounting: Water heater, tank, and accessories factory mounted and provided as a single unit.
- E. Circulator: UL 778, all bronze, in-line, centrifugal, single-stage, radially split case design, with mechanical seals; with 125-psig-minimum working-pressure rating and 225 deg F continuous water temperature. See equipment schedule for additional requirements.
- F. Piping: Manufacturer's standard copper tubing.

2.3 EXPANSION TANKS

- A. Description: Steel, pressure-rated tank constructed with welded joints and factory-installed, butyl-rubber diaphragm. Include air precharge to minimum system-operating pressure at tank.
- B. Construction: Working-pressure rating.
- C. Tappings: Factory-fabricated steel, welded to tank before testing and labeling. Include ASME B1.20.1, pipe thread.
- D. Tank Interior Finish: Materials and thicknesses complying with NSF 61, barrier materials for potable-water tank linings. Extend finish into and through tank fittings and outlets.
- E. Tank Exterior Finish: Manufacturer's standard, unless finish is indicated.
- F. Air-Charging Valve: Factory installed.

2.4 WATER HEATER ACCESSORIES

- A. Combination Temperature and Pressure Relief Valves: According to the following:
 - 1. Gas Water Heaters: ANSI Z21.22, combination temperature and pressure relief valve.
- B. Vacuum Relief Valves: According to the following:
 - 1. Gas Water Heaters: ANSI Z21.22.
 - 2. Exception: Omit if water heater has integral vacuum-relieving device.

- C. Gas Shutoff Valves: ANSI Z21.15, manually operated. Furnish for installation in piping.
- D. Gas Pressure Regulators: ANSI Z21.18, appliance type, factory or field installed. Include pressure rating, capacity, and pressure differential required for water heater and gas supply.
- E. Automatic Valves: ANSI Z21.21, appliance, electrically operated, on-off automatic valve.
- F. Water Heater Stand and Drain Pan Units: High-density-polyethylene-plastic, 18-inchhigh, enclosed-base stand complying with IAPMO PS 103 and IAS No. 2. Include integral or separate drain pan with raised edge and NPS 1 drain outlet with ASME B1.20.1, pipe thread.
- G. Water Heater Stands: Water heater manufacturer's factory-fabricated, steel stand for floor mounting and capable of supporting water heater and water. Include dimension that will support bottom of water heater a minimum of 18 inches above the floor.
- H. Drain Pans: Corrosion-resistant metal with raised edge. Include dimensions not less than base of water heater and include drain outlet not less than NPS 3/4.

PART 3 - EXECUTION

3.1 WATER HEATER INSTALLATION

- A. Install commercial water heaters on stand, bracket, suspended platform, or directly to the floor.
- B. Install water heaters, level and plumb, according to layout drawings, original design, and referenced standards. Maintain manufacturer's recommended clearances. Arrange units so controls and devices needing service are accessible.
- C. Install and connect gas water heaters according to NFPA 54.
 - 1. Install appliance, gas pressure regulators on gas-burner inlets of water heaters without pressure regulators.
 - 2. Install vent piping from gas-train pressure regulators and valves to outside of building where required. Terminate vent piping with brass-screened vent cap fitting. Do not combine vents except with approval of authorities having jurisdiction.
- D. Install temperature and pressure relief valves in top portion of storage tanks. Use relief valves with sensing elements that extend into tanks. Extend relief valve outlet with water piping in continuous downward pitch and discharge onto closest floor drain.

- E. Install vacuum relief valves in cold-water-inlet piping.
- F. Install water heater drain piping as indirect waste to spill into open drains or over floor drains.
- G. Install thermometers on water heater inlet and outlet piping. Refer to Division 15 Section "Meters and Gages" for thermometers.
- H. Install pressure gages on water heater piping. Refer to Division 15 Section "Meters and Gages" for pressure gages.
- I. Arrange for insulation on equipment and piping not furnished with factory-applied insulation.
- J. Fill water heaters with water.
- K. Charge compression tanks with air.

3.2 CONNECTIONS

- A. Piping installation requirements are specified in other Division 15 Sections. Drawings indicate general arrangement of piping, fittings, and specialties.
- B. Install piping adjacent to machine to allow service and maintenance.
- C. Connect hot- and cold-water piping with shutoff valves and unions. Connect hot-water-circulating piping with shutoff valve, check valve, and union.
- D. Connect gas piping to gas burner with drip leg, tee, shutoff valve, and union; minimum size same as inlet connection.
- E. Make connections with dielectric fittings where piping is made of dissimilar metal.
- F. Gas, Water Heater Vent Connections: Connect to vent system. Include draft hoods and diverters where required. Use vents same size as or larger than water heater outlets, but not smaller than indicated unless smaller vent size has been calculated according to NFPA 54. Comply with gas utility requirements for sizing. Gas vents are specified in Division 15 Section "Breechings, Chimneys, and Stacks."
- G. Electrical Connections: Power wiring and disconnect switches are specified in Division 16 Sections. Arrange wiring to allow unit service.
- H. Ground equipment.

1. Tighten electrical connectors and terminals according to manufacturer's published torque-tightening values. If manufacturer's torque values are not indicated, use those specified in UL 486A and UL 486B.

3.3 FIELD QUALITY CONTROL

- A. Engage a factory-authorized service representative to perform startup service.
- B. In addition to manufacturer's written installation and startup checks, perform the following:
 - 1. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment and retest until satisfactory results are achieved.
 - 2. Verify that piping system tests are complete.
 - 3. Check for piping connection leaks.
 - 4. Check for clear relief valve inlets, outlets, and drain piping.
 - 5. Check operation of circulators.
 - 6. Test operation of safety controls, relief valves, and devices.
 - 7. Energize electric circuits.
 - 8. Adjust operating controls.
 - 9. Adjust hot-water-outlet temperature settings. Do not set above 140 deg F unless piping system application requires higher temperature.
 - 10. Balance water flow through manifolds of multiple-unit installations.

3.4 DEMONSTRATION

- A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain water heaters.
 - 1. Train Owner's maintenance personnel on procedures for starting and stopping troubleshooting, servicing, and maintaining equipment.
 - 2. Review data in maintenance manuals. Refer to Division 1 Section "Contract Closeout."
 - 3. Review date in maintenance manuals. Refer to Division 1 Section "Operation and Maintenance Data."
 - 4. Schedule training with Owner, through Architect, with at least seven days' advance notice.

END OF SECTION 223401

SECTION 224000

PLUMBING FIXTURES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 1 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. This Section includes plumbing fixtures and related components.
- B. Related Sections include the following:
 - 1. Provide plumbing fixtures in accordance with the fixture schedules provided on the drawings.

1.3 DEFINITIONS

- A. Accessible Fixture: Plumbing fixture that can be approached, entered, and used by people with disabilities.
- B. Fitting: Device that controls flow of water into or out of plumbing fixture. Fittings specified in this Section include supplies and stops, faucets and spouts, shower heads and tub spouts, drains and tailpieces, and traps and waste pipes. Piping and general-duty valves are included where indicated.

1.4 SUBMITTALS

- A. Product Data: Include selected fixture and trim, fittings, accessories, appliances, appurtenances, equipment, and supports and indicate materials and finishes, dimensions, construction details, and flow-control rates for each type of fixture scheduled.
- B. Maintenance Data: For plumbing fixtures to include in maintenance manuals specified in Division 1.

1.5 QUALITY ASSURANCE

PLUMBING FIXTURES 224000 - 1

- A. Source Limitations: Obtain plumbing fixtures, faucets, and other components in the same category through one source from a single manufacturer.
- B. Regulatory Requirements: Comply with requirements in ICC A117.1, "Accessible and Usable Buildings and Facilities"[; Public Law 90-480, "Architectural Barriers Act"; and Public Law 101-336, "Americans with Disabilities Act";] about plumbing fixtures for people with disabilities.
- C. Regulatory Requirements: Comply with requirements in Public Law 102-486, "Energy Policy Act," about water flow and consumption rates for plumbing fixtures.
- D. NSF Standard: Comply with NSF 61, "Drinking Water System Components--Health Effects," for fixture materials that will be in contact with potable water.
- E. Select combinations of fixtures and trim, faucets, fittings, and other components that are compatible.
- F. Comply with the following applicable standards and other requirements specified for faucets:
 - 1. Faucets: ASME A112.18.1M.
 - 2. Integral, Atmospheric Vacuum Breakers: ASSE 1001.
 - 3. Supply and Drain Fittings: ASME A112.18.1M.
 - 4. Combination, Pressure-Equalizing and Thermostatic-Control Antiscald Faucets: ASSE 1016.
 - 5. Faucets: ASME A112.18.1M.
 - 6. High-Temperature-Limit Controls for Thermal-Shock-Preventing Devices: ASTM F 445.
 - 7. Thermostatic-Control Antiscald Faucets: ASTM F 444 and ASSE 1016.
- G. Comply with the following applicable standards and other requirements specified for miscellaneous components:
 - 1. Floor Drains: ASME A112.21.1M.
 - 2. Grab Bars: ASTM F 446.
 - 3. Hose-Coupling Threads: ASME B1.20.7.
 - 4. Hot-Water Dispensers: ASSE 1023 and UL 499.
 - 5. Off-Floor Fixture Supports: ASME A112.6.1M.
 - 6. Pipe Threads: ASME B1.20.1.
 - 7. Plastic Toilet Seats: ANSI Z124.5.
 - 8. Supply and Drain Protective Shielding Guards: ICC A117.1.

1.6 COORDINATION

A. Coordinate roughing-in and final plumbing fixture locations and verify that fixtures can be installed to comply with original design and referenced standards.

PLUMBING FIXTURES 224000 - 2

1.7 EXTRA MATERIALS

- A. Furnish extra materials described below that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 - 1. Supply, Flow-Control Fittings: Equal to 5 percent of amount of each type and size installed.
 - 2. Flushometer Valve, Repair Kits: Equal to 5 percent of amount of each type installed, but not less than 10 of each type.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

- A. Available Products: Subject to compliance with requirements, products that may be incorporated into the Work include, but are not limited to, the products specified in other Part 2 articles.
- B. Provide plumbing fixtures in accordance with the plumbing fixture schedule included with the contract drawings, Or Approved Equals. Provide all accessories (carriers, mounting hardware, seats, etc) as required to install and operate plumbing fixtures even if not specifically shown on the drawings or required by the specifications.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine roughing-in for water soil and for waste piping systems and supports to verify actual locations and sizes of piping connections and that locations and types of supports match those indicated, before plumbing fixture installation. Use manufacturer's roughing-in data if roughing-in data are not indicated.
- B. Examine walls, floors, and cabinets for suitable conditions where fixtures are to be installed.
- C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 FIXTURE INSTALLATION

- A. Assemble fixtures, trim, fittings, and other components according to manufacturers' written instructions.
- B. Install counter-mounting fixtures in and attached to casework.

PLUMBING FIXTURES 224000 - 3

- C. Install fixtures level and plumb according to manufacturers' written instructions and roughing-in drawings.
- D. Install water-supply piping with stop on each supply to each fixture to be connected to water distribution piping. Attach supplies to supports or substrate within pipe spaces behind fixtures. Install stops in locations where they can be easily reached for operation.
 - 1. Exception: Use ball, gate, or globe valve if stops are not specified with fixture.
- E. Install trap and tubular waste piping on drain outlet of each fixture an connect to drainage system.
- F. Install flushometer valves for accessible water closets and urinals with handle mounted on wide side of compartment. Install other actuators in locations that are easy for people with disabilities to reach.
- G. Install toilet seats on water closets.
- H. Install traps on fixture outlets.
 - 1. Exception: Omit trap on fixtures with integral traps.
 - 2. Exception: Omit trap on indirect wastes, unless otherwise indicated.
- I. Install escutcheons at piping wall ceiling penetrations in exposed, finished locations and within cabinets and millwork. Use deep-pattern escutcheons if required to conceal protruding fittings.
- J. Seal joints between fixtures and walls, floors, and counters using sanitary-type, one-part, mildew-resistant, silicone sealant. Match sealant color to fixture color.

3.3 CONNECTIONS

- A. Piping installation requirements are specified in other Plumbing Specification Sections. Drawings indicate general arrangement of piping, fittings, and specialties.
- B. Connect water supplies from water distribution piping to fixtures.
- C. Connect drain piping from fixtures to drainage piping.
- D. Supply and Waste Connections to Plumbing Fixtures: Connect fixtures with water supplies, stops, risers, traps, and waste piping. Use size fittings required to match fixtures. Connect to plumbing piping.
- E. Supply and Waste Connections to Fixtures and Equipment Specified in Other Sections: Connect fixtures and equipment with water supplies, stops, risers, traps, and waste

PLUMBING FIXTURES 224000 - 4

piping specified. Use size fittings required to match fixtures and equipment. Connect to plumbing piping.

3.4 FIELD QUALITY CONTROL

- A. Verify that installed fixtures are categories and types specified for locations where installed.
- B. Check that fixtures are complete with trim, faucets, fittings, and other specified components.
- C. Inspect installed fixtures for damage. Replace damaged fixtures and components.
- D. Test installed fixtures after water systems are pressurized for proper operation. Replace malfunctioning fixtures and components, then retest. Repeat procedure until units operate properly.

3.5 ADJUSTING

- A. Operate and adjust faucets and controls. Replace damaged and malfunctioning fixtures, fittings, and controls.
- B. Replace washers and seals of leaking and dripping faucets and stops.

3.6 CLEANING

- A. Clean fixtures, faucets, and other fittings with manufacturers' recommended cleaning methods and materials. Do the following:
 - 1. Remove faucet spouts and strainers, remove sediment and debris, and reinstall strainers and spouts.
 - 2. Remove sediment and debris from drains.
 - 3. Clean fixtures to a reasonable degree of shine. No visible grease or other marks from construction should be apparent.

3.7 PROTECTION

- A. Provide protective covering for installed fixtures and fittings.
- B. Do not allow use of fixtures for temporary facilities unless approved in writing by Owner.

END OF SECTION 224000

PLUMBING FIXTURES 224000 - 5

SECTION 230500

COMMON WORK REQUIREMENTS FOR HVAC

PART 1 - GENERAL

1.1 SUMMARY

- A. This Section includes the following:
 - 1. Piping materials and installation instructions common to most piping systems.
 - 2. Dielectric fittings.
 - 3. Mechanical sleeve seals.
 - 4. Sleeves.
 - 5. Escutcheons.
 - 6. Grout.
 - 7. Equipment installation requirements common to equipment sections.
 - 8. Concrete bases.
 - 9. Supports and anchorages.

1.2 DEFINITIONS

- A. Finished Spaces: Spaces other than mechanical and electrical equipment rooms, furred spaces, pipe and duct chases, unheated spaces immediately below roof, spaces above ceilings, unexcavated spaces, crawlspaces, and tunnels.
- B. Exposed, Interior Installations: Exposed to view indoors. Examples include finished occupied spaces and mechanical equipment rooms.
- C. Exposed, Exterior Installations: Exposed to view outdoors or subject to outdoor ambient temperatures and weather conditions. Examples include rooftop locations.
- D. Concealed, Interior Installations: Concealed from view and protected from physical contact by building occupants. Examples include above ceilings and chases.
- E. Concealed, Exterior Installations: Concealed from view and protected from weather conditions and physical contact by building occupants but subject to outdoor ambient temperatures. Examples include installations within unheated shelters.

1.3 SUBMITTALS

A. Welding certificates.

1.4 QUALITY ASSURANCE

- A. Steel Support Welding: Qualify processes and operators according to AWS D1.1, "Structural Welding Code--Steel."
- B. Steel Pipe Welding: Qualify processes and operators according to ASME Boiler and Pressure Vessel Code: Section IX, "Welding and Brazing Qualifications."
 - 1. Comply with provisions in ASME B31 Series, "Code for Pressure Piping."
 - 2. Certify that each welder has passed AWS qualification tests for welding processes involved and that certification is current.
- C. Electrical Characteristics for HVAC Equipment: Equipment of higher electrical characteristics may be furnished provided such proposed equipment is approved in writing and connecting electrical services, circuit breakers, and conduit sizes are appropriately modified. If minimum energy ratings or efficiencies are specified, equipment shall comply with requirements.
- D. Sheet metal construction documents are diagrammatic. Equivalent sizes can be substituted when construction begins as long as aspect ratios are no greater then 3:1 for rectangular, or round instead of square substitutions provide the same static pressure per 100ft. Duct runs are to be coordinated in the field with the other trades. Duct materials can not be changed without the permission of the engineer. Flex ducts are to be no longer than eight feet and must be supported from overhead.

PART 2 - PRODUCTS

2.1 PIPE, TUBE, AND FITTINGS

- A. Refer to individual Division 23 piping Sections for pipe, tube, and fitting materials and joining methods.
- B. Pipe Threads: ASME B1.20.1 for factory-threaded pipe and pipe fittings.

2.2 JOINING MATERIALS

- A. Refer to individual Division 23 piping Sections for special joining materials not listed below.
- B. Pipe-Flange Gasket Materials: ASME B16.21, nonmetallic, flat, asbestos-free, 1/8-inch (3.2-mm) maximum thickness unless thickness or specific material is indicated.

- C. Plastic, Pipe-Flange Gasket, Bolts, and Nuts: Type and material recommended by piping system manufacturer, unless otherwise indicated.
- D. Solder Filler Metals: ASTM B 32, lead-free alloys. Include water-flushable flux according to ASTM B 813.
- E. Brazing Filler Metals: AWS A5.8, BCuP Series or BAg1, unless otherwise indicated.
- F. Welding Filler Metals: Comply with AWS D10.12.
- G. Solvent Cements for Joining Plastic Piping:
 - 1. CPVC Piping: ASTM F 493.
 - 2. PVC Piping: ASTM D 2564. Include primer according to ASTM F 656.

2.3 DIELECTRIC FITTINGS

- A. Description: Combination fitting of copper alloy and ferrous materials with threaded, solder-joint, plain, or weld-neck end connections that match piping system materials.
- B. Insulating Material: Suitable for system fluid, pressure, and temperature.
- C. Dielectric Unions: Factory-fabricated, union assembly, for 250-psig (1725-kPa) minimum working pressure at 180 deg F (82 deg C).
- D. Dielectric Flanges: Factory-fabricated, companion-flange assembly, for 150- or 300-psig (1035- or 2070-kPa) minimum working pressure as required to suit system pressures.
- E. Dielectric Couplings: Galvanized-steel coupling with inert and noncorrosive, thermoplastic lining; threaded ends; and 300-psig (2070-kPa) minimum working pressure at 225 deg F (107 deg C).
- F. Dielectric Nipples: Electroplated steel nipple with inert and noncorrosive, thermoplastic lining; plain, threaded, or grooved ends; and 300-psig (2070-kPa) minimum working pressure at 225 deg F (107 deg C).

2.4 MECHANICAL SLEEVE SEALS

- A. Description: Modular sealing element unit, designed for field assembly, to fill annular space between pipe and sleeve.
- B. Sealing Elements: EPDM interlocking links shaped to fit surface of pipe. Include type and number required for pipe material and size of pipe.

- C. Pressure Plates: Stainless steel. Include two for each sealing element.
- D. Connecting Bolts and Nuts: Stainless steel of length required to secure pressure plates to sealing elements. Include one for each sealing element.

2.5 SLEEVES

- A. Galvanized-Steel Sheet: 0.0239-inch (0.6-mm) minimum thickness; round tube closed with welded longitudinal joint.
- B. Steel Pipe: ASTM A 53, Type E, Grade B, Schedule 40, galvanized, plain ends.
- C. Cast Iron: Cast or fabricated "wall pipe" equivalent to ductile-iron pressure pipe, with plain ends and integral water stop, unless otherwise indicated.
- D. Stack Sleeve Fittings: Manufactured, cast-iron sleeve with integral clamping flange. Include clamping ring and bolts and nuts for membrane flashing.
 - 1. Underdeck Clamp: Clamping ring with set screws.
- E. Molded PVC: Permanent, with nailing flange for attaching to wooden forms.
- F. PVC Pipe: ASTM D 1785, Schedule 40.
- G. Molded PE: Reusable, PE, tapered-cup shaped, and smooth-outer surface with nailing flange for attaching to wooden forms.

2.6 ESCUTCHEONS

- A. Description: Manufactured wall and ceiling escutcheons and floor plates, with an ID to closely fit around pipe, tube, and insulation of insulated piping and an OD that completely covers opening.
- B. One-Piece, Deep-Pattern Type: Deep-drawn, box-shaped brass with polished chrome-plated finish.
- C. One-Piece, Cast-Brass Type: With set screw.
 - 1. Finish: Polished chrome-plated
- D. Split-Casting, Cast-Brass Type: With concealed hinge and set screw.
 - 1. Finish: Polished chrome plated.

2.7 GROUT

- A. Description: ASTM C 1107, Grade B, non-shrink and nonmetallic, dry hydraulic-cement grout.
 - 1. Characteristics: Post-hardening, volume-adjusting, non-staining, noncorrosive, nongaseous, and recommended for interior and exterior applications.
 - 2. Design Mix: 5000-psi (34.5-MPa), 28-day compressive strength.
 - 3. Packaging: Premixed and factory packaged.

PART 3 - EXECUTION

3.1 PIPING SYSTEMS - COMMON REQUIREMENTS

- A. Install piping according to the following requirements and Division 23 Sections specifying piping systems.
- B. Drawing plans, schematics, and diagrams indicate general location and arrangement of piping systems. Indicated locations and arrangements were used to size pipe and calculate friction loss, expansion, pump sizing, and other design considerations. Install piping as indicated unless deviations to layout are approved on Coordination Drawings.
- C. Install piping in concealed locations, unless otherwise indicated and except in equipment rooms and service areas.
- D. Install piping indicated to be exposed and piping in equipment rooms and service areas at right angles or parallel to building walls. Diagonal runs are prohibited unless specifically indicated otherwise.
- E. Install piping above accessible ceilings to allow sufficient space for ceiling panel removal.
- F. Install piping to permit valve servicing.
- G. Install piping at indicated slopes.
- H. Install piping free of sags and bends.
- I. Install fittings for changes in direction and branch connections.
- J. Install piping to allow application of insulation.
- K. Select system components with pressure rating equal to or greater than system operating pressure.

- L. Install escutcheons for penetrations of walls, ceilings, and floors.
- M. Install sleeves for pipes passing through concrete and masonry walls, gypsum-board partitions, and concrete floor and roof slabs.
- N. Aboveground, Exterior-Wall Pipe Penetrations: Seal penetrations using sleeves and mechanical sleeve seals. Select sleeve size to allow for 1-inch (25-mm) annular clear space between pipe and sleeve for installing mechanical sleeve seals.
 - 1. Install steel pipe for sleeves smaller than 6 inches (150 mm) in diameter.
 - 2. Install cast-iron "wall pipes" for sleeves 6 inches (150 mm) and larger in diameter.
 - 3. Mechanical Sleeve Seal Installation: Select type and number of sealing elements required for pipe material and size. Position pipe in center of sleeve. Assemble mechanical sleeve seals and install in annular space between pipe and sleeve. Tighten bolts against pressure plates that cause sealing elements to expand and make watertight seal.
- O. Underground, Exterior-Wall Pipe Penetrations: Install cast-iron "wall pipes" for sleeves. Seal pipe penetrations using mechanical sleeve seals. Select sleeve size to allow for 1-inch (25-mm) annular clear space between pipe and sleeve for installing mechanical sleeve seals.
 - 1. Mechanical Sleeve Seal Installation: Select type and number of sealing elements required for pipe material and size. Position pipe in center of sleeve. Assemble mechanical sleeve seals and install in annular space between pipe and sleeve. Tighten bolts against pressure plates that cause sealing elements to expand and make watertight seal.
- P. Fire-Barrier Penetrations: Maintain indicated fire rating of walls, partitions, ceilings, and floors at pipe penetrations. Seal pipe penetrations with firestop materials. Refer to Division 07 Section "Penetration Firestopping" for materials.
- Q. Verify final equipment locations for roughing-in.
- R. Refer to equipment specifications in other Sections of these Specifications for roughing-in requirements.

3.2 PIPING JOINT CONSTRUCTION

- A. Join pipe and fittings according to the following requirements and Division 23 Sections specifying piping systems.
- B. Ream ends of pipes and tubes and remove burrs. Bevel plain ends of steel pipe.

- C. Remove scale, slag, dirt, and debris from inside and outside of pipe and fittings before assembly.
- D. Soldered Joints: Apply ASTM B 813, water-flushable flux, unless otherwise indicated, to tube end. Construct joints according to ASTM B 828 or CDA's "Copper Tube Handbook," using lead-free solder alloy complying with ASTM B 32.
- E. Brazed Joints: Construct joints according to AWS's "Brazing Handbook," "Pipe and Tube" Chapter, using copper-phosphorus brazing filler metal complying with AWS A5.8.
- F. Threaded Joints: Thread pipe with tapered pipe threads according to ASME B1.20.1. Cut threads full and clean using sharp dies. Ream threaded pipe ends to remove burrs and restore full ID. Join pipe fittings and valves as follows:
 - 1. Apply appropriate tape or thread compound to external pipe threads unless dry seal threading is specified.
 - 2. Damaged Threads: Do not use pipe or pipe fittings with threads that are corroded or damaged. Do not use pipe sections that have cracked or open welds.
- G. Welded Joints: Construct joints according to AWS D10.12, using qualified processes and welding operators according to Part 1 "Quality Assurance" Article.
- H. Flanged Joints: Select appropriate gasket material, size, type, and thickness for service application. Install gasket concentrically positioned. Use suitable lubricants on bolt threads.
- I. Plastic Piping Solvent-Cement Joints: Clean and dry joining surfaces. Join pipe and fittings according to the following:
 - 1. Comply with ASTM F 402, for safe-handling practice of cleaners, primers, and solvent cements.
 - 2. CPVC Piping: Join according to ASTM D 2846/D 2846M Appendix.
 - 3. PVC Pressure Piping: Join schedule number ASTM D 1785, PVC pipe and PVC socket fittings according to ASTM D 2672. Join other-than-schedule-number PVC pipe and socket fittings according to ASTM D 2855.
 - 4. PVC Non-pressure Piping: Join according to ASTM D 2855.
- J. Plastic Pressure Piping Gasketed Joints: Join according to ASTM D 3139.
- K. Plastic Non-pressure Piping Gasketed Joints: Join according to ASTM D 3212.
- L. PE Piping Heat-Fusion Joints: Clean and dry joining surfaces by wiping with clean cloth or paper towels. Join according to ASTM D 2657.
 - 1. Plain-End Pipe and Fittings: Use butt fusion.
 - 2. Plain-End Pipe and Socket Fittings: Use socket fusion.

M. Fiberglass Bonded Joints: Prepare pipe ends and fittings, apply adhesive, and join according to pipe manufacturer's written instructions.

3.3 PIPING CONNECTIONS

- A. Make connections according to the following, unless otherwise indicated:
 - 1. Install unions, in piping NPS 2 (DN 50) and smaller, adjacent to each valve and at final connection to each piece of equipment.
 - 2. Install flanges, in piping NPS 2-1/2 (DN 65) and larger, adjacent to flanged valves and at final connection to each piece of equipment.
 - 3. Dry Piping Systems: Install dielectric unions and flanges to connect piping materials of dissimilar metals.
 - 4. Wet Piping Systems: Install dielectric coupling and nipple fittings to connect piping materials of dissimilar metals.

3.4 EQUIPMENT INSTALLATION - COMMON REQUIREMENTS

- A. Install equipment to allow maximum possible headroom unless specific mounting heights are not indicated.
- B. Install equipment level and plumb, parallel and perpendicular to other building systems and components in exposed interior spaces, unless otherwise indicated.
- C. Install HVAC equipment to facilitate service, maintenance, and repair or replacement of components. Connect equipment for ease of disconnecting, with minimum interference to other installations. Extend grease fittings to accessible locations.
- D. Install equipment to allow right of way for piping installed at required slope.

3.5 CONCRETE BASES

- A. Concrete Bases: Anchor equipment to concrete base according to equipment manufacturer's written instructions and according to seismic codes at Project.
 - 1. Construct concrete bases of dimensions indicated, but not less than 4 inches (100 mm) larger in both directions than supported unit.
 - 2. Install dowel rods to connect concrete base to concrete floor. Unless otherwise indicated, install dowel rods on 18-inch (450-mm) centers around the full perimeter of the base.
 - 3. Install epoxy-coated anchor bolts for supported equipment that extend through concrete base, and anchor into structural concrete floor.

- 4. Place and secure anchorage devices. Use supported equipment manufacturer's setting drawings, templates, diagrams, instructions, and directions furnished with items to be embedded.
- 5. Install anchor bolts to elevations required for proper attachment to supported equipment.
- 6. Install anchor bolts according to anchor-bolt manufacturer's written instructions.
- 7. Use 3000-psi (20.7-MPa), 28-day compressive-strength concrete and reinforcement as specified in Division 03 Sections.

3.6 PAINTING AND FINISHING

- A. Apply semi-gloss, acrylic-enamel finish to exposed piping according to the following:
 - 1. Interior, Ferrous Piping and Ferrous Supports: Finish coat over enamel undercoat and primer.
 - 2. Interior and Exterior, Galvanized-Steel Piping: Two finish coats over galvanized metal primer.
 - 3. Exterior, Ferrous Piping and Ferrous Supports: Two finish coats over rust-inhibitive metal primer.
 - 4. Repair marred and damaged factory-painted finishes with materials and procedures to match original factory finish.

3.7 CUTTING AND PATCHING

A. Cut, channel, chase, and drill floors, walls, partitions, ceilings, and other surfaces necessary for mechanical installations. Perform cutting by skilled mechanics of trades involved. Repair cut surfaces to match adjacent surfaces.

3.8 CONTROLS COORDINATION

A. For electrical interface of controls the following is the method to be coordinated with division 23. Division 23 is to provide junction box with cover, conduit, and power to JB. The cover is to be labeled with its respective panel number and breaker number. Control contractor will provide the control transformers and all wiring there after to devices and is to coordinate with Division 16 in the field.

3.9 ERECTION OF METAL SUPPORTS AND ANCHORAGES

- A. Refer to Division 05 Section "Metal Fabrications" for structural steel.
- B. Cut, fit, and place miscellaneous metal supports accurately in location, alignment, and elevation to support and anchor HVAC materials and equipment.

C. Field Welding: Comply with AWS D1.1.

3.10 ERECTION OF WOOD SUPPORTS AND ANCHORAGES

- A. Cut, fit, and place wood grounds, nailers, blocking, and anchorages to support, and anchor HVAC materials and equipment.
- B. Select fastener sizes that will not penetrate members if opposite side will be exposed to view or will receive finish materials. Tighten connections between members. Install fasteners without splitting wood members.
- C. Attach to substrates as required to support applied loads.

3.11 GROUTING

- A. Mix and install grout for HVAC equipment base bearing surfaces, pump and other equipment base plates, and anchors.
- B. Clean surfaces that will come into contact with grout.
- C. Provide forms as required for placement of grout.
- D. Avoid air entrapment during placement of grout.
- E. Place grout, completely filling equipment bases.
- F. Place grout on concrete bases and provide smooth bearing surface for equipment.
- G. Place grout around anchors.
- H. Cure placed grout.

END OF SECTION 230500

SECTION 230513

COMMON MOTOR REQUIREMENTS FOR HVAC EQUIPMENT

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes general requirements for single-phase and polyphase, general-purpose, horizontal, small and medium, squirrel-cage induction motors for use on ac power systems up to 600 V and installed at equipment manufacturer's factory or shipped separately by equipment manufacturer for field installation.

1.3 COORDINATION

- A. Coordinate features of motors, installed units, and accessory devices to be compatible with the following:
 - 1. Motor controllers.
 - 2. Torque, speed, and horsepower requirements of the load.
 - 3. Ratings and characteristics of supply circuit and required control sequence.
 - 4. Ambient and environmental conditions of installation location.

PART 2 - PRODUCTS

2.1 GENERAL MOTOR REQUIREMENTS

- A. Comply with requirements in this Section except when stricter requirements are specified in HVAC equipment schedules or Sections.
- B. Comply with NEMA MG 1 unless otherwise indicated.
- C. Comply with IEEE 841 for severe-duty motors.

2.2 MOTOR CHARACTERISTICS

- A. Duty: Continuous duty at ambient temperature of 40 deg C and at altitude of 3300 feet above sea level.
- B. Capacity and Torque Characteristics: Sufficient to start, accelerate, and operate connected loads at designated speeds, at installed altitude and environment, with indicated operating sequence, and without exceeding nameplate ratings or considering service factor.

2.3 POLYPHASE MOTORS

- A. Description: NEMA MG 1, Design B, medium induction motor.
- B. Efficiency: Energy efficient, as defined in NEMA MG 1.
- C. Service Factor: 1.15.
- D. Multispeed Motors: Variable torque.
 - 1. For motors with 2:1 speed ratio, consequent pole, single winding.
 - 2. For motors with other than 2:1 speed ratio, separate winding for each speed.
- E. Multispeed Motors: Separate winding for each speed.
- F. Rotor: Random-wound, squirrel cage.
- G. Bearings: Regreasable, shielded, antifriction ball bearings suitable for radial and thrust loading.
- H. Temperature Rise: Match insulation rating.
- I. Insulation: Class F.
- J. Code Letter Designation:
 - 1. Motors 15 HP and Larger: NEMA starting Code F or Code G.
 - 2. Motors Smaller than 15 HP: Manufacturer's standard starting characteristic.
- K. Enclosure Material: Cast iron for motor frame sizes 324T and larger; rolled steel for motor frame sizes smaller than 324T.

2.4 POLYPHASE MOTORS WITH ADDITIONAL REQUIREMENTS

A. Motors Used with Reduced-Voltage and Multispeed Controllers: Match wiring connection requirements for controller with required motor leads. Provide terminals in motor terminal box, suited to control method.

- B. Motors Used with Variable Frequency Controllers: Ratings, characteristics, and features coordinated with and approved by controller manufacturer.
 - 1. Windings: Copper magnet wire with moisture-resistant insulation varnish, designed and tested to resist transient spikes, high frequencies, and short time rise pulses produced by pulse-width modulated inverters.
 - 2. Energy- and Premium-Efficient Motors: Class B temperature rise; Class F insulation.
 - 3. Inverter-Duty Motors: Class F temperature rise; Class H insulation.
 - 4. Thermal Protection: Comply with NEMA MG 1 requirements for thermally protected motors.
- C. Severe-Duty Motors: Comply with IEEE 841, with 1.15 minimum service factor.

2.5 SINGLE-PHASE MOTORS

- A. Motors larger than 1/20 hp shall be one of the following, to suit starting torque and requirements of specific motor application:
 - 1. Permanent-split capacitor.
 - 2. Split phase.
 - 3. Capacitor start, inductor run.
 - 4. Capacitor start, capacitor run.
- B. Multispeed Motors: Variable-torque, permanent-split-capacitor type.
- C. Bearings: Pre-lubricated, antifriction ball bearings or sleeve bearings suitable for radial and thrust loading.
- D. Motors 1/20 HP and Smaller: Shaded-pole type.
- E. Thermal Protection: Internal protection to automatically open power supply circuit to motor when winding temperature exceeds a safe value calibrated to temperature rating of motor insulation. Thermal-protection device shall automatically reset when motor temperature returns to normal range.

PART 3 - EXECUTION (Not Applicable)

April 25, 2025 Bid Issue

Addition & Alterations Department of Public Works 10 Hartford Road Delran, New Jersey

END OF SECTION 230513

SECTION 230517

SLEEVES AND SLEEVE SEALS FOR HVAC PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Sleeves.
 - 2. Stack-sleeve fittings.
 - 3. Sleeve-seal systems.
 - 4. Sleeve-seal fittings.
 - 5. Grout.

1.3 SUBMITTALS

A. Product Data: For each type of product indicated.

PART 2 - PRODUCTS

2.1 SLEEVES

- A. Cast-Iron Wall Pipes: Cast or fabricated of cast or ductile iron and equivalent to ductile-iron pressure pipe, with plain ends and integral waterstop unless otherwise indicated.
- B. Galvanized-Steel Wall Pipes: ASTM A 53/A 53M, Schedule 40, with plain ends and welded steel collar; zinc coated.
- C. Galvanized-Steel-Pipe Sleeves: ASTM A 53/A 53M, Type E, Grade B, Schedule 40, zinc coated, with plain ends.
- D. PVC-Pipe Sleeves: ASTM D 1785, Schedule 40.

- E. Galvanized-Steel-Sheet Sleeves: 0.0239-inch minimum thickness; round tube closed with welded longitudinal joint.
- F. Molded-PE or -PP Sleeves: Removable, tapered-cup shaped, and smooth outer surface with nailing flange for attaching to wooden forms.
- G. Molded-PVC Sleeves: With nailing flange for attaching to wooden forms.

2.2 STACK-SLEEVE FITTINGS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Smith, Jay R. Mfg. Co.
 - 2. Zurn Specification Drainage Operation; Zurn Plumbing Products Group.
 - 3. Or Approved Equal.
- B. Description: Manufactured, cast-iron sleeve with integral clamping flange. Include clamping ring, bolts, and nuts for membrane flashing.
 - 1. Underdeck Clamp: Clamping ring with setscrews.

2.3 SLEEVE-SEAL SYSTEMS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Advance Products & Systems, Inc.
 - 2. CALPICO, Inc.
 - 3. Metraflex Company (The).
 - 4. Pipeline Seal and Insulator, Inc.
 - 5. Proco Products, Inc.
 - 6. Or Approved Equal
- B. Description: Modular sealing-element unit, designed for field assembly, for filling annular space between piping and sleeve.
 - 1. Sealing Elements: EPDM-rubber interlocking links shaped to fit surface of pipe. Include type and number required for pipe material and size of pipe.
 - 2. Pressure Plates: Carbon steel.
 - 3. Connecting Bolts and Nuts: Carbon steel, with corrosion-resistant coating, of length required to secure pressure plates to sealing elements.

2.4 SLEEVE-SEAL FITTINGS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following manufacturers:

- 1. Presealed Systems.
- 2. Or Approved Equal.
- B. Description: Manufactured plastic, sleeve-type, waterstop assembly made for imbedding in concrete slab or wall. Unit has plastic or rubber waterstop collar with center opening to match piping OD.

2.5 GROUT

- A. Standard: ASTM C 1107/C 1107M, Grade B, post-hardening and volume-adjusting, dry, hydraulic-cement grout.
- B. Characteristics: Nonshrink; recommended for interior and exterior applications.
- C. Design Mix: 5000-psi, 28-day compressive strength.
- D. Packaging: Premixed and factory packaged.

PART 3 - EXECUTION

3.1 SLEEVE INSTALLATION

- A. Install sleeves for piping passing through penetrations in floors, partitions, roofs, and walls.
- B. For sleeves that will have sleeve-seal system installed, select sleeves of size large enough to provide 1-inch annular clear space between piping and concrete slabs and walls.
 - 1. Sleeves are not required for core-drilled holes.
- C. Install sleeves in concrete floors, concrete roof slabs, and concrete walls as new slabs and walls are constructed.
 - 1. Permanent sleeves are not required for holes in slabs formed by molded-PE or -PP sleeves.
 - 2. Cut sleeves to length for mounting flush with both surfaces.
 - a. Exception: Extend sleeves installed in floors of mechanical equipment areas or other wet areas 2 inches above finished floor level.
 - 3. Using grout, seal the space outside of sleeves in slabs and walls without sleeveseal system.
- D. Install sleeves for pipes passing through interior partitions.
 - 1. Cut sleeves to length for mounting flush with both surfaces.
 - 2. Install sleeves that are large enough to provide 1/4-inch annular clear space between sleeve and pipe or pipe insulation.

- 3. Seal annular space between sleeve and piping or piping insulation; use joint sealants appropriate for size, depth, and location of joint. Comply with requirements for sealants specified in Division 07 Section "Joint Sealants."
- E. Fire-Barrier Penetrations: Maintain indicated fire rating of walls, partitions, ceilings, and floors at pipe penetrations. Seal pipe penetrations with firestop materials. Comply with requirements for firestopping specified in Division 07 Section "Penetration Firestopping."

3.2 STACK-SLEEVE-FITTING INSTALLATION

- A. Install stack-sleeve fittings in new slabs as slabs are constructed.
 - 1. Install fittings that are large enough to provide 1/4-inch annular clear space between sleeve and pipe or pipe insulation.
 - 2. Secure flashing between clamping flanges for pipes penetrating floors with membrane waterproofing. Comply with requirements for flashing specified in Division 07 Section "Sheet Metal Flashing and Trim."
 - 3. Install section of cast-iron soil pipe to extend sleeve to 2 inches above finished floor level.
 - 4. Extend cast-iron sleeve fittings below floor slab as required to secure clamping ring if ring is specified.
 - 5. Using grout, seal the space around outside of stack-sleeve fittings.
- B. Fire-Barrier Penetrations: Maintain indicated fire rating of floors at pipe penetrations. Seal pipe penetrations with firestop materials. Comply with requirements for firestopping specified in Division 07 Section "Penetration Firestopping."

3.3 SLEEVE-SEAL-SYSTEM INSTALLATION

- A. Install sleeve-seal systems in sleeves in exterior concrete walls and slabs-on-grade at service piping entries into building.
- B. Select type, size, and number of sealing elements required for piping material and size and for sleeve ID or hole size. Position piping in center of sleeve. Center piping in penetration, assemble sleeve-seal system components, and install in annular space between piping and sleeve. Tighten bolts against pressure plates that cause sealing elements to expand and make a watertight seal.

3.4 SLEEVE-SEAL-FITTING INSTALLATION

A. Install sleeve-seal fittings in new walls and slabs as they are constructed.

- B. Assemble fitting components of length to be flush with both surfaces of concrete slabs and walls. Position waterstop flange to be centered in concrete slab or wall.
- C. Secure nailing flanges to concrete forms.
- D. Using grout, seal the space around outside of sleeve-seal fittings.

3.5 SLEEVE AND SLEEVE-SEAL SCHEDULE

- A. Use sleeves and sleeve seals for the following piping-penetration applications:
 - 1. Exterior Concrete Walls above Grade:
 - a. Piping Smaller Than NPS 6: Galvanized-steel-pipe sleeves.
 - b. Piping NPS 6 and Larger: Galvanized-steel-pipe sleeves.
 - 2. Exterior Concrete Walls below Grade:
 - a. Piping Smaller Than NPS 6: Galvanized-steel-pipe sleeves with sleeve-seal system.
 - 1) Select sleeve size to allow for 1-inch annular clear space between piping and sleeve for installing sleeve-seal system.
 - b. Piping NPS 6 and Larger: Galvanized-steel-pipe sleeves with sleeve-seal system.
 - 1) Select sleeve size to allow for 1-inch annular clear space between piping and sleeve for installing sleeve-seal system.
 - 3. Concrete Slabs-on-Grade:
 - a. Piping Smaller Than NPS 6: Galvanized-steel-pipe sleeves with sleeve-seal system.
 - 1) Select sleeve size to allow for 1-inch annular clear space between piping and sleeve for installing sleeve-seal system.
 - b. Piping NPS 6 and Larger: Galvanized-steel-pipe sleeves with sleeve-seal system] [Galvanized-steel-pipe sleeves.
 - 1) Select sleeve size to allow for 1-inch annular clear space between piping and sleeve for installing sleeve-seal system.
 - 4. Concrete Slabs above Grade:
 - a. Piping Smaller Than NPS 6: Galvanized-steel-pipe sleeves.
 - b. Piping NPS 6 and Larger: Galvanized-steel-pipe sleeves.
 - 5. Interior Partitions:
 - a. Piping Smaller Than NPS 6: Galvanized-steel-pipe sleeves.
 - b. Piping NPS 6 and Larger: Galvanized-steel-sheet sleeves.

END OF SECTION 230517

SECTION 230518 ESCUTCHEONS FOR HVAC PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Escutcheons.
 - 2. Floor plates.

1.3 SUBMITTALS

A. Product Data: For each type of product indicated.

PART 2 - PRODUCTS

2.1 ESCUTCHEONS

- A. One-Piece, Cast-Brass Type: With polished, chrome-plated and rough-brass finish and setscrew fastener.
- B. One-Piece, Deep-Pattern Type: Deep-drawn, box-shaped brass with chrome-plated finish and spring-clip fasteners.
- C. One-Piece, Stamped-Steel Type: With chrome-plated finish and spring-clip fasteners.
- D. Split-Casting Brass Type: With polished, chrome-plated and rough-brass finish and with concealed hinge and setscrew.
- E. Split-Plate, Stamped-Steel Type: With chrome-plated finish, concealed and exposed-rivet hinge, and spring-clip fasteners.

2.2 FLOOR PLATES

- A. One-Piece Floor Plates: Cast-iron flange with holes for fasteners.
- B. Split-Casting Floor Plates: Cast brass with concealed hinge.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Install escutcheons for piping penetrations of walls, ceilings, and finished floors.
- B. Install escutcheons with ID to closely fit around pipe, tube, and insulation of piping and with OD that completely covers opening.
 - 1. Escutcheons for New Piping:
 - a. Piping with Fitting or Sleeve Protruding from Wall: One-piece, deep-pattern type.
 - b. Chrome-Plated Piping: One-piece, cast-brass or split-casting brass type with polished, chrome-plated finish.
 - c. Insulated Piping: One-piece, stamped-steel type or split-plate, stamped-steel type with concealed hinge.
 - d. Bare Piping at Wall and Floor Penetrations in Finished Spaces: One-piece, cast-brass or split-casting brass type with polished, chrome-plated finish.
 - e. Bare Piping at Wall and Floor Penetrations in Finished Spaces: One-piece, stamped-steel type or split-plate, stamped-steel type with concealed hinge.
 - f. Bare Piping at Ceiling Penetrations in Finished Spaces: One-piece, cast-brass or split-casting brass type with polished, chrome-plated finish.
 - g. Bare Piping at Ceiling Penetrations in Finished Spaces: One-piece, stamped-steel type or split-plate, stamped-steel type with concealed hinge.
 - h. Bare Piping in Unfinished Service Spaces: One-piece, cast-brass or split-casting brass type with polished, chrome-plated, or rough-brass finish.
 - i. Bare Piping in Unfinished Service Spaces: One-piece, stamped-steel type or split-plate, stamped-steel type with concealed hinge.
 - j. Bare Piping in Equipment Rooms: One-piece, cast-brass or split-casting brass type with polished, chrome-plated, or rough-brass finish.
 - k. Bare Piping in Equipment Rooms: One-piece, stamped-steel type or split-plate, stamped-steel type with concealed.
 - 2. Escutcheons for Existing Piping:
 - a. Chrome-Plated Piping: Split-casting brass type with polished, chrome-plated finish.
 - b. Insulated Piping: Split-plate, stamped-steel type with concealed hinge.
 - c. Bare Piping at Wall and Floor Penetrations in Finished Spaces: Split-casting brass type with polished, chrome-plated finish.
 - d. Bare Piping at Wall and Floor Penetrations in Finished Spaces: Split-plate, stamped-steel type with concealed hinge.
 - e. Bare Piping at Ceiling Penetrations in Finished Spaces: Split-casting brass type with polished, chrome-plated finish.
 - f. Bare Piping at Ceiling Penetrations in Finished Spaces: Split-plate, stamped-steel type with concealed exposed-rivet hinge.
 - g. Bare Piping in Unfinished Service Spaces: Split-casting brass type with polished, chrome-plated, or rough-brass finish.

- h. Bare Piping in Unfinished Service Spaces: Split-plate, stamped-steel type with concealed hinge.
- i. Bare Piping in Equipment Rooms: Split-casting brass type with polished, chrome-plated, or rough-brass finish.
- j. Bare Piping in Equipment Rooms: Split-plate, stamped-steel type with concealed hinge.
- C. Install floor plates for piping penetrations of equipment-room floors.
- D. Install floor plates with ID to closely fit around pipe, tube, and insulation of piping and with OD that completely covers opening.
 - 1. New Piping: One-piece, floor-plate type.
 - 2. Existing Piping: Split-casting, floor-plate type.

3.2 FIELD QUALITY CONTROL

A. Replace broken and damaged escutcheons and floor plates using new materials.

END OF SECTION 230518

April 25, 2025 Bid Issue

Addition & Alterations Department of Public Works 10 Hartford Road Delran, New Jersey

THE PAGE INTENTIONALLY LEFT BLANK

SECTION 230519

METERS AND GAGES FOR HVAC PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General, Special and Supplementary Conditions and Division 1 Thru Division 32 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

- 1. Bimetallic-actuated thermometers.
- 2. Filled-system thermometers.
- 3. Liquid-in-glass thermometers.
- 4. Light-activated thermometers.
- 5. Thermowells.
- 6. Dial-type pressure gages.
- 7. Gage attachments.
- 8. Test plugs.
- 9. Test-plug kits.
- 10. Sight flow indicators.
- 11. Orifice flowmeters.
- 12. Pitot-tube flowmeters.
- 13. Turbine flowmeters.
- 14. Venturi flowmeters.
- 15. Vortex-shedding flowmeters.

B. Related Sections:

- 1. Division 23 Section "Facility Natural-Gas Piping" for gas meters.
- 2. Division 23 Section "Steam and Condensate Heating Piping" for steam and condensate meters.

1.3 SUBMITTALS

A. Product Data: For each type of product indicated.

- B. Wiring Diagrams: For power, signal, and control wiring.
- C. Product Certificates: For each type of meter and gage, from manufacturer.
- D. Operation and Maintenance Data: For meters and gages to include in operation and maintenance manuals.

PART 2 - PRODUCTS

2.1 BIMETALLIC-ACTUATED THERMOMETERS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following manufacturers:
 - 1. Ashcroft Inc.
 - 2. Ernst Flow Industries.
 - 3. Marsh Bellofram.
 - 4. Miljoco Corporation.
 - 5. Nanmac Corporation.
 - 6. Noshok.
 - 7. Palmer Wahl Instrumentation Group.
 - 8. REOTEMP Instrument Corporation.
 - 9. Tel-Tru Manufacturing Company.
 - 10. Trerice, H. O. Co.
 - 11. Watts Regulator Co.; a div. of Watts Water Technologies, Inc.
 - 12. Weiss Instruments, Inc.
 - 13. WIKA Instrument Corporation USA.
 - 14. Winters Instruments U.S.
- B. Standard: ASME B40.200.
- C. Case: Liquid-filled and sealed type(s); stainless steel with 5-inch nominal diameter.
- D. Dial: Nonreflective aluminum with permanently etched scale markings and scales in deg F.
- E. Connector Type(s): Union joint, adjustable angle with unified-inch screw threads.
- F. Connector Size: 1/2 inch, with ASME B1.1 screw threads.
- G. Stem: 0.25 or 0.375 inch in diameter; stainless steel.
- H. Window: Plain glass.
- I. Ring: Stainless steel.

- J. Element: Bimetal coil.
- K. Pointer: Dark-colored metal.
- L. Accuracy: Plus or minus 1 percent of scale range.

2.2 FILLED-SYSTEM THERMOMETERS

- A. Direct-Mounted, Metal-Case, Vapor-Actuated Thermometers:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Ashcroft Inc.
 - b. Marsh Bellofram.
 - c. Miljoco Corporation.
 - d. Palmer Wahl Instrumentation Group.
 - e. REOTEMP Instrument Corporation.
 - f. Trerice, H. O. Co.
 - g. Weiss Instruments, Inc.
 - 2. Standard: ASME B40.200.
 - 3. Case: Sealed type, cast aluminum or drawn steel; 5-inch nominal diameter.
 - 4. Element: Bourdon tube or other type of pressure element.
 - 5. Movement: Mechanical, dampening type, with link to pressure element and connection to pointer.
 - 6. Dial: Nonreflective aluminum with permanently etched scale markings graduated in deg F.
 - 7. Pointer: Dark-colored metal.
 - 8. Window: Glass.
 - 9. Ring: Stainless steel.
 - 10. Connector Type(s): Union joint, [adjustable, 180 degrees in vertical plane, 360 degrees in horizontal plane; with ASME B1.1 screw threads.
 - 11. Thermal System: Liquid-filled bulb in copper-plated steel, aluminum, or brass stem and of length to suit installation.
 - a. Design for Air-Duct Installation: With ventilated shroud.
 - b. Design for Thermowell Installation: Bare stem.
 - 12. Accuracy: Plus or minus 1 percent of scale range.
- B. Remote-Mounted, Metal-Case, Vapor-Actuated Thermometers:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following manufacturers:

- a. AMETEK, Inc.; U.S. Gauge.
- b. Ashcroft Inc.
- c. Marsh Bellofram.
- d. Miljoco Corporation.
- e. Palmer Wahl Instrumentation Group.
- f. REOTEMP Instrument Corporation.
- g. Trerice, H. O. Co.
- h. Weiss Instruments, Inc.
- i. WIKA Instrument Corporation USA.
- 2. Standard: ASME B40.200.
- 3. Case: Sealed type, cast aluminum or drawn steel; 4-1/2-inch nominal diameter with [back] [front] flange and holes for panel mounting.
- 4. Element: Bourdon tube or other type of pressure element.
- 5. Movement: Mechanical, with link to pressure element and connection to pointer.
- 6. Dial: Nonreflective aluminum with permanently etched scale markings graduated in deg F.
- 7. Pointer: Dark-colored metal.
- 8. Window: Glass].
- 9. Ring: Stainless steel.
- 10. Connector Type(s): Union joint, back or bottom; with ASME B1.1 screw threads.
- 11. Thermal System: Liquid-filled bulb in copper-plated steel, aluminum, or brass stem and of length to suit installation.
 - a. Design for Air-Duct Installation: With ventilated shroud.
 - b. Design for Thermowell Installation: Bare stem.
- 12. Accuracy: Plus or minus 1 percent of scale range.

2.3 LIQUID-IN-GLASS THERMOMETERS

- A. Metal-Case, Compact-Style, Liquid-in-Glass Thermometers:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Trerice, H. O. Co.
 - 2. Standard: ASME B40.200.
 - 3. Case: Cast aluminum; 6-inch nominal size.
 - 4. Case Form: Straight unless otherwise indicated.
 - 5. Tube: Glass with magnifying lens and blue organic liquid.
 - 6. Tube Background: Nonreflective aluminum with permanently etched scale markings graduated in deg F.
 - 7. Window: Glass or plastic.

- 8. Stem: Aluminum or brass and of length to suit installation.
 - a. Design for Air-Duct Installation: With ventilated shroud.
 - b. Design for Thermowell Installation: Bare stem.
- 9. Connector: 3/4 inch, with ASME B1.1 screw threads.
- 10. Accuracy: Plus or minus 1 percent of scale range or one scale division, to a maximum of 1.5 percent of scale range.
- B. Metal-Case, Industrial-Style, Liquid-in-Glass Thermometers:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following manufacturers:
 - a. Flo Fab Inc.
 - b. Miljoco Corporation.
 - c. Palmer Wahl Instrumentation Group.
 - d. Tel-Tru Manufacturing Company.
 - e. Trerice, H. O. Co.
 - f. Weiss Instruments, Inc.
 - g. Winters Instruments U.S.
 - 2. Standard: ASME B40.200.
 - 3. Case: Cast aluminum; 7-inch nominal size unless otherwise indicated.
 - 4. Case Form: Adjustable angle, Back angle or Straight unless otherwise indicated.
 - 5. Tube: Glass with magnifying lens and blue organic liquid.
 - 6. Tube Background: Nonreflective aluminum with permanently etched scale markings graduated in deg F.
 - 7. Window: Glass.
 - 8. Stem: Aluminum and of length to suit installation.
 - a. Design for Air-Duct Installation: With ventilated shroud.
 - b. Design for Thermowell Installation: Bare stem.
 - 9. Connector: 1-1/4 inches, with ASME B1.1 screw threads.
 - 10. Accuracy: Plus or minus 1 percent of scale range or one scale division, to a maximum of 1.5 percent of scale range.

2.4 DUCT-THERMOMETER MOUNTING BRACKETS

A. Description: Flanged bracket with screw holes, for attachment to air duct and made to hold thermometer stem.

2.5 THERMOWELLS

A. Thermowells:

- 1. Standard: ASME B40.200.
- 2. Description: Pressure-tight, socket-type fitting made for insertion into piping tee fitting.
- 3. Material for Use with Copper Tubing: CNR or CUNI.
- 4. Material for Use with Steel Piping: CRES or CSA.
- 5. Type: Stepped shank unless straight or tapered shank is indicated.
- 6. External Threads: NPS 1/2, NPS 3/4, or NPS 1, ASME B1.20.1 pipe threads.
- 7. Internal Threads: 1/2, 3/4, and 1 inch, with ASME B1.1 screw threads.
- 8. Bore: Diameter required to match thermometer bulb or stem.
- 9. Insertion Length: Length required to match thermometer bulb or stem.
- 10. Lagging Extension: Include on thermowells for insulated piping and tubing.
- 11. Bushings: For converting size of thermowell's internal screw thread to size of thermometer connection.
- B. Heat-Transfer Medium: Mixture of graphite and glycerin.

2.6 PRESSURE GAGES

- A. Direct-Mounted, Metal-Case, Dial-Type Pressure Gages:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following manufacturers.
 - a. AMETEK, Inc.; U.S. Gauge.
 - b. Ashcroft Inc.
 - c. Ernst Flow Industries.
 - d. Flo Fab Inc.
 - e. Marsh Bellofram.
 - f. Miljoco Corporation.
 - g. Noshok.
 - h. Palmer Wahl Instrumentation Group.
 - i. REOTEMP Instrument Corporation.
 - j. Tel-Tru Manufacturing Company.
 - k. Trerice, H. O. Co.
 - 1. Watts Regulator Co.; a div. of Watts Water Technologies, Inc.
 - m. Weiss Instruments, Inc.
 - n. WIKA Instrument Corporation USA.
 - o. Winters Instruments U.S.
 - 2. Standard: ASME B40.100.
 - 3. Case: Liquid-filled; cast aluminum or drawn steel; 4-1/2-inch nominal diameter.

- 4. Pressure-Element Assembly: Bourdon tube unless otherwise indicated.
- 5. Pressure Connection: Brass, with NPS 1/4, ASME B1.20.1 pipe threads and bottom-outlet type unless back-outlet type is indicated.
- 6. Movement: Mechanical, with link to pressure element and connection to pointer.
- 7. Dial: Nonreflective aluminum with permanently etched scale markings graduated in psi.
- 8. Pointer: Dark-colored metal.
- 9. Window: Glass.
- 10. Ring: Brass.
- 11. Accuracy: Grade A, plus or minus 1 percent of middle half of scale range.
- B. Remote-Mounted, Metal-Case, Dial-Type Pressure Gages:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following manufacturers:
 - a. AMETEK, Inc.; U.S. Gauge.
 - b. Ashcroft Inc.
 - c. Ernst Flow Industries.
 - d. Flo Fab Inc.
 - e. Marsh Bellofram.
 - f. Miljoco Corporation.
 - g. Noshok.
 - h. Palmer Wahl Instrumentation Group.
 - i. REOTEMP Instrument Corporation.
 - j. Tel-Tru Manufacturing Company.
 - k. Trerice, H. O. Co.
 - 1. Watts Regulator Co.; a div. of Watts Water Technologies, Inc.
 - m. Weiss Instruments, Inc.
 - n. WIKA Instrument Corporation USA.
 - o. Winters Instruments U.S.
 - 2. Standard: ASME B40.100.
 - 3. Case: Liquid-filled type; cast aluminum; 4-1/2-inch nominal diameter with back flange and holes for panel mounting.
 - 4. Pressure-Element Assembly: Bourdon tube unless otherwise indicated.
 - 5. Pressure Connection: Brass, with NPS 1/4, ASME B1.20.1 pipe threads and bottom-outlet type unless back-outlet type is indicated.
 - 6. Movement: Mechanical, with link to pressure element and connection to pointer.
 - 7. Dial: Nonreflective aluminum with permanently etched scale markings graduated in psi.
 - 8. Pointer: Dark-colored metal.
 - 9. Window: Glass.
 - 10. Ring: Stainless steel.
 - 11. Accuracy: Grade A, plus or minus 1 percent of middle half of scale range.

2.7 GAGE ATTACHMENTS

- A. Snubbers: ASME B40.100, brass; with NPS 1/4, ASME B1.20.1 pipe threads and piston porous-metal-type surge-dampening device. Include extension for use on insulated piping.
- B. Siphons: Loop-shaped section of brass stainless-steel pipe with NPS 1/4 pipe threads.
- C. Valves: Brass ballwith NPS 1/4, ASME B1.20.1 pipe threads.

2.8 TEST PLUGS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Flow Design, Inc.
 - 2. Miljoco Corporation.
 - 3. National Meter, Inc.
 - 4. Peterson Equipment Co., Inc.
 - 5. Sisco Manufacturing Company, Inc.
 - 6. Trerice, H. O. Co.
 - 7. Watts Regulator Co.; a div. of Watts Water Technologies, Inc.
 - 8. Weiss Instruments, Inc.
- B. Description: Test-station fitting made for insertion into piping tee fitting.
- C. Body: Brass or stainless steel with core inserts and gasketed and threaded cap. Include extended stem on units to be installed in insulated piping.
- D. Thread Size: NPS 1/4, ASME B1.20.1 pipe thread.
- E. Minimum Pressure and Temperature Rating: 500 psig at 200 deg F.
- F. Core Inserts: Chlorosulfonated polyethylene synthetic and EPDM self-sealing rubber.

2.9 TEST-PLUG KITS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Flow Design, Inc.
 - 2. Miljoco Corporation.
 - 3. National Meter, Inc.
 - 4. Peterson Equipment Co., Inc.
 - 5. Sisco Manufacturing Company, Inc.

- 6. Trerice, H. O. Co.
- 7. Watts Regulator Co.; a div. of Watts Water Technologies, Inc.
- 8. Weiss Instruments, Inc.
- B. Furnish one test-plug kit(s) containing two thermometer(s), one pressure gage and adapter, and carrying case. Thermometer sensing elements, pressure gage, and adapter probes shall be of diameter to fit test plugs and of length to project into piping.
- C. Low-Range Thermometer: Small, bimetallic insertion type with 1- to 2-inch- diameter dial and tapered-end sensing element. Dial range shall be at least 25 to 125 deg F.
- D. High-Range Thermometer: Small, bimetallic insertion type with 1- to 2-inch- diameter dial and tapered-end sensing element. Dial range shall be at least 0 to 220 deg F.
- E. Pressure Gage: Small, Bourdon-tube insertion type with 2- to 3-inch- diameter dial and probe. Dial range shall be at least 0 to 200 psig.
- F. Carrying Case: Metal or plastic, with formed instrument padding.

2.10 SIGHT FLOW INDICATORS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following manufacturers:
 - 1. Archon Industries, Inc.
 - 2. Dwyer Instruments, Inc.
 - 3. Emerson Process Management; Brooks Instrument.
 - 4. Ernst Co., John C., Inc.
 - 5. Ernst Flow Industries.
 - 6. KOBOLD Instruments, Inc. USA; KOBOLD Messring GmbH.
 - 7. OPW Engineered Systems; a Dover company.
 - 8. Penberthy; A Brand of Tyco Valves & Controls Prophetstown.
- B. Description: Piping inline-installation device for visual verification of flow.
- C. Construction: Bronze or stainless-steel body, with sight glass and ball, flapper, or paddle wheel indicator, and threaded or flanged ends.
- D. Minimum Pressure Rating: 150 psig.
- E. Minimum Temperature Rating: 200 deg F.
- F. End Connections for NPS 2 and Smaller: Threaded.
- G. End Connections for NPS 2-1/2 and Larger: Flanged.

2.11 FLOWMETERS

A. Orifice Flowmeters:

- 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following available manufacturers:
 - a. ABB; Instrumentation and Analytical.
 - b. Bell & Gossett; ITT Industries.
 - c. Meriam Process Technologies.
 - d. Preso Meters; a division of Racine Federated Inc.
 - e. S. A. Armstrong Limited; Armstrong Pumps Inc.
- 2. Description: Flowmeter with sensor, hoses or tubing, fittings, valves, indicator, and conversion chart.
- 3. Flow Range: Sensor and indicator shall cover operating range of equipment or system served.
- 4. Sensor: Wafer-orifice-type, calibrated, flow-measuring element; for installation between pipe flanges.
 - a. Design: Differential-pressure-type measurement for water.
 - b. Construction: Cast-iron body, brass valves with integral check valves and caps, and calibrated nameplate.
 - c. Minimum Pressure Rating: 300 psig.
 - d. Minimum Temperature Rating: 250 deg F.
- 5. Permanent Indicators: Meter suitable for wall or bracket mounting, calibrated for connected sensor and having 6-inch- diameter, or equivalent, dial with fittings and copper tubing for connecting to sensor.
 - a. Scale: Gallons per minute.
 - b. Accuracy: Plus or minus 1 percent between 20 and 80 percent of scale range.
- 6. Portable Indicators: Hand-held, differential-pressure type, calibrated for connected sensor and having two 12-foot hoses, with carrying case.
 - a. Scale: Gallons per minute.
 - b. Accuracy: Plus or minus 2 percent between 20 and 80 percent of scale range.
- 7. Display: Shows rate of flow, with register to indicate total volume in gallons.
- 8. Conversion Chart: Flow rate data compatible with sensor and indicator.
- 9. Operating Instructions: Include complete instructions with each flowmeter.
- B. Pitot-Tube Flowmeters:

- 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following manufacturers:
 - a. ABB; Instrumentation and Analytical.
 - b. Emerson Process Management; Rosemount.
 - c. Meriam Process Technologies.
 - d. Preso Meters; a division of Racine Federated Inc.
 - e. TACO Incorporated.
 - f. Veris Industries, Inc.
- 2. Description: Flowmeter with sensor and indicator.
- 3. Flow Range: Sensor and indicator shall cover operating range of equipment or system served.
- 4. Sensor: Insertion type; for inserting probe into piping and measuring flow directly in gallons per minute.
 - a. Design: Differential-pressure-type measurement for water.
 - b. Construction: Stainless-steel probe of length to span inside of pipe, with integral transmitter and direct-reading scale.
 - c. Minimum Pressure Rating: 150 psig.
 - d. Minimum Temperature Rating: 250 deg F.
- 5. Indicator: Hand-held meter; either an integral part of sensor or a separate meter.
- 6. Integral Transformer: For low-voltage power connection.
- 7. Accuracy: Plus or minus 3 percent.
- 8. Display: Shows rate of flow, with register to indicate total volume in gallons.
- 9. Operating Instructions: Include complete instructions with each flowmeter.

C. Turbine Flowmeters:

- 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following manufacturers:
 - a. ABB; Instrumentation and Analytical.
 - b. Data Industrial Corp.
 - c. EMCO Flow Systems; a division of Spirax Sarco, Inc.
 - d. ERDCO Engineering Corp.
 - e. Hoffer Flow Controls, Inc.
 - f. Liquid Controls; a unit of IDEX Corporation.
 - g. McCrometer, Inc.
 - h. Midwest Instruments & Controls Corp.
 - i. ONICON Incorporated.
 - j. SeaMetrics, Inc.
 - k. Sponsler, Inc.; a unit of IDEX Corporation.
- 2. Description: Flowmeter with sensor and indicator.

- 3. Flow Range: Sensor and indicator shall cover operating range of equipment or system served.
- 4. Sensor: Impeller turbine; for inserting into pipe fitting or for installing in piping and measuring flow directly in gallons per minute.
 - a. Design: Device or pipe fitting with inline turbine and integral direct-reading scale for water.
 - b. Construction: Bronze or stainless-steel body, with plastic turbine or impeller.
 - c. Minimum Pressure Rating: 150 psig.
 - d. Minimum Temperature Rating: 180 deg F.
- 5. Indicator: Hand-held meter; either an integral part of sensor or a separate meter.
- 6. Accuracy: Plus or minus 1-1/2 percent.
- 7. Display: Shows rate of flow, with register to indicate total volume in gallons.
- 8. Operating Instructions: Include complete instructions with each flowmeter.

D. Venturi Flowmeters:

- 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following manufacturers:
 - a. ABB; Instrumentation and Analytical.
 - b. Gerand Engineering Co.
 - c. Hyspan Precision Products, Inc.
 - d. Preso Meters; a division of Racine Federated Inc.
 - e. S. A. Armstrong Limited; Armstrong Pumps Inc.
 - f. Victaulic Company.
- 2. Description: Flowmeter with calibrated flow-measuring element, hoses or tubing, fittings, valves, indicator, and conversion chart.
- 3. Flow Range: Sensor and indicator shall cover operating range of equipment or system served.
- 4. Sensor: Venturi-type, calibrated, flow-measuring element; for installation in piping.
 - a. Design: Differential-pressure-type measurement for water.
 - b. Construction: Bronze, brass, or factory-primed steel, with brass fittings and attached tag with flow conversion data.
 - c. Minimum Pressure Rating: 250 psig.
 - d. Minimum Temperature Rating: 250 deg F.
 - e. End Connections for NPS 2 and Smaller: Threaded.
 - f. End Connections for NPS 2-1/2 and Larger: Flanged or welded.
 - g. Flow Range: Flow-measuring element and flowmeter shall cover operating range of equipment or system served.

- 5. Permanent Indicators: Meter suitable for wall or bracket mounting, calibrated for connected flowmeter element, and having 6-inch- diameter, or equivalent, dial with fittings and copper tubing for connecting to flowmeter element.
 - a. Scale: Gallons per minute.
 - b. Accuracy: Plus or minus 1 percent between 20 and 80 percent of scale range.
- 6. Portable Indicators: Hand-held, differential-pressure type, calibrated for connected flowmeter element and having two 12-foot hoses, with carrying case.
 - a. Scale: Gallons per minute.
 - b. Accuracy: Plus or minus 2 percent between 20 and 80 percent of scale range.
- 7. Display: Shows rate of flow, with register to indicate total volume in gallons.
- 8. Conversion Chart: Flow rate data compatible with sensor.
- 9. Operating Instructions: Include complete instructions with each flowmeter.

E. Vortex-Shedding Flowmeters:

- 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following manufacturers:
 - a. ABB; Instrumentation and Analytical.
 - b. Eastech Flow Controls.
 - c. EMCO Flow Systems; a division of Spirax Sarco, Inc.
 - d. Emerson Process Management; Rosemount.
 - e. Endress+Hauser.
 - f. ISTEC Corporation.
- 2. Description: Flowmeter with sensor and indicator.
- 3. Flow Range: Sensor and indicator shall cover operating range of equipment or system served.
- 4. Sensor: Inline type; for installing between pipe flanges and measuring flow directly in gallons per minute.
 - a. Design: Flow obstruction device, vortex-measurement type for liquids.
 - b. Construction: Stainless-steel body, with integral transmitter and direct-reading scale.
 - c. Minimum Pressure Rating: 1000 psig.
 - d. Minimum Temperature Rating: 500 deg F.
 - e. Integral Transformer: For low-voltage power operation.
- 5. Indicator: Hand-held meter; either an integral part of sensor or a separate meter.
- 6. Accuracy: Plus or minus 0.25 percent for liquids and 0.75 percent for gases.

- 7. Display: Shows rate of flow, with register to indicate total volume in gallons.
- 8. Operating Instructions: Include complete instructions with each flowmeter.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Install thermowells with socket extending to center of pipe and in vertical position in piping tees.
- B. Install thermowells of sizes required to match thermometer connectors. Include bushings if required to match sizes.
- C. Install thermowells with extension on insulated piping.
- D. Fill thermowells with heat-transfer medium.
- E. Install direct-mounted thermometers in thermowells and adjust vertical and tilted positions.
- F. Install remote-mounted thermometer bulbs in thermowells and install cases on panels; connect cases with tubing and support tubing to prevent kinks. Use minimum tubing length.
- G. Install duct-thermometer mounting brackets in walls of ducts. Attach to duct with screws.
- H. Install direct-mounted pressure gages in piping tees with pressure gage located on pipe at the most readable position.
- I. Install remote-mounted pressure gages on panel.
- J. Install valve and snubber in piping for each pressure gage for fluids (except steam).
- K. Install valve and syphon fitting in piping for each pressure gage for steam.
- L. Install test plugs in piping tees.
- M. Install flow indicators in piping systems in accessible positions for easy viewing.
- N. Assemble and install connections, tubing, and accessories between flow-measuring elements and flowmeters according to manufacturer's written instructions.
- O. Install flowmeter elements in accessible positions in piping systems.
- P. Install wafer-orifice flowmeter elements between pipe flanges.

- Q. Install differential-pressure-type flowmeter elements, with at least minimum straight lengths of pipe, upstream and downstream from element according to manufacturer's written instructions.
- R. Install permanent indicators on walls or brackets in accessible and readable positions.
- S. Install connection fittings in accessible locations for attachment to portable indicators.
- T. Mount thermal-energy meters on wall if accessible; if not, provide brackets to support meters.
- U. Install thermometers in the following locations:
 - 1. Inlet and outlet of each hydronic zone.
 - 2. Inlet and outlet of each hydronic boiler.
 - 3. Two inlets and two outlets of each chiller.
 - 4. Inlet and outlet of each hydronic coil in air-handling units.
 - 5. Two inlets and two outlets of each hydronic heat exchanger.
 - 6. Inlet and outlet of each thermal-storage tank.
 - 7. Outside-, return-, supply-, and mixed-air ducts.
- V. Install pressure gages in the following locations:
 - 1. Discharge of each pressure-reducing valve.
 - 2. Inlet and outlet of each chiller chilled-water and condenser-water connection.
 - 3. Suction and discharge of each pump.

3.2 CONNECTIONS

- A. Install meters and gages adjacent to machines and equipment to allow service and maintenance of meters, gages, machines, and equipment.
- B. Connect flowmeter-system elements to meters.
- C. Connect flowmeter transmitters to meters.
- D. Connect thermal-energy meter transmitters to meters.

3.3 ADJUSTING

- A. After installation, calibrate meters according to manufacturer's written instructions.
- B. Adjust faces of meters and gages to proper angle for best visibility.

3.4 THERMOMETER SCHEDULE

- A. Thermometers at inlet and outlet of each hydronic zone shall be one of the following:
 - 1. [Liquid-filled] [Sealed], bimetallic-actuated type.
 - 2. [Direct] [Remote]-mounted, [metal] [plastic]-case, vapor-actuated type.
 - 3. [Compact] [Industrial]-style, liquid-in-glass type.
 - 4. [Direct] [Remote]-mounted, light-activated type.
 - 5. Test plug with [chlorosulfonated polyethylene synthetic] [EPDM] self-sealing rubber inserts.
- B. Thermometers at inlet and outlet of each hydronic boiler shall be the following:
 - 1. Liquid-filled, bimetallic-actuated type.
- C. Thermometers at inlets and outlets of each chiller shall be one of the following:
 - 1. Liquid-filled, bimetallic-actuated type.
- D. Thermometers at inlet and outlet of each hydronic coil in air-handling units and built-up central systems shall be the following:
 - 1. Liquid-filled, bimetallic-actuated type.
- E. Thermometers at inlets and outlets of each hydronic heat exchanger shall be the following:
 - 1. Liquid-filled, bimetallic-actuated type.
- F. Thermometers at inlet and outlet of each thermal-storage tank shall be the following:
 - 1. Liquid-filled, bimetallic-actuated type.
- G. Thermometers at outside-, return-, supply-, and mixed-air ducts shall be one of the following:
 - 1. Sealed, bimetallic-actuated type.
- H. Thermometer stems shall be of length to match thermowell insertion length.
- 3.5 THERMOMETER SCALE-RANGE SCHEDULE
 - A. Scale Range for Chilled-Water Piping: 0 to 100 deg F.
 - B. Scale Range for Condenser-Water Piping: 0 to 150 deg F.
 - C. Scale Range for Heating, Hot-Water Piping: 0 to 250 deg F.

- D. Scale Range for Air Ducts: [Minus 40 to plus 110 deg F] [Minus 40 to plus 110 deg F and minus 40 to plus 45 deg C].
- E. Scale Range for Air Ducts: 0 to 100 deg F.

3.6 PRESSURE-GAGE SCHEDULE

- A. Pressure gages at discharge of each pressure-reducing valve shall be one of the following:
 - 1. Liquid-filled or Sealed direct-mounted, metal case.
- B. Pressure gages at inlet and outlet of each chiller chilled-water and condenser-water connection shall be one of the following:
 - 1. Liquid-filled direct mounted, metal case.
- C. Pressure gages at suction and discharge of each pump shall be one of the following:
 - 1. Liquid-filled, direct-mounted, metal case.

3.7 PRESSURE-GAGE SCALE-RANGE SCHEDULE

- A. Scale Range for Chilled-Water Piping: 0 to 100 psi.
- B. Scale Range for Condenser-Water Piping: 0 to 100 psi.
- C. Scale Range for Heating, Hot-Water Piping: 0 to 100 psi.

3.8 FLOWMETER SCHEDULE

- A. Flowmeters for Chilled-Water Piping: Venturi, rtex-shedding type.
- B. Flowmeters for Condenser-Water Piping: Venturi, rtex-shedding type.
- C. Flowmeters for Heating, Hot-Water Piping: Venturi, rtex-shedding type.

END OF SECTION 230519

SECTION 230523

GENERAL-DUTY VALVES FOR HVAC PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

- 1. Brass ball valves.
- 2. Iron, single-flange butterfly valves.
- 3. High-performance butterfly valves.
- 4. Bronze lift check valves.
- 5. Bronze swing check valves.
- 6. Iron swing check valves.
- 7. Bronze gate valves.
- 8. Iron gate valves.
- 9. Chainwheels.

B. Related Sections:

- 1. Division 23 HVAC piping Sections for specialty valves applicable to those Sections only.
- 2. Division 23 Section "Identification for HVAC Piping and Equipment" for valve tags and schedules.

1.3 DEFINITIONS

- A. CWP: Cold working pressure.
- B. EPDM: Ethylene propylene copolymer rubber.
- C. NBR: Acrylonitrile-butadiene, Buna-N, or nitrile rubber.
- D. NRS: Nonrising stem.
- E. OS&Y: Outside screw and yoke.

F. RS: Rising stem.

1.4 SUBMITTALS

A. Product Data: For each type of valve indicated.

1.5 QUALITY ASSURANCE

- A. Source Limitations for Valves: Obtain each type of valve from single source from single manufacturer.
- B. ASME Compliance:
 - 1. ASME B16.10 and ASME B16.34 for ferrous valve dimensions and design criteria.
 - 2. ASME B31.1 for power piping valves.
 - 3. ASME B31.9 for building services piping valves.

1.6 DELIVERY, STORAGE, AND HANDLING

- A. Prepare valves for shipping as follows:
 - 1. Protect internal parts against rust and corrosion.
 - 2. Protect threads, flange faces, grooves, and weld ends.
 - 3. Set angle, gate, and globe valves closed to prevent rattling.
 - 4. Set ball and plug valves open to minimize exposure of functional surfaces.
 - 5. Set butterfly valves closed or slightly open.
 - 6. Block check valves in either closed or open position.
- B. Use the following precautions during storage:
 - 1. Maintain valve end protection.
 - 2. Store valves indoors and maintain at higher than ambient dew point temperature. If outdoor storage is necessary, store valves off the ground in watertight enclosures.
- C. Use sling to handle large valves; rig sling to avoid damage to exposed parts. Do not use handwheels or stems as lifting or rigging points.

PART 2 - PRODUCTS

2.1 GENERAL REQUIREMENTS FOR VALVES

A. Refer to HVAC valve schedule articles for applications of valves.

- B. Valve Pressure and Temperature Ratings: Not less than indicated and as required for system pressures and temperatures.
- C. Valve Sizes: Same as upstream piping unless otherwise indicated.
- D. Valve Actuator Types:
 - 1. Gear Actuator: For quarter-turn valves NPS 8 and larger.
 - 2. Handwheel: For valves other than quarter-turn types.
 - 3. Handlever: For quarter-turn valves NPS 6 and smaller.
 - 4. Chainwheel: Device for attachment to valve handwheel, stem, or other actuator; of size and with chain for mounting height, as indicated in the "Valve Installation" Article.
- E. Valves in Insulated Piping: With 2-inch stem extensions and the following features:
 - 1. Gate Valves: With rising stem.
 - 2. Ball Valves: With extended operating handle of non-thermal-conductive material, and protective sleeve that allows operation of valve without breaking the vapor seal or disturbing insulation.
 - 3. Butterfly Valves: With extended neck.
- F. Valve-End Connections:
 - 1. Flanged: With flanges according to ASME B16.1 for iron valves.
 - 2. Solder Joint: With sockets according to ASME B16.18.
 - 3. Threaded: With threads according to ASME B1.20.1.
- G. Valve Bypass and Drain Connections: MSS SP-45.

2.2 BRASS BALL VALVES

- A. One-Piece, Full-Port, Brass Ball Valves with Brass Trim:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. American Valve, Inc.
 - b. Crane Co.; Crane Valve Group; Jenkins Valves.
 - c. Crane Co.; Crane Valve Group; Stockham Div.
 - d. Grinnell Corporation.
 - e. Jamesbury, Inc.
 - f. NIBCO INC.
 - g. Watts Industries, Inc.; Water Products Div.
 - h. Kitz Corporation.
 - i. Or Approved Equal.
 - 2. Description:
 - a. Standard: MSS SP-110.
 - b. CWP Rating: 400 psig.

- c. Body Design: One piece.
- d. Body Material: Forged brass.
- e. Ends: Threaded.
- f. Seats: PTFE or TFE.
- g. Stem: Brass.
- h. Ball: Chrome-plated brass.
- i. Port: Full.
- B. Three-Piece, Full-Port, Brass Ball Valves with Stainless-Steel Trim:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Jomar International, LTD.
 - b. Kitz Corporation.
 - c. Marwin Valve; a division of Richards Industries.
 - d. Watts Regulator Co.; a division of Watts Water Technologies, Inc.
 - e. Conbraco Industries, Inc.; Apollo Div.
 - f. Grinnell Corporation.
 - g. Jamesbury, Inc.
 - h. NIBCO INC.
 - i. PBM, Inc.
 - j. Or Approved Equal.
 - 2. Controls Description:
 - a. Standard: MSS SP-110.
 - b. SWP Rating: 150 psig.
 - c. CWP Rating: 600 psig.
 - d. Body Design: Three piece.
 - e. Body Material: Forged brass.
 - f. Ends: Threaded.
 - g. Seats: PTFE or TFE.
 - h. Stem: Stainless steel.
 - i. Ball: Stainless steel, vented.
 - j. Port: Full.

2.3 IRON, SINGLE-FLANGE BUTTERFLY VALVES

- A. 200 CWP, Iron, Single-Flange Butterfly Valves with EPDM Seat and Stainless-Steel Disc:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following manufacturers
 - a. ABZ Valve and Controls; a division of ABZ Manufacturing, Inc.
 - b. American Valve, Inc.
 - c. Conbraco Industries, Inc.; Apollo Valves.
 - d. Cooper Cameron Valves; a division of Cooper Cameron Corp.

- e. Crane Co.; Crane Valve Group; Jenkins Valves.
- f. Crane Co.; Crane Valve Group; Stockham Division.
- g. DeZurik Water Controls.
- h. Dover Corp.; Dover Resources Company; Norriseal Div.
- i. Flo Fab Inc.
- j. Grinnell Corporation
- k. Hammond Valve.
- 1. Kitz Corporation.
- m. Legend Valve.
- n. Milwaukee Valve Company.
- o. Mueller Steam Specialty; a division of SPX Corporation.
- p. NIBCO INC.
- q. Norriseal; a Dover Corporation company.
- r. Red-White Valve Corporation.
- s. Spence Strainers International; a division of CIRCOR International.
- t. Sure Flow Equipment Inc.
- u. Tyco International, Ltd.; Tyco Valves & Controls.
- v. Watts Regulator Co.; a division of Watts Water Technologies, Inc.
- w. Or Approved Equal.

2. Description:

- a. Standard: MSS SP-67, Type I.
- b. CWP Rating: 200 psig.
- c. Body Design: Lug type; suitable for bidirectional dead-end service at rated pressure without use of downstream flange.
- d. Body Material: ASTM A 126, cast iron or ASTM A 536, ductile iron.
- e. Seat: EPDM.
- f. Stem: One- or two-piece stainless steel.
- g. Disc: Stainless steel.

2.4 HIGH-PERFORMANCE BUTTERFLY VALVES

- A. Class 150, Single-Flange, High-Performance Butterfly Valves:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following manufacturers:
 - a. ABZ Valve and Controls; a division of ABZ Manufacturing, Inc.
 - b. Bray Controls; a division of Bray International.
 - c. Cooper Cameron Valves; a division of Cooper Cameron Corp.
 - d. Crane Co.; Crane Valve Group; Flowseal.
 - e. Crane Co.; Crane Valve Group; Stockham Division.
 - f. DeZurik Water Controls.
 - g. Hammond Valve.
 - h. Jamesbury; a subsidiary of Metso Automation.
 - i. Milwaukee Valve Company.

- j. NIBCO INC.
- k. Process Development & Control, Inc.
- 1. Tyco Valves & Controls; a unit of Tyco Flow Control.
- m. Xomox Corporation.
- n. Or Approved Equal.

2. Description:

- a. Standard: MSS SP-68.
- b. CWP Rating: 285 psig at 100 deg F.
- c. Body Design: Lug type; suitable for bidirectional dead-end service at rated pressure without use of downstream flange.
- d. Body Material: Carbon steel, cast iron, ductile iron, or stainless steel.
- e. Seat: Reinforced PTFE or metal.
- f. Stem: Stainless steel; offset from seat plane.
- g. Disc: Carbon steel.
- h. Service: Bidirectional.

2.5 BRONZE LIFT CHECK VALVES

- A. Class 125, Lift Check Valves with Bronze Disc:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following [available manufacturers:
 - a. Crane Co.; Crane Valve Group; Crane Valves.
 - b. Crane Co.; Crane Valve Group; Jenkins Valves.
 - c. Crane Co.; Crane Valve Group; Stockham Division.
 - d. Or Approved Equal.
 - 2. Description:
 - a. Standard: MSS SP-80, Type 1.
 - b. CWP Rating: 200 psig.
 - c. Body Design: Vertical flow.
 - d. Body Material: ASTM B 61 or ASTM B 62, bronze.
 - e. Ends: Threaded.
 - f. Disc: Bronze.

2.6 BRONZE SWING CHECK VALVES

- A. Class 150, Bronze Swing Check Valves with Bronze Disc:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following viable manufacturers:
 - a. American Valve, Inc.
 - b. Crane Co.; Crane Valve Group; Crane Valves.
 - c. Crane Co.; Crane Valve Group; Jenkins Valves.
 - d. Crane Co.; Crane Valve Group; Stockham Division.

- e. Grinnell Corporation.
- f. Kitz Corporation.
- g. Milwaukee Valve Company.
- h. NIBCO INC.
- i. Red-White Valve Corporation.
- j. Watts Industries, Inc.; Water Products Div.
- k. Zy-Tech Global Industries, Inc.
- 1. Or Approved Equal.
- 2. Description:
 - a. Standard: MSS SP-80, Type 3.
 - b. CWP Rating: 300 psig.
 - c. Body Design: Horizontal flow.
 - d. Body Material: ASTM B 62, bronze.
 - e. Ends: Threaded.
 - f. Disc: Bronze.

2.7 IRON SWING CHECK VALVES

- A. Class 250, Iron Swing Check Valves with Metal Seats:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following viable manufacturers:
 - a. Crane Co.; Crane Valve Group; Crane Valves.
 - b. Crane Co.; Crane Valve Group; Jenkins Valves.
 - c. Crane Co.; Crane Valve Group; Stockham Division.
 - d. Cincinnati Valve Company
 - e. Flomatic Valves
 - f. Grinnell Corporation
 - g. Hammond Valve.
 - h. Milwaukee Valve Company.
 - i. NIBCO INC.
 - j. Watts Regulator Co.; a division of Watts Water Technologies, Inc.
 - k. Or Approved Equal.
 - 2. Description:
 - a. Standard: MSS SP-71, Type I.
 - b. NPS 2-1/2 to NPS 12, CWP Rating: 500 psig.
 - c. NPS 14 to NPS 24, CWP Rating: 300 psig.
 - d. Body Design: Clear or full waterway.
 - e. Body Material: ASTM A 126, gray iron with bolted bonnet.
 - f. Ends: Flanged.
 - g. Trim: Bronze.
 - h. Gasket: Asbestos free.

2.8 BRONZE GATE VALVES

A. Class 150, NRS Bronze Gate Valves:

- 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following manufacturers:
 - a. Hammond Valve.
 - b. Kitz Corporation.
 - c. Milwaukee Valve Company.
 - d. NIBCO INC.
 - e. Powell Valves.
 - f. Red-White Valve Corporation.
 - g. Watts Regulator Co.; a division of Watts Water Technologies, Inc.
 - h. American Valve, Inc.
 - i. Grinnell Corporation.
 - j. Or Approved Equal.
- 2. Description:
 - a. Standard: MSS SP-80, Type 1.
 - b. CWP Rating: 300 psig.
 - c. Body Material: ASTM B 62, bronze with integral seat and union-ring bonnet.
 - d. Ends: Threaded.
 - e. Stem: Bronze.
 - f. Disc: Solid wedge; bronze.
 - g. Packing: Asbestos free.
 - h. Handwheel: Malleable iron bronze, or aluminum.

2.9 IRON GATE VALVES

- A. Class 250, NRS, Iron Gate Valves:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following manufacturers:
 - a. Crane Co.; Crane Valve Group; Crane Valves.
 - b. Crane Co.; Crane Valve Group; Stockham Division.
 - c. NIBCO INC.
 - d. Cincinnati Valve Company.
 - e. Grinnell Corporation.
 - f. Or Approved Equal.
 - 2. Description:
 - a. Standard: MSS SP-70, Type I.
 - b. NPS 2-1/2 to NPS 12, CWP Rating: 500 psig.
 - c. NPS 14 to NPS 24, CWP Rating: 300 psig.
 - d. Body Material: ASTM A 126, gray iron with bolted bonnet.
 - e. Ends: Flanged.

- f. Trim: Bronze.
- g. Disc: Solid wedge.
- h. Packing and Gasket: Asbestos free.

B. Class 250, OS&Y, Iron Gate Valves:

- 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following manufacturers:
 - a. Crane Co.; Crane Valve Group; Crane Valves.
 - b. Crane Co.; Crane Valve Group; Stockham Division.
 - c. Hammond Valve.
 - d. Milwaukee Valve Company.
 - e. NIBCO INC.
 - f. Powell Valves.
 - g. Watts Regulator Co.; a division of Watts Water Technologies, Inc.
 - h. Grinnell Corporation.
 - i. Or Approved Equal.
- 2. Description:
 - a. Standard: MSS SP-70, Type I.
 - b. NPS 2-1/2 to NPS 12, CWP Rating: 500 psig.
 - c. NPS 14 to NPS 24, CWP Rating: 300 psig.
 - d. Body Material: ASTM A 126, gray iron with bolted bonnet.
 - e. Ends: Flanged.
 - f. Trim: Bronze.
 - g. Disc: Solid wedge.
 - h. Packing and Gasket: Asbestos free.

2.10 CHAINWHEELS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following manufacturers:
 - 1. Babbitt Steam Specialty Co.
 - 2. Roto Hammer Industries.
 - 3. Trumbull Industries.
 - 4. Or Approved Equal.
- B. Description: Valve actuation assembly with sprocket rim, brackets, and chain.
 - 1. Brackets: Type, number, size, and fasteners required to mount actuator on valve.
 - 2. Attachment: For connection to butterfly valve stems.
 - 3. Sprocket Rim with Chain Guides: Ductile or cast iron, of type and size required for valve. Include zinc coating.
 - 4. Chain: Hot-dip, galvanized steel, of size required to fit sprocket rim.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine valve interior for cleanliness, freedom from foreign matter, and corrosion. Remove special packing materials, such as blocks, used to prevent disc movement during shipping and handling.
- B. Operate valves in positions from fully open to fully closed. Examine guides and seats made accessible by such operations.
- C. Examine threads on valve and mating pipe for form and cleanliness.
- D. Examine mating flange faces for conditions that might cause leakage. Check bolting for proper size, length, and material. Verify that gasket is of proper size, that its material composition is suitable for service, and that it is free from defects and damage.
- E. Do not attempt to repair defective valves; replace with new valves.

3.2 VALVE INSTALLATION

- A. Install valves with unions or flanges at each piece of equipment arranged to allow service, maintenance, and equipment removal without system shutdown.
- B. Locate valves for easy access and provide separate support where necessary.
- C. Install valves in horizontal piping with stem at or above center of pipe.
- D. Install valves in position to allow full stem movement.
- E. Install chainwheels on operators for butterfly and gate valves NPS 4 and larger and more than 96 inches above floor. Extend chains to 60 inches above finished floor.
- F. Install check valves for proper direction of flow and as follows:
 - 1. Swing Check Valves: In horizontal position with hinge pin level.
 - 2. Lift Check Valves: With stem upright and plumb.

3.3 ADJUSTING

A. Adjust or replace valve packing after piping systems have been tested and put into service but before final adjusting and balancing. Replace valves if persistent leaking occurs.

3.4 GENERAL REQUIREMENTS FOR VALVE APPLICATIONS

- A. If valve applications are not indicated, use the following:
 - 1. Shutoff Service: Ball, butterfly, or gate valves.
 - 2. Butterfly Valve Dead-End Service: Single-flange (lug) type.
 - 3. Throttling Service except Steam: ball or butterfly valves.
 - 4. Throttling Service, Steam: butterfly valves.
 - 5. Pump-Discharge Check Valves:
 - a. NPS 2 and Smaller: Bronze swing check valves with bronze disc.
 - b. NPS 2-1/2 and Larger: Iron swing check valves with lever and weight or with spring or iron, center-guided, metal-seat check valves.
- B. If valves with specified SWP classes or CWP ratings are not available, the same types of valves with higher SWP classes or CWP ratings may be substituted.
- C. Select valves, except wafer types, with the following end connections:
 - 1. For Copper Tubing, NPS 2 and Smaller: Threaded ends except where solder-joint valve-end option is indicated in valve schedules below.
 - 2. For Copper Tubing, NPS 2-1/2 to NPS 4: Flanged ends except where threaded valve-end option is indicated in valve schedules below.
 - 3. For Copper Tubing, NPS 5 and Larger: Flanged ends.
 - 4. For Steel Piping, NPS 2 and Smaller: Threaded ends.
 - 5. For Steel Piping, NPS 2-1/2 to NPS 4: Flanged ends except where threaded valve-end option is indicated in valve schedules below.
 - 6. For Steel Piping, NPS 5 and Larger: Flanged ends.

END OF SECTION 230523

April 25, 2025 Bid Issue

Addition & Alterations Department of Public Works 10 Hartford Road Delran, New Jersey

THIS PAGE INTENTIONALLY LEFT BLANK

SECTION 230529

HANGERS AND SUPPORTS FOR HVAC PIPING AND EQUIPMENT

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

- 1. Metal pipe hangers and supports.
- 2. Trapeze pipe hangers.
- 3. Fiberglass pipe hangers.
- 4. Metal framing systems.
- 5. Fiberglass strut systems.
- 6. Thermal-hanger shield inserts.
- 7. Fastener systems.
- 8. Pipe stands.
- 9. Equipment supports.

B. Related Sections:

- 1. Division 23 Section "Vibration and Seismic Controls for HVAC Piping and Equipment" for vibration isolation devices.
- 2. Division 23 Section(s) "Metal Ducts" for duct hangers and supports.

1.3 DEFINITIONS

A. MSS: Manufacturers Standardization Society of The Valve and Fittings Industry Inc.

1.4 PERFORMANCE REQUIREMENTS

- A. Delegated Design: Design trapeze pipe hangers and equipment supports, including comprehensive engineering analysis by a qualified professional engineer, using performance requirements and design criteria indicated.
- B. Structural Performance: Hangers and supports for HVAC piping and equipment shall withstand the effects of gravity loads and stresses within limits and under conditions indicated according to ASCE/SEI 7.

- 1. Design supports for multiple pipes, including pipe stands, capable of supporting combined weight of supported systems, system contents, and test water.
- 2. Design equipment supports capable of supporting combined operating weight of supported equipment and connected systems and components.
- 3. Design seismic-restraint hangers and supports for piping and equipment and obtain approval from authorities having jurisdiction.

1.5 SUBMITTALS

- A. Product Data: For each type of product indicated.
- B. Shop Drawings: Signed and sealed by a qualified professional engineer. Show fabrication and installation details and include calculations for the following: include Product Data for components:
 - 1. Trapeze pipe hangers.
 - 2. Metal framing systems.
 - 3. Fiberglass strut systems.
 - 4. Pipe stands.
 - 5. Equipment supports.
- C. Delegated-Design Submittal: For trapeze hangers indicated to comply with performance requirements and design criteria, including analysis data signed and sealed by the qualified professional engineer responsible for their preparation.
 - 1. Detail fabrication and assembly of trapeze hangers.
 - 2. Design Calculations: Calculate requirements for designing trapeze hangers.
- D. Welding certificates.

1.6 QUALITY ASSURANCE

- A. Structural Steel Welding Qualifications: Qualify procedures and personnel according to AWS D1.1/D1.1M, "Structural Welding Code Steel."
- B. Pipe Welding Qualifications: Qualify procedures and operators according to ASME Boiler and Pressure Vessel Code.

PART 2 - PRODUCTS

2.1 METAL PIPE HANGERS AND SUPPORTS

- A. Carbon-Steel Pipe Hangers and Supports:
 - 1. Description: MSS SP-58, Types 1 through 58, factory-fabricated components.

- 2. Galvanized Metallic Coatings: Pre-galvanized or hot dipped.
- 3. Nonmetallic Coatings: Plastic coating, jacket, or liner.
- 4. Padded Hangers: Hanger with fiberglass or other pipe insulation pad or cushion to support bearing surface of piping.
- 5. Hanger Rods: Continuous-thread rod, nuts, and washer made of stainless steel.

B. Stainless-Steel Pipe Hangers and Supports:

- 1. Description: MSS SP-58, Types 1 through 58, factory-fabricated components.
- 2. Padded Hangers: Hanger with fiberglass or other pipe insulation pad or cushion to support bearing surface of piping.
- 3. Hanger Rods: Continuous-thread rod, nuts, and washer made of stainless steel.

C. Copper Pipe Hangers:

- 1. Description: MSS SP-58, Types 1 through 58, copper-coated-steel, factory-fabricated components.
- 2. Hanger Rods: Continuous-thread rod, nuts, and washer made of stainless steel.

2.2 TRAPEZE PIPE HANGERS

A. Description: MSS SP-69, Type 59, shop- or field-fabricated pipe-support assembly made from structural carbon-steel shapes with MSS SP-58 carbon-steel hanger rods, nuts, saddles, and U-bolts.

2.3 FIBERGLASS PIPE HANGERS

- A. Clevis-Type, Fiberglass Pipe Hangers:
 - 1. Description: Similar to MSS SP-58, Type 1, steel pipe hanger except hanger is made of fiberglass or fiberglass-reinforced resin.
 - 2. Hanger Rods: Continuous-thread rod, washer, and nuts made of stainless steel.
- B. Strap-Type, Fiberglass Pipe Hangers:
 - 1. Description: Similar to MSS SP-58, Type 9 or Type 10, steel pipe hanger except hanger is made of fiberglass-reinforced resin.
 - 2. Hanger Rod and Fittings: Continuous-thread rod, washer, and nuts made of stainless steel.

2.4 METAL FRAMING SYSTEMS

- A. MFMA Manufacturer Metal Framing Systems:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Allied Tube & Conduit.
 - b. Cooper B-Line, Inc.

- c. Flex-Strut Inc.
- d. GS Metals Corp.
- e. Thomas & Betts Corporation.
- f. Unistrut Corporation; Tyco International, Ltd.
- g. Wesanco, Inc.
- h. Or Approved Equal.
- 2. Description: Shop- or field-fabricated pipe-support assembly for supporting multiple parallel pipes.
- 3. Standard: MFMA-4.
- 4. Channels: Continuous slotted steel channel with inturned lips.
- 5. Channel Nuts: Formed or stamped steel nuts or other devices designed to fit into channel slot and, when tightened, prevent slipping along channel.
- 6. Hanger Rods: Continuous-thread rod, nuts, and washer made of stainless steel.
- 7. Metallic Coating: Electroplated zinc.
- 8. Paint Coating: Epoxy.
- 9. Plastic Coating: Epoxy.

2.5 FIBERGLASS STRUT SYSTEMS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Allied Tube & Conduit.
 - 2. Champion Fiberglass, Inc.
 - 3. Cooper B-Line, Inc.
 - 4. SEASAFE, INC.; a Gibraltar Industries Company.
 - 5. Or Approved Equal.
- B. Description: Shop- or field-fabricated pipe-support assembly similar to MFMA-4 for supporting multiple parallel pipes.
 - 1. Channels: Continuous slotted fiberglass channel with in-turned lips.
 - 2. Channel Nuts: Fiberglass nuts or other devices designed to fit into channel slot and, when tightened, prevent slipping along channel.
 - 3. Hanger Rods: Continuous-thread rod, nuts, and washer made of stainless steel.

2.6 THERMAL-HANGER SHIELD INSERTS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Carpenter & Paterson, Inc.
 - 2. Clement Support Services.
 - 3. ERICO International Corporation.
 - 4. National Pipe Hanger Corporation.
 - 5. PHS Industries, Inc.

- 6. Pipe Shields, Inc.; a subsidiary of Piping Technology & Products, Inc.
- 7. Piping Technology & Products, Inc.
- 8. Rilco Manufacturing Co., Inc.
- 9. Value Engineered Products, Inc.
- 10. Or Approved Equal.
- B. Insulation-Insert Material for Cold Piping: ASTM C 552, Type II cellular glass with 100-psig minimum compressive strength and vapor barrier.
- C. Insulation-Insert Material for Hot Piping: Water-repellent treated, ASTM C 533, Type I calcium silicate with 100-psig minimum compressive strength.
- D. For Trapeze or Clamped Systems: Insert and shield shall cover entire circumference of pipe.
- E. For Clevis or Band Hangers: Insert and shield shall cover lower 180 degrees of pipe.
- F. Insert Length: Extend 2 inches beyond sheet metal shield for piping operating below ambient air temperature.

2.7 FASTENER SYSTEMS

- A. Powder-Actuated Fasteners: Threaded-steel stud, for use in hardened portland cement concrete with pull-out, tension, and shear capacities appropriate for supported loads and building materials where used.
- B. Mechanical-Expansion Anchors: Insert-wedge-type, stainless-steel anchors, for use in hardened portland cement concrete; with pull-out, tension, and shear capacities appropriate for supported loads and building materials where used.

2.8 PIPE STANDS

- A. General Requirements for Pipe Stands: Shop- or field-fabricated assemblies made of manufactured corrosion-resistant components to support roof-mounted piping.
- B. Compact Pipe Stand: One-piece plastic unit with integral-rod roller, pipe clamps, or V-shaped cradle to support pipe, for roof installation without membrane penetration.
- C. Low-Type, Single-Pipe Stand: One-piece stainless-steel base unit with plastic roller, for roof installation without membrane penetration.
- D. High-Type, Single-Pipe Stand:

- 1. Description: Assembly of base, vertical and horizontal members, and pipe support, for roof installation without membrane penetration.
- 2. Base: Stainless steel.
- 3. Vertical Members: Two or more cadmium-plated-steel or stainless-steel, continuous-thread rods.
- 4. Horizontal Member: Cadmium-plated-steel or stainless-steel rod with plastic or stainless-steel, roller-type pipe support.

E. High-Type, Multiple-Pipe Stand:

- 1. Description: Assembly of bases, vertical and horizontal members, and pipe supports, for roof installation without membrane penetration.
- 2. Bases: One or more; plastic.
- 3. Vertical Members: Two or more protective-coated-steel channels.
- 4. Horizontal Member: Protective-coated-steel channel.
- 5. Pipe Supports: Galvanized-steel, clevis-type pipe hangers.
- F. Curb-Mounted-Type Pipe Stands: Shop- or field-fabricated pipe supports made from structural-steel shapes, continuous-thread rods, and rollers, for mounting on permanent stationary roof curb.

2.9 EQUIPMENT SUPPORTS

A. Description: Welded, shop- or field-fabricated equipment support made from structural carbon-steel shapes.

2.10 MISCELLANEOUS MATERIALS

- A. Structural Steel: ASTM A 36/A 36M, carbon-steel plates, shapes, and bars; black and galvanized.
- B. Grout: ASTM C 1107, factory-mixed and -packaged, dry, hydraulic-cement, non-shrink and nonmetallic grout; suitable for interior and exterior applications.
 - 1. Properties: Non-staining, noncorrosive, and nongaseous.
 - 2. Design Mix: 5000-psi, 28-day compressive strength.

PART 3 - EXECUTION

3.1 HANGER AND SUPPORT INSTALLATION

A. Metal Pipe-Hanger Installation: Comply with MSS SP-69 and MSS SP-89. Install hangers, supports, clamps, and attachments as required to properly support piping from the building structure.

- B. Metal Trapeze Pipe-Hanger Installation: Comply with MSS SP-69 and MSS SP-89. Arrange for grouping of parallel runs of horizontal piping, and support together on field-fabricated trapeze pipe hangers.
 - 1. Pipes of Various Sizes: Support together and space trapezes for smallest pipe size or install intermediate supports for smaller diameter pipes as specified for individual pipe hangers.
 - 2. Field fabricate from ASTM A 36/A 36M, carbon-steel shapes selected for loads being supported. Weld steel according to AWS D1.1/D1.1M.
- C. Fiberglass Pipe-Hanger Installation: Comply with applicable portions of MSS SP-69 and MSS SP-89. Install hangers and attachments as required to properly support piping from building structure.
- D. Metal Framing System Installation: Arrange for grouping of parallel runs of piping, and support together on field-assembled metal framing systems.
- E. Fiberglass Strut System Installation: Arrange for grouping of parallel runs of piping, and support together on field-assembled fiberglass struts.
- F. Thermal-Hanger Shield Installation: Install in pipe hanger or shield for insulated piping.
- G. Fastener System Installation:
 - Install powder-actuated fasteners for use in lightweight concrete or concrete slabs less than 4
 inches thick in concrete after concrete is placed and completely cured. Use operators that are
 licensed by powder-actuated tool manufacturer. Install fasteners according to powderactuated tool manufacturer's operating manual.
 - 2. Install mechanical-expansion anchors in concrete after concrete is placed and completely cured. Install fasteners according to manufacturer's written instructions.
- H. Pipe Stand Installation:
 - 1. Pipe Stand Types except Curb-Mounted Type: Assemble components and mount on smooth roof surface. Do not penetrate roof membrane.
 - 2. Curb-Mounted-Type Pipe Stands: Assemble components or fabricate pipe stand and mount on permanent, stationary roof curb. See Division 07 Section "Roof Accessories" for curbs.
- I. Install hangers and supports complete with necessary attachments, inserts, bolts, rods, nuts, washers, and other accessories.
- J. Equipment Support Installation: Fabricate from welded-structural-steel shapes.
- K. Install hangers and supports to allow controlled thermal and seismic movement of piping systems, to permit freedom of movement between pipe anchors, and to facilitate action of expansion joints, expansion loops, expansion bends, and similar units.

- L. Install lateral bracing with pipe hangers and supports to prevent swaying.
- M. Install building attachments within concrete slabs or attach to structural steel. Install additional attachments at concentrated loads, including valves, flanges, and strainers, NPS 2-1/2 and larger and at changes in direction of piping. Install concrete inserts before concrete is placed; fasten inserts to forms and install reinforcing bars through openings at top of inserts.
- N. Load Distribution: Install hangers and supports so that piping live and dead loads and stresses from movement will not be transmitted to connected equipment.
- O. Pipe Slopes: Install hangers and supports to provide indicated pipe slopes and to not exceed maximum pipe deflections allowed by ASME B31.9 for building services piping.
- P. Insulated Piping:
 - 1. Attach clamps and spacers to piping.
 - a. Piping Operating above Ambient Air Temperature: Clamp may project through insulation.
 - b. Piping Operating below Ambient Air Temperature: Use thermal-hanger shield insert with clamp sized to match OD of insert.
 - c. Do not exceed pipe stress limits allowed by ASME B31.9 for building services piping.
 - 2. Install MSS SP-58, Type 39, protection saddles if insulation without vapor barrier is indicated. Fill interior voids with insulation that matches adjoining insulation.
 - a. Option: Thermal-hanger shield inserts may be used. Include steel weight-distribution plate for pipe NPS 4 and larger if pipe is installed on rollers.
 - 3. Install MSS SP-58, Type 40, protective shields on cold piping with vapor barrier. Shields shall span an arc of 180 degrees.
 - a. Option: Thermal-hanger shield inserts may be used. Include steel weight-distribution plate for pipe NPS 4 and larger if pipe is installed on rollers.
 - 4. Shield Dimensions for Pipe: Not less than the following:
 - a. NPS 1/4 to NPS 3-1/2: 12 inches long and 0.048 inch thick.
 - b. NPS 4: 12 inches long and 0.06 inch thick.
 - c. NPS 5 and NPS 6: 18 inches long and 0.06 inch thick.
 - d. NPS 8 to NPS 14: 24 inches long and 0.075 inch thick.
 - e. NPS 16 to NPS 24: 24 inches long and 0.105 inch thick.
 - 5. Pipes NPS 8 and Larger: Include wood or reinforced calcium-silicate-insulation inserts of length at least as long as protective shield.
 - 6. Thermal-Hanger Shields: Install with insulation same thickness as piping insulation.

3.2 EQUIPMENT SUPPORTS

- A. Fabricate structural-steel stands to suspend equipment from structure overhead or to support equipment above floor.
- B. Grouting: Place grout under supports for equipment and make bearing surface smooth.
- C. Provide lateral bracing, to prevent swaying, for equipment supports.

3.3 METAL FABRICATIONS

- A. Cut, drill, and fit miscellaneous metal fabrications for trapeze pipe hangers and equipment supports.
- B. Fit exposed connections together to form hairline joints. Field weld connections that cannot be shop welded because of shipping size limitations.
- C. Field Welding: Comply with AWS D1.1/D1.1M procedures for shielded, metal arc welding; appearance and quality of welds; and methods used in correcting welding work; and with the following:
 - 1. Use materials and methods that minimize distortion and develop strength and corrosion resistance of base metals.
 - 2. Obtain fusion without undercut or overlap.
 - 3. Remove welding flux immediately.
 - 4. Finish welds at exposed connections so no roughness shows after finishing and so contours of welded surfaces match adjacent contours.

3.4 ADJUSTING

- A. Hanger Adjustments: Adjust hangers to distribute loads equally on attachments and to achieve indicated slope of pipe.
- B. Trim excess length of continuous-thread hanger and support rods to 1-1/2 inches.

3.5 PAINTING

- A. Touchup: Clean field welds and abraded areas of shop paint. Paint exposed areas immediately after erecting hangers and supports. Use same materials as used for shop painting. Comply with SSPC-PA 1 requirements for touching up field-painted surfaces.
 - 1. Apply paint by brush or spray to provide a minimum dry film thickness of 2.0 mils.
- B. Touchup: Cleaning and touchup painting of field welds, bolted connections, and abraded areas of shop paint on miscellaneous metal are specified in painting Sections.

C. Galvanized Surfaces: Clean welds, bolted connections, and abraded areas and apply galvanizing-repair paint to comply with ASTM A 780.

3.6 HANGER AND SUPPORT SCHEDULE

- A. Specific hanger and support requirements are in Sections specifying piping systems and equipment.
- B. Comply with MSS SP-69 for pipe-hanger selections and applications that are not specified in piping system Sections.
- C. Use hangers and supports with galvanized metallic coatings for piping and equipment that will not have field-applied finish.
- D. Use nonmetallic coatings on attachments for electrolytic protection where attachments are in direct contact with copper tubing.
- E. Use carbon-steel metal trapeze pipe hangers and metal framing systems and attachments for general service applications.
- F. Use stainless-steel pipe hangers and stainless-steel attachments for hostile environment applications.
- G. Use copper-plated pipe hangers and copper stainless-steel attachments for copper piping and tubing.
- H. Use padded hangers for piping that is subject to scratching.
- I. Use thermal-hanger shield inserts for insulated piping and tubing.
- J. Horizontal-Piping Hangers and Supports: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
 - 1. Adjustable, Steel Clevis Hangers (MSS Type 1): For suspension of noninsulated or insulated, stationary pipes NPS 1/2 to NPS 30.
 - 2. Yoke-Type Pipe Clamps (MSS Type 2): For suspension of up to 1050 deg F,pipes NPS 4 to NPS 24, requiring up to 4 inches of insulation.
 - 3. Carbon- or Alloy-Steel, Double-Bolt Pipe Clamps (MSS Type 3): For suspension of pipes NPS 3/4 to NPS 36, requiring clamp flexibility and up to 4 inches of insulation.
 - 4. Steel Pipe Clamps (MSS Type 4): For suspension of cold and hot pipes NPS 1/2 to NPS 24 if little or no insulation is required.
 - 5. Pipe Hangers (MSS Type 5): For suspension of pipes NPS 1/2 to NPS 4, to allow off-center closure for hanger installation before pipe erection.
 - 6. Adjustable, Swivel Split- or Solid-Ring Hangers (MSS Type 6): For suspension of non-insulated, stationary pipes NPS 3/4 to NPS 8.

- 7. Adjustable, Steel Band Hangers (MSS Type 7): For suspension of noninsulated, stationary pipes NPS 1/2 to NPS 8.
- 8. Adjustable Band Hangers (MSS Type 9): For suspension of noninsulated, stationary pipes NPS 1/2 to NPS 8.
- 9. Adjustable, Swivel-Ring Band Hangers (MSS Type 10): For suspension of noninsulated, stationary pipes NPS 1/2 to NPS 8.
- 10. Split Pipe Ring with or without Turnbuckle Hangers (MSS Type 11): For suspension of noninsulated, stationary pipes NPS 3/8 to NPS 8.
- 11. Extension Hinged or Two-Bolt Split Pipe Clamps (MSS Type 12): For suspension of noninsulated, stationary pipes NPS 3/8 to NPS 3.
- 12. U-Bolts (MSS Type 24): For support of heavy pipes NPS 1/2 to NPS 30.
- 13. Clips (MSS Type 26): For support of insulated pipes not subject to expansion or contraction.
- 14. Pipe Saddle Supports (MSS Type 36): For support of pipes NPS 4 to NPS 36, with steel-pipe base stanchion support and cast-iron floor flange or carbon-steel plate.
- 15. Pipe Stanchion Saddles (MSS Type 37): For support of pipes NPS 4 to NPS 36, with steel-pipe base stanchion support and cast-iron floor flange or carbon-steel plate, and with U-bolt to retain pipe.
- 16. Adjustable Pipe Saddle Supports (MSS Type 38): For stanchion-type support for pipes NPS 2-1/2 to NPS 36 if vertical adjustment is required, with steel-pipe base stanchion support and cast-iron floor flange.
- 17. Single-Pipe Rolls (MSS Type 41): For suspension of pipes NPS 1 to NPS 30, from two rods if longitudinal movement caused by expansion and contraction might occur.
- 18. Adjustable Roller Hangers (MSS Type 43): For suspension of pipes NPS 2-1/2 to NPS 24, from single rod if horizontal movement caused by expansion and contraction might occur.
- 19. Complete Pipe Rolls (MSS Type 44): For support of pipes NPS 2 to NPS 42 if longitudinal movement caused by expansion and contraction might occur but vertical adjustment is not necessary.
- 20. Pipe Roll and Plate Units (MSS Type 45): For support of pipes NPS 2 to NPS 24 if small horizontal movement caused by expansion and contraction might occur and vertical adjustment is not necessary.
- 21. Adjustable Pipe Roll and Base Units (MSS Type 46): For support of pipes NPS 2 to NPS 30 if vertical and lateral adjustment during installation might be required in addition to expansion and contraction.
- K. Vertical-Piping Clamps: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
 - 1. Extension Pipe or Riser Clamps (MSS Type 8): For support of pipe risers NPS 3/4 to NPS 24.
 - 2. Carbon- or Alloy-Steel Riser Clamps (MSS Type 42): For support of pipe risers NPS 3/4 to NPS 24 if longer ends are required for riser clamps.

- L. Hanger-Rod Attachments: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
 - 1. Steel Turnbuckles (MSS Type 13): For adjustment up to 6 inches for heavy loads.
 - 2. Steel Clevises (MSS Type 14): For 120 to 450 deg F piping installations.
 - 3. Swivel Turnbuckles (MSS Type 15): For use with MSS Type 11, split pipe rings.
 - 4. Malleable-Iron Sockets (MSS Type 16): For attaching hanger rods to various types of building attachments.
 - 5. Steel Weldless Eye Nuts (MSS Type 17): For 120 to 450 deg F piping installations.
- M. Building Attachments: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
 - 1. Steel or Malleable Concrete Inserts (MSS Type 18): For upper attachment to suspend pipe hangers from concrete ceiling.
 - 2. Top-Beam C-Clamps (MSS Type 19): For use under roof installations with bar-joist construction, to attach to top flange of structural shape.
 - 3. Side-Beam or Channel Clamps (MSS Type 20): For attaching to bottom flange of beams, channels, or angles.
 - 4. Center-Beam Clamps (MSS Type 21): For attaching to center of bottom flange of beams.
 - 5. Welded Beam Attachments (MSS Type 22): For attaching to bottom of beams if loads are considerable and rod sizes are large.
 - 6. C-Clamps (MSS Type 23): For structural shapes.
 - 7. Top-Beam Clamps (MSS Type 25): For top of beams if hanger rod is required tangent to flange edge.
 - 8. Side-Beam Clamps (MSS Type 27): For bottom of steel I-beams.
 - 9. Steel-Beam Clamps with Eye Nuts (MSS Type 28): For attaching to bottom of steel I-beams for heavy loads.
 - 10. Linked-Steel Clamps with Eye Nuts (MSS Type 29): For attaching to bottom of steel Ibeams for heavy loads, with link extensions.
 - 11. Malleable-Beam Clamps with Extension Pieces (MSS Type 30): For attaching to structural steel.
 - 12. Welded-Steel Brackets: For support of pipes from below or for suspending from above by using clip and rod. Use one of the following for indicated loads:
 - a. Light (MSS Type 31): 750 lb.
 - b. Medium (MSS Type 32): 1500 lb.
 - c. Heavy (MSS Type 33): 3000 lb.
 - 13. Side-Beam Brackets (MSS Type 34): For sides of steel or wooden beams.
 - 14. Plate Lugs (MSS Type 57): For attaching to steel beams if flexibility at beam is required.
 - 15. Horizontal Travelers (MSS Type 58): For supporting piping systems subject to linear horizontal movement where headroom is limited.

- N. Saddles and Shields: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
 - 1. Steel-Pipe-Covering Protection Saddles (MSS Type 39): To fill interior voids with insulation that matches adjoining insulation.
 - 2. Protection Shields (MSS Type 40): Of length recommended in writing by manufacturer to prevent crushing insulation.
 - 3. Thermal-Hanger Shield Inserts: For supporting insulated pipe.
- O. Spring Hangers and Supports: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
 - 1. Restraint-Control Devices (MSS Type 47): Where indicated to control piping movement.
 - 2. Spring Cushions (MSS Type 48): For light loads if vertical movement does not exceed 1-1/4 inches.
 - 3. Spring-Cushion Roll Hangers (MSS Type 49): For equipping Type 41, roll hanger with springs.
 - 4. Spring Sway Braces (MSS Type 50): To retard sway, shock, vibration, or thermal expansion in piping systems.
 - 5. Variable-Spring Hangers (MSS Type 51): Preset to indicated load and limit variability factor to 25 percent to allow expansion and contraction of piping system from hanger.
 - 6. Variable-Spring Base Supports (MSS Type 52): Preset to indicated load and limit variability factor to 25 percent to allow expansion and contraction of piping system from base support.
 - 7. Variable-Spring Trapeze Hangers (MSS Type 53): Preset to indicated load and limit variability factor to 25 percent to allow expansion and contraction of piping system from trapeze support.
 - 8. Constant Supports: For critical piping stress and if necessary to avoid transfer of stress from one support to another support, critical terminal, or connected equipment. Include auxiliary stops for erection, hydrostatic test, and load-adjustment capability. These supports include the following types:
 - a. Horizontal (MSS Type 54): Mounted horizontally.
 - b. Vertical (MSS Type 55): Mounted vertically.
 - c. Trapeze (MSS Type 56): Two vertical type supports and one trapeze member.
- P. Comply with MSS SP-69 for trapeze pipe-hanger selections and applications that are not specified in piping system Sections.
- Q. Comply with MFMA-103 for metal framing system selections and applications that are not specified in piping system Sections.
- R. Use powder-actuated fasteners or mechanical-expansion anchors instead of building attachments where required in concrete construction.

April 25, 2025 Bid Issue

Addition & Alterations Department of Public Works 10 Hartford Road Delran, New Jersey

END OF SECTION 230529

SECTION 230548

VIBRATION AND SEISMIC CONTROLS FOR HVAC PIPING AND EQUIPMENT

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General, Special and Supplementary Conditions and Division 1 Thru Division 32 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Provide seismic restraints and supports for all mechanical equipment, piping, plumbing, and fire protection in accordance with the International Building Code, NFPA-13, SMACNA and standard practice.
- B. Provide vibration isolators on all piping, ductwork, and equipment.

1.3 SUBMITTALS:

- A. Product Data: Include load deflection curves for each vibration isolation device.
- B. Shop Drawings: Include the following:
 - 1. Design Calculations: Calculate requirements for selecting vibration isolators and for vibration isolation bases. All calculations shall be signed and sealed by a professional Engineer licensed in the state of New Jersey.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Manufacturers: Subject to compliance with requirements, provide products by the manufacturers specified.

2.2 VIBRATION ISOLATORS

A. Manufacturers:

- 1. Mason Industries, Inc.
- 2. Amber/Booth Company, Inc.
- 3. Kinetics Noise Control, Inc.
- B. Spring Isolators: Freestanding, laterally stable, open-spring isolators.
 - 1. Outside Spring Diameter: Not less than 80 percent of the compressed height of the spring at rated load.
 - 2. Minimum Additional Travel: 50 percent of the required deflection at rated load.
 - 3. Lateral Stiffness: More than 80 percent of the rated vertical stiffness.
 - 4. Overload Capacity: Support 200 percent of rated load, fully compressed, without deformation or failure.
 - 5. Baseplates: Factory drilled for bolting to structure and bonded to 1/4-inch- thick, rubber isolator pad attached to baseplate underside. Baseplates shall limit floor load to 100 psig.
 - 6. Top Plate and Adjustment Bolt: Threaded top plate with adjustment bolt and cap screw to fasten and level equipment.
- C. Housed Spring Mounts: Housed spring isolator with integral seismic snubbers.
 - 1. Housing: Ductile-iron or steel housing to provide all-directional seismic restraint.
 - 2. Base: Factory drilled for bolting to structure.
 - 3. Snubbers: Vertically adjustable to allow a maximum of 1/4-inch travel before contacting a resilient collar.
- D. Spring Hangers: Combination coil-spring and elastomeric-insert hanger with spring and insert in compression.
 - 1. Frame: Steel, fabricated for connection to threaded hanger rods and to allow for a maximum of 30 degrees of angular hanger-rod misalignment without binding or reducing isolation efficiency.
 - 2. Outside Spring Diameter: Not less than 80 percent of the compressed height of the spring at rated load.
 - 3. Minimum Additional Travel: 50 percent of the required deflection at rated load.
 - 4. Lateral Stiffness: More than 80 percent of the rated vertical stiffness.
 - 5. Overload Capacity: Support 200 percent of rated load, fully compressed, without deformation or failure.
 - 6. Elastomeric Element: Molded, oil-resistant rubber or neoprene. Steel-washer-reinforced cup to support spring and bushing projecting through bottom of frame.
- E. Resilient Isolation Washers and Bushings: 1-piece, molded, bridge-bearing neoprene complying with AASHTO M 251 and having a durometer of 50, plus or minus 5, with a flat washer face.

2.3 VIBRATION ISOLATION EQUIPMENT BASES

A. Manufacturers:

- 1. Amber/Booth Company, Inc.
- 2. California Dynamics Corp.
- 3. Isolation Technology, Inc.
- 4. Kinetics Noise Control, Inc.
- 5. Mason Industries, Inc.
- 6. Vibration Eliminator Co., Inc.
- 7. Vibration Isolation Co., Inc.
- 8. Vibration Mountings & Controls/Korfund.
- B. Inertia Base: Factory-fabricated, welded, structural-steel bases and rails ready for field-applied, cast-in-place concrete.
 - 1. Design Requirements: Lowest possible mounting height with not less than 1-inch clearance above the floor. Include equipment anchor bolts and auxiliary motor slide bases or rails. Include supports for suction and discharge elbows for pumps.
 - 2. Structural Steel: Steel shapes, plates, and bars complying with ASTM A 36/A 36M. Bases shall have shape to accommodate supported equipment.
 - 3. Support Brackets: Factory-welded steel angles on frame for outrigger isolation mountings and to provide for anchor bolts and equipment support.
 - 4. Fabrication: Fabricate steel templates to hold equipment anchor-bolt sleeves and anchors in place during placement of concrete. Obtain anchor-bolt templates from supported equipment manufacturer.

2.4 FACTORY FINISHES

- A. Manufacturer's standard prime-coat finish ready for field painting.
- B. Finish: Manufacturer's standard paint applied to factory-assembled and -tested equipment before shipping.
 - 1. Powder coating on springs and housings.
 - 2. All hardware shall be electrogalvanized. Hot-dip galvanize metal components for exterior use.
 - 3. Baked enamel for metal components on isolators for interior use.
 - 4. Color-code or otherwise mark vibration isolation and seismic-control devices to indicate capacity range.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine areas and equipment to receive vibration isolation and seismic-control devices for compliance with requirements, installation tolerances, and other conditions affecting performance
- B. Examine roughing-in of reinforcement and cast-in-place anchors to verify actual locations before installation.
- C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

- A. Install thrust limits at centerline of thrust, symmetrical on either side of equipment.
- B. Install resilient bolt isolation washers on equipment anchor bolts.

3.3 EQUIPMENT BASES

- A. Fill concrete inertia bases, after installing base frame, with 3000-psi concrete; trowel to a smooth finish.
- B. Concrete Bases: Anchor equipment to concrete base according to supported equipment manufacturer's written instructions for seismic codes at Project site.
 - 1. Install dowel rods to connect concrete base to concrete floor. Unless otherwise indicated, install dowel rods on 18-inch centers around the full perimeter of the base.
 - 2. Install epoxy-coated anchor bolts for supported equipment that extend through concrete base and anchor into structural concrete floor.
 - 3. Place and secure anchorage devices. Use Setting Drawings, templates, diagrams, instructions, and directions furnished with items to be embedded.
 - 4. Install anchor bolts to elevations required for proper attachment to supported equipment.
 - 5. Install anchor bolts according to anchor-bolt manufacturer's written instructions.

3.4 FIELD QUALITY CONTROL

A. Testing: Perform the following field quality-control testing:

1. Isolator deflection.

3.5 ADJUSTING

- A. Adjust isolators after piping systems have been filled and equipment is at operating weight.
- B. Adjust limit stops on restrained spring isolators to mount equipment at normal operating height. After equipment installation is complete, adjust limit stops so they are out of contact during normal operation.
- C. Attach thrust limits at centerline of thrust and adjust to a maximum of 1/4-inch movement during start and stop.
- D. Adjust active height of spring isolators.

3.6 CLEANING

A. After completing equipment installation, inspect vibration isolation and seismic-control devices. Remove paint splatters and other spots, dirt, and debris.

END OF SECTION 230548

SECTION 230553

IDENTIFICATION FOR HVAC PIPING AND EQUIPMENT

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Equipment labels.
 - 2. Warning signs and labels.
 - 3. Pipe labels.
 - 4. Duct labels.
 - 5. Stencils.
 - 6. Valve tags.
 - 7. Warning tags.

1.3 SUBMITTALS

- A. Product Data: For each type of product indicated.
- B. Samples: For color, letter style, and graphic representation required for each identification material and device.
- C. Equipment Label Schedule: Include a listing of all equipment to be labeled with the proposed content for each label.
- D. Valve numbering scheme.
- E. Valve Schedules: For each piping system to include in maintenance manuals.

1.4 COORDINATION

- A. Coordinate installation of identifying devices with completion of covering and painting of surfaces where devices are to be applied.
- B. Coordinate installation of identifying devices with locations of access panels and doors.

C. Install identifying devices before installing acoustical ceilings and similar concealment.

PART 2 - PRODUCTS

2.1 EQUIPMENT LABELS

- A. Metal Labels for Equipment:
 - 1. Material and Thickness: Stainless steel, 0.025-inch minimum thickness, and having predrilled or stamped holes for attachment hardware.
 - 2. Minimum Label Size: Length and width vary for required label content, but not less than 2-1/2 by 3/4 inch.
 - 3. Minimum Letter Size: 1/4 inch for name of units if viewing distance is less than 24 inches, 1/2 inch for viewing distances up to 72 inches, and proportionately larger lettering for greater viewing distances. Include secondary lettering two-thirds to three-fourths the size of principal lettering.
 - 4. Fasteners: Stainless-steel self-tapping screws.
 - 5. Adhesive: Contact-type permanent adhesive, compatible with label and with substrate.
- B. Label Content: Include equipment's Drawing designation or unique equipment number, Drawing numbers where equipment is indicated (plans, details, and schedules), plus the Specification Section number and title where equipment is specified.
- C. Equipment Label Schedule: For each item of equipment to be labeled, on 8-1/2-by-11-inch bond paper. Tabulate equipment identification number and identify Drawing numbers where equipment is indicated (plans, details, and schedules), plus the Specification Section number and title where equipment is specified. Equipment schedule shall be included in operation and maintenance data.

2.2 WARNING SIGNS AND LABELS

- A. Material and Thickness: Multilayer, multicolor, plastic labels for mechanical engraving, 1/8 inch thick, and having predrilled holes for attachment hardware.
- B. Letter Color: White
- C. Background Color: Red
- D. Maximum Temperature: Able to withstand temperatures up to 160 deg F.
- E. Minimum Label Size: Length and width vary for required label content, but not less than 2-1/2 by 3/4 inch.

- F. Minimum Letter Size: 1/4 inch for name of units if viewing distance is less than 24 inches, 1/2 inch for viewing distances up to 72 inches, and proportionately larger lettering for greater viewing distances. Include secondary lettering two-thirds to three-fourths the size of principal lettering.
- G. Fasteners: Stainless-steel self-tapping screws.
- H. Adhesive: Contact-type permanent adhesive, compatible with label and with substrate.
- I. Label Content: Include caution and warning information, plus emergency notification instructions.

2.3 PIPE LABELS

- A. General Requirements for Manufactured Pipe Labels: Preprinted, color-coded, with lettering indicating service, and showing flow direction.
- B. Pretensioned Pipe Labels: Precoiled, semirigid plastic formed to cover full circumference of pipe and to attach to pipe without fasteners or adhesive.
- C. Self-Adhesive Pipe Labels: Printed plastic with contact-type, permanent-adhesive backing.
- D. Pipe Label Contents: Include identification of piping service using same designations or abbreviations as used on Drawings, pipe size, and an arrow indicating flow direction.
 - 1. Flow-Direction Arrows: Integral with piping system service lettering to accommodate both directions, or as separate unit on each pipe label to indicate flow direction.
 - 2. Lettering Size: At least 1-1/2 inches high.

2.4 DUCT LABELS

- A. Material and Thickness: Multilayer, multicolor, plastic labels for mechanical engraving, 1/8 inch thick, and having predrilled holes for attachment hardware.
- B. Letter Color: White.
- C. Background Color: Black
- D. Maximum Temperature: Able to withstand temperatures up to 160 deg F.
- E. Minimum Label Size: Length and width vary for required label content, but not less than 2-1/2 by 3/4 inch.

- F. Minimum Letter Size: 1/4 inch for name of units if viewing distance is less than 24 inches, 1/2 inch for viewing distances up to 72 inches, and proportionately larger lettering for greater viewing distances. Include secondary lettering two-thirds to three-fourths the size of principal lettering.
- G. Fasteners: Stainless-steel self-tapping screws.
- H. Adhesive: Contact-type permanent adhesive, compatible with label and with substrate.
- I. Duct Label Contents: Include identification of duct service using same designations or abbreviations as used on Drawings, duct size, and an arrow indicating flow direction.
 - 1. Flow-Direction Arrows: Integral with duct system service lettering to accommodate both directions, or as separate unit on each duct label to indicate flow direction.
 - 2. Lettering Size: At least 1-1/2 inches high.

2.5 VALVE TAGS

- A. Valve Tags: Stamped or engraved with 1/4-inch letters for piping system abbreviation and 1/2-inch numbers.
 - 1. Tag Material: Stainless steel, 0.025-inch minimum thickness, and having predrilled or stamped holes for attachment hardware.
 - 2. Fasteners: Brass beaded chain.
- B. Valve Schedules: For each piping system, on 8-1/2-by-11-inch bond paper. Tabulate valve number, piping system, system abbreviation (as shown on valve tag), location of valve (room or space), normal-operating position (open, closed, or modulating), and variations for identification. Mark valves for emergency shutoff and similar special uses.
 - 1. Valve-tag schedule shall be included in operation and maintenance data.

2.6 WARNING TAGS

- A. Warning Tags: Preprinted or partially preprinted, accident-prevention tags, of plasticized card stock with matte finish suitable for writing.
 - 1. Size: Approximately 4 by 7 inches
 - 2. Fasteners: Brass grommet and wire
 - 3. Nomenclature: Large-size primary caption such as "DANGER," "CAUTION," or "DO NOT OPERATE."
 - 4. Color: Yellow background with black lettering.

PART 3 - EXECUTION

3.1 PREPARATION

A. Clean piping and equipment surfaces of substances that could impair bond of identification devices, including dirt, oil, grease, release agents, and incompatible primers, paints, and encapsulants.

3.2 EQUIPMENT LABEL INSTALLATION

- A. Install or permanently fasten labels on each major item of mechanical equipment.
- B. Locate equipment labels where accessible and visible.

3.3 PIPE LABEL INSTALLATION

- A. Piping Color-Coding: Painting of piping is specified in Division 09 Section "Interior Painting".
- B. Locate pipe labels where piping is exposed or above accessible ceilings in finished spaces; machine rooms; accessible maintenance spaces such as shafts, tunnels, and plenums; and exterior exposed locations as follows:
 - 1. Near each valve and control device.
 - 2. Near each branch connection, excluding short takeoffs for fixtures and terminal units. Where flow pattern is not obvious, mark each pipe at branch.
 - 3. Near penetrations through walls, floors, ceilings, and inaccessible enclosures.
 - 4. At access doors, manholes, and similar access points that permit view of concealed piping.
 - 5. Near major equipment items and other points of origination and termination.
 - 6. Spaced at maximum intervals of 50 feet along each run. Reduce intervals to 25 feet in areas of congested piping and equipment.
 - 7. On piping above removable acoustical ceilings. Omit intermediately spaced labels.

C. Pipe Label Color Schedule:

- 1. Refrigerant Piping:
 - a. Background Color: Black.
 - b. Letter Color: Yellow.

3.4 DUCT LABEL INSTALLATION

- A. Install plastic-laminated duct labels with permanent adhesive on air ducts in the following color codes:
 - 1. Blue For cold-air supply ducts.
 - 2. Yellow For hot-air supply ducts.
 - 3. Green For exhaust-, outside-, relief-, return-, and mixed-air ducts.
 - 4. ASME A13.1 Colors and Designs: For hazardous material exhaust.
- B. Locate labels near points where ducts enter into concealed spaces and at maximum intervals of 50 feet in each space where ducts are exposed or concealed by removable ceiling system.

3.5 VALVE-TAG INSTALLATION

- A. Install tags on valves and control devices in piping systems, except check valves; valves within factory-fabricated equipment units; shutoff valves; faucets; convenience and lawn-watering hose connections; and HVAC terminal devices and similar roughing-in connections of end-use fixtures and units. List tagged valves in a valve schedule.
- B. Valve-Tag Application Schedule: Tag valves according to size, shape, and color scheme and with captions similar to those indicated in the following subparagraphs:
 - 1. Valve-Tag Size and Shape:
 - a. Chilled Water: 2 inches, round.
 - b. Condenser Water: 2 inches, round.
 - c. Refrigerant: 2 inches, round.
 - d. Hot Water: 2 inches, round.
 - e. Gas: 2 inches, round.
 - 2. Valve-Tag Color:
 - a. Chilled Water: Blue.
 - b. Condenser Water: Yellow.
 - c. Refrigerant: Black.
 - d. Hot Water: Red.
 - e. Gas: Yellow.
 - 3. Letter Color:
 - a. Chilled Water: White.
 - b. Condenser Water: Black.
 - c. Refrigerant: White.
 - d. Hot Water: White.
 - e. Gas: Black.

3.6 WARNING-TAG INSTALLATION

A. Write required message on, and attach warning tags to, equipment and other items where required.

END OF SECTION 230553

SECTION 230593

TESTING, ADJUSTING, AND BALANCING FOR HVAC

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Balancing Air Systems:
 - a. Constant-volume air systems.

1.3 DEFINITIONS

- A. AABC: Associated Air Balance Council.
- B. NEBB: National Environmental Balancing Bureau.
- C. TAB: Testing, adjusting, and balancing.
- D. TABB: Testing, Adjusting, and Balancing Bureau.
- E. TAB Specialist: An entity engaged to perform TAB Work.

1.4 SUBMITTALS

- A. Qualification Data: Submit documentation that the TAB contractor and this Project's TAB team members meet the qualifications specified in "Quality Assurance" Article.
- B. Certified TAB reports.
- C. Sample report forms.
- D. Instrument calibration reports, to include the following:
 - 1. Instrument type and make.
 - 2. Serial number.
 - 3. Application.

- 4. Dates of use.
- 5. Dates of calibration.

1.5 QUALITY ASSURANCE

- A. TAB Contractor Qualifications: Engage a TAB entity certified by AABC, NEBB or TABB.
- B. TAB Report Forms: Use standard TAB contractor's forms approved by Engineer
- C. Instrumentation Type, Quantity, Accuracy, and Calibration: As described in ASHRAE 111, Section 5, "Instrumentation."

1.6 PROJECT CONDITIONS

A. Partial Owner Occupancy: Owner may occupy completed areas of building before Substantial Completion. Cooperate with Owner during TAB operations to minimize conflicts with Owner's operations.

1.7 COORDINATION

- A. Notice: Provide seven days' advance notice for each test. Include scheduled test dates and times.
- B. Perform TAB after leakage and pressure tests on air and water distribution systems have been satisfactorily completed.

PART 2 - PRODUCTS (Not Applicable)

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine the Contract Documents to become familiar with Project requirements and to discover conditions in systems' designs that may preclude proper TAB of systems and equipment.
- B. Examine systems for installed balancing devices, such as test ports, gage cocks, thermometer wells, flow-control devices, balancing valves and fittings, and manual volume dampers. Verify that locations of these balancing devices are accessible.

- C. Examine the approved submittals for HVAC systems and equipment.
- D. Examine design data including HVAC system descriptions, statements of design assumptions for environmental conditions and systems' output, and statements of philosophies and assumptions about HVAC system and equipment controls.
- E. Examine ceiling plenums and underfloor air plenums used for supply, return, or relief air to verify that they meet the leakage class of connected ducts as specified in Division 23 Section "Metal Ducts" and are properly separated from adjacent areas. Verify that penetrations in plenum walls are sealed and fire-stopped if required.
- F. Examine equipment performance data including fan and pump curves.
 - 1. Relate performance data to Project conditions and requirements, including system effects that can create undesired or unpredicted conditions that cause reduced capacities in all or part of a system.
 - 2. Calculate system-effect factors to reduce performance ratings of HVAC equipment when installed under conditions different from the conditions used to rate equipment performance. To calculate system effects for air systems, use tables and charts found in AMCA 201, "Fans and Systems," or in SMACNA's "HVAC Systems Duct Design." Compare results with the design data and installed conditions.
- G. Examine system and equipment installations and verify that field quality-control testing, cleaning, and adjusting specified in individual Sections have been performed.
- H. Examine test reports specified in individual system and equipment Sections.
- I. Examine HVAC equipment and filters and verify that bearings are greased, belts are aligned and tight, and equipment with functioning controls is ready for operation.
- J. Examine terminal units, such as variable-air-volume boxes, and verify that they are accessible and their controls are connected and functioning.
- K. Examine strainers. Verify that startup screens are replaced by permanent screens with indicated perforations.
- L. Examine three-way valves for proper installation for their intended function of diverting or mixing fluid flows.
- M. Examine heat-transfer coils for correct piping connections and for clean and straight fins.
- N. Examine system pumps to ensure absence of entrained air in the suction piping.
- O. Examine operating safety interlocks and controls on HVAC equipment.

P. Report deficiencies discovered before and during performance of TAB procedures. Observe and record system reactions to changes in conditions. Record default set points if different from indicated values.

3.2 PREPARATION

- A. Prepare a TAB plan that includes strategies and step-by-step procedures.
- B. Complete system-readiness checks and prepare reports. Verify the following:
 - 1. Permanent electrical-power wiring is complete.
 - 2. Hydronic systems are filled, clean, and free of air.
 - 3. Automatic temperature-control systems are operational.
 - 4. Equipment and duct access doors are securely closed.
 - 5. Balance, smoke, and fire dampers are open.
 - 6. Isolating and balancing valves are open and control valves are operational.
 - 7. Ceilings are installed in critical areas where air-pattern adjustments are required and access to balancing devices is provided.
 - 8. Windows and doors can be closed so indicated conditions for system operations can be met.

3.3 GENERAL PROCEDURES FOR TESTING AND BALANCING

- A. Perform testing and balancing procedures on each system in accordance with the following:
 - 1. Comply with requirements in ASHRAE 62.1-2004, Section 7.2.2, "Air Balancing."
- B. Cut insulation, ducts, pipes, and equipment cabinets for installation of test probes to the minimum extent necessary for TAB procedures.
 - 1. After testing and balancing, patch probe holes in ducts with same material and thickness as used to construct ducts.
 - 2. After testing and balancing, install test ports and duct access doors that comply with requirements in Division 23 Section "Air Duct Accessories."
 - 3. Install and join new insulation that matches removed materials. Restore insulation, coverings, vapor barrier, and finish according to Division 23 Section "HVAC Insulation."
- C. Mark equipment and balancing devices, including damper-control positions, valve position indicators, fan-speed-control levers, and similar controls and devices, with paint or other suitable, permanent identification material to show final settings.
- D. Take and report testing and balancing measurements in inch-pound (IP) units.

3.4 GENERAL PROCEDURES FOR BALANCING AIR SYSTEMS

- A. Prepare test reports for both fans and outlets. Obtain manufacturer's outlet factors and recommended testing procedures. Crosscheck the summation of required outlet volumes with required fan volumes.
- B. Prepare schematic diagrams of systems' "as-built" duct layouts.
- C. For variable-air-volume systems, develop a plan to simulate diversity.
- D. Determine the best locations in main and branch ducts for accurate duct-airflow measurements.
- E. Check airflow patterns from the outdoor-air louvers and dampers and the return- and exhaust-air dampers through the supply-fan discharge and mixing dampers.
- F. Locate start-stop and disconnect switches, electrical interlocks, and motor starters.
- G. Verify that motor starters are equipped with properly sized thermal protection.
- H. Check dampers for proper position to achieve desired airflow path.
- I. Check for airflow blockages.
- J. Check condensate drains for proper connections and functioning.
- K. Check for proper sealing of air-handling-unit components.
- L. Verify that air duct system is sealed as specified in Division 23 Section "Metal Ducts."

3.5 PROCEDURES FOR CONSTANT-VOLUME AIR SYSTEMS

- A. Adjust fans to deliver total indicated airflows within the maximum allowable fan speed listed by fan manufacturer.
 - 1. Measure total airflow.
 - a. Where sufficient space in ducts is unavailable for Pitot-tube traverse measurements, measure airflow at terminal outlets and inlets and calculate the total airflow.
 - 2. Measure fan static pressures as follows to determine actual static pressure:
 - a. Measure outlet static pressure as far downstream from the fan as practical and upstream from restrictions in ducts such as elbows and transitions.
 - b. Measure static pressure directly at the fan outlet or through the flexible connection.
 - c. Measure inlet static pressure of single-inlet fans in the inlet duct as near the fan as possible, upstream from the flexible connection, and downstream from duct restrictions.

- d. Measure inlet static pressure of double-inlet fans through the wall of the plenum that houses the fan.
- 3. Measure static pressure across each component that makes up an air-handling unit, rooftop unit, and other air-handling and -treating equipment.
 - a. Report the cleanliness status of filters and the time static pressures are measured.
- 4. Measure static pressures entering and leaving other devices, such as sound traps, heat-recovery equipment, and air washers, under final balanced conditions.
- 5. Review Record Documents to determine variations in design static pressures versus actual static pressures. Calculate actual system-effect factors. Recommend adjustments to accommodate actual conditions.
- 6. Obtain approval from Engineer for adjustment of fan speed higher or lower than indicated speed. Comply with requirements in Division 23 Sections for air-handling units for adjustment of fans, belts, and pulley sizes to achieve indicated air-handling-unit performance.
- 7. Do not make fan-speed adjustments that result in motor overload. Consult equipment manufacturers about fan-speed safety factors. Modulate dampers and measure fan-motor amperage to ensure that no overload will occur. Measure amperage in full-cooling, full-heating, economizer, and any other operating mode to determine the maximum required brake horsepower.
- B. Adjust volume dampers for main duct, submain ducts, and major branch ducts to indicated airflows within specified tolerances.
 - 1. Measure airflow of submain and branch ducts.
 - a. Where sufficient space in submain and branch ducts is unavailable for Pitot-tube traverse measurements, measure airflow at terminal outlets and inlets and calculate the total airflow for that zone.
 - 2. Measure static pressure at a point downstream from the balancing damper, and adjust volume dampers until the proper static pressure is achieved.
 - 3. Remeasure each submain and branch duct after all have been adjusted. Continue to adjust submain and branch ducts to indicated airflows within specified tolerances.
- C. Measure air outlets and inlets without making adjustments.
 - 1. Measure terminal outlets using a direct-reading hood or outlet manufacturer's written instructions and calculating factors.
- D. Adjust air outlets and inlets for each space to indicated airflows within specified tolerances of indicated values. Make adjustments using branch volume dampers rather than extractors and the dampers at air terminals.
 - 1. Adjust each outlet in same room or space to within specified tolerances of indicated quantities without generating noise levels above the limitations prescribed by the Contract Documents.
 - 2. Adjust patterns of adjustable outlets for proper distribution without drafts.

3.6 PROCEDURES FOR MOTORS

- A. Motors, 1/2 HP and Larger: Test at final balanced conditions and record the following data:
 - 1. Manufacturer's name, model number, and serial number.
 - 2. Motor horsepower rating.
 - 3. Motor rpm.
 - 4. Efficiency rating.
 - 5. Nameplate and measured voltage, each phase.
 - 6. Nameplate and measured amperage, each phase.
 - 7. Starter thermal-protection-element rating.
- B. Motors Driven by Variable-Frequency Controllers: Test for proper operation at speeds varying from minimum to maximum. Test the manual bypass of the controller to prove proper operation. Record observations including name of controller manufacturer, model number, serial number, and nameplate data.

3.7 PROCEDURES FOR CONDENSING UNITS

- A. Verify proper rotation of fans.
- B. Measure entering- and leaving-air temperatures.
- C. Record compressor data.

3.8 TOLERANCES

- A. Set HVAC system's air flow rates and water flow rates within the following tolerances:
 - 1. Supply, Return, and Exhaust Fans and Equipment with Fans: Plus or minus 10 percent.
 - 2. Air Outlets and Inlets: Plus or minus 10 percent.
 - 3. Heating-Water Flow Rate: Plus or minus 10 percent.
 - 4. Cooling-Water Flow Rate: Plus or minus 10 percent.

3.9 REPORTING

A. Initial Construction-Phase Report: Based on examination of the Contract Documents as specified in "Examination" Article, prepare a report on the adequacy of design for systems' balancing devices. Recommend changes and additions to systems' balancing devices to facilitate proper performance measuring and balancing. Recommend changes and additions to HVAC systems and general construction to allow access for performance measuring and balancing devices.

B. Status Reports: Prepare monthly progress reports to describe completed procedures, procedures in progress, and scheduled procedures. Include a list of deficiencies and problems found in systems being tested and balanced. Prepare a separate report for each system and each building floor for systems serving multiple floors.

3.10 FINAL REPORT

- A. General: Prepare a certified written report; tabulate and divide the report into separate sections for tested systems and balanced systems.
 - 1. Include a certification sheet at the front of the report's binder, signed and sealed by the certified testing and balancing engineer.
 - 2. Include a list of instruments used for procedures, along with proof of calibration.
- B. Final Report Contents: In addition to certified field-report data, include the following:
 - 1. Pump curves.
 - 2. Fan curves.
 - 3. Manufacturers' test data.
 - 4. Field test reports prepared by system and equipment installers.
 - 5. Other information relative to equipment performance; do not include Shop Drawings and product data.
- C. General Report Data: In addition to form titles and entries, include the following data:
 - 1. Title page.
 - 2. Name and address of the TAB contractor.
 - 3. Project name.
 - 4. Project location.
 - 5. Architect's name and address.
 - 6. Engineer's name and address.
 - 7. Contractor's name and address.
 - 8. Report date.
 - 9. Signature of TAB supervisor who certifies the report.
 - 10. Table of Contents with the total number of pages defined for each section of the report.

 Number each page in the report.
 - 11. Summary of contents including the following:
 - a. Indicated versus final performance.
 - b. Notable characteristics of systems.
 - c. Description of system operation sequence if it varies from the Contract Documents.
 - 12. Nomenclature sheets for each item of equipment.
 - 13. Data for terminal units, including manufacturer's name, type, size, and fittings.
 - 14. Notes to explain why certain final data in the body of reports vary from indicated values.
 - 15. Test conditions for fans and pump performance forms including the following:
 - a. Settings for outdoor-, return-, and exhaust-air dampers.

- b. Conditions of filters.
- c. Cooling coil, wet- and dry-bulb conditions.
- d. Face and bypass damper settings at coils.
- e. Fan drive settings including settings and percentage of maximum pitch diameter.
- f. Inlet vane settings for variable-air-volume systems.
- g. Settings for supply-air, static-pressure controller.
- h. Other system operating conditions that affect performance.
- D. System Diagrams: Include schematic layouts of air and hydronic distribution systems. Present each system with single-line diagram and include the following:
 - 1. Quantities of outdoor, supply, return, and exhaust airflows.
 - 2. Water and steam flow rates.
 - 3. Duct, outlet, and inlet sizes.
 - 4. Pipe and valve sizes and locations.
 - 5. Terminal units.
 - 6. Balancing stations.
 - 7. Position of balancing devices.
- E. Air-Handling-Unit Test Reports: For air-handling units with coils, include the following:
 - 1. Unit Data:
 - a. Unit identification.
 - b. Location.
 - c. Make and type.
 - d. Model number and unit size.
 - e. Manufacturer's serial number.
 - f. Unit arrangement and class.
 - g. Discharge arrangement.
 - h. Sheave make, size in inches, and bore.
 - i. Center-to-center dimensions of sheave, and amount of adjustments in inches.
 - j. Number, make, and size of belts.
 - k. Number, type, and size of filters.
 - 2. Motor Data:
 - a. Motor make, and frame type and size.
 - b. Horsepower and rpm.
 - c. Volts, phase, and hertz.
 - d. Full-load amperage and service factor.
 - e. Sheave make, size in inches, and bore.
 - f. Center-to-center dimensions of sheave, and amount of adjustments in inches.
 - 3. Test Data (Indicated and Actual Values):
 - a. Total air flow rate in cfm.
 - b. Total system static pressure in inches wg.

- c. Fan rpm.
- d. Discharge static pressure in inches wg.
- e. Filter static-pressure differential in inches wg.
- f. Preheat-coil static-pressure differential in inches wg.
- g. Cooling-coil static-pressure differential in inches wg.
- h. Heating-coil static-pressure differential in inches wg.
- i. Outdoor airflow in cfm.
- j. Return airflow in cfm.
- k. Outdoor-air damper position.
- 1. Return-air damper position.
- m. Vortex damper position.
- F. Apparatus-Coil Test Reports:
 - Coil Data:
 - a. System identification.
 - b. Location.
 - c. Coil type.
 - d. Number of rows.
 - e. Fin spacing in fins per inch o.c.
 - f. Make and model number.
 - g. Face area in sq. ft.
 - h. Tube size in NPS
 - i. Tube and fin materials.
 - j. Circuiting arrangement.
 - 2. Test Data (Indicated and Actual Values):
 - a. Air flow rate in cfm
 - b. Average face velocity in fpm
 - c. Air pressure drop in inches wg
 - d. Outdoor-air, wet- and dry-bulb temperatures in deg F
 - e. Return-air, wet- and dry-bulb temperatures in deg F.
 - f. Entering-air, wet- and dry-bulb temperatures in deg F.
 - g. Leaving-air, wet- and dry-bulb temperatures in deg F.
 - h. Water flow rate in gpm.
 - i. Water pressure differential in feet of head or psig.
 - j. Entering-water temperature in deg F.
 - k. Leaving-water temperature in deg F.
 - 1. Refrigerant expansion valve and refrigerant types.
 - m. Refrigerant suction pressure in psig.
 - n. Refrigerant suction temperature in deg F.
 - o. Inlet steam pressure in psig.
- G. Gas- and Oil-Fired Heat Apparatus Test Reports: In addition to manufacturer's factory startup equipment reports, include the following:
 - 1. Unit Data:
 - a. System identification.

- b. Location.
- c. Make and type.
- d. Model number and unit size.
- e. Manufacturer's serial number.
- f. Fuel type in input data.
- g. Output capacity in Btu/h.
- h. Ignition type.
- i. Burner-control types.
- j. Motor horsepower and rpm.
- k. Motor volts, phase, and hertz.
- 1. Motor full-load amperage and service factor.
- m. Sheave make, size in inches, and bore.
- n. Center-to-center dimensions of sheave, and amount of adjustments in inches.
- 2. Test Data (Indicated and Actual Values):
 - a. Total air flow rate in cfm.
 - b. Entering-air temperature in deg F.
 - c. Leaving-air temperature in deg F.
 - d. Air temperature differential in deg F.
 - e. Entering-air static pressure in inches wg.
 - f. Leaving-air static pressure in inches wg.
 - g. Air static-pressure differential in inches wg.
 - h. Low-fire fuel input in Btu/h.
 - i. High-fire fuel input in Btu/h.
 - j. Manifold pressure in psig.
 - k. High-temperature-limit setting in deg F.
 - 1. Operating set point in Btu/h.
 - m. Motor voltage at each connection.
 - n. Motor amperage for each phase.
 - o. Heating value of fuel in Btu/h.
- H. Fan Test Reports: For supply, return, and exhaust fans, include the following:
 - 1. Fan Data:
 - a. System identification.
 - b. Location.
 - c. Make and type.
 - d. Model number and size.
 - e. Manufacturer's serial number.
 - f. Arrangement and class.
 - g. Sheave make, size in inches, and bore.
 - h. Center-to-center dimensions of sheave, and amount of adjustments in inches.
 - 2. Motor Data:
 - a. Motor make, and frame type and size.

- b. Horsepower and rpm.
- c. Volts, phase, and hertz.
- d. Full-load amperage and service factor.
- e. Sheave make, size in inches, and bore.
- f. Center-to-center dimensions of sheave, and amount of adjustments in inches.
- g. Number, make, and size of belts.
- 3. Test Data (Indicated and Actual Values):
 - a. Total airflow rate in cfm.
 - b. Total system static pressure in inches wg.
 - c. Fan rpm.
 - d. Discharge static pressure in inches wg.
 - e. Suction static pressure in inches wg.
- I. Round, Flat-Oval, and Rectangular Duct Traverse Reports: Include a diagram with a grid representing the duct cross-section and record the following:
 - 1. Report Data:
 - a. System and air-handling-unit number.
 - b. Location and zone.
 - c. Traverse air temperature in deg F.
 - d. Duct static pressure in inches wg.
 - e. Duct size in inches.
 - f. Duct area in sq. ft..
 - g. Indicated air flow rate in cfm.
 - h. Indicated velocity in fpm.
 - i. Actual air flow rate in cfm.
 - j. Actual average velocity in fpm.
 - k. Barometric pressure in psig.
- J. Air-Terminal-Device Reports:
 - 1. Unit Data:
 - a. System and air-handling unit identification.
 - b. Location and zone.
 - c. Apparatus used for test.
 - d. Area served.
 - e. Make.
 - f. Number from system diagram.
 - g. Type and model number.
 - h. Size.
 - i. Effective area in sq. ft..
 - 2. Test Data (Indicated and Actual Values):
 - a. Air flow rate in cfm.
 - b. Air velocity in fpm.
 - c. Preliminary air flow rate as needed in cfm.
 - d. Preliminary velocity as needed in fpm.

- e. Final air flow rate in cfm.
- f. Final velocity in fpm.
- g. Space temperature in deg F.
- K. System-Coil Reports: For reheat coils and water coils of terminal units, include the following:
 - 1. Unit Data:
 - a. System and air-handling-unit identification.
 - b. Location and zone.
 - c. Room or riser served.
 - d. Coil make and size.
 - e. Flowmeter type.
 - 2. Test Data (Indicated and Actual Values):
 - a. Air flow rate in cfm.
 - b. Entering-water temperature in deg F.
 - c. Leaving-water temperature in deg F.
 - d. Water pressure drop in feet of head or psig.
 - e. Entering-air temperature in deg F.
 - f. Leaving-air temperature in deg F.
- L. Pump Test Reports: Calculate impeller size by plotting the shutoff head on pump curves and include the following:
 - 1. Unit Data:
 - a. Unit identification.
 - b. Location.
 - c. Service.
 - d. Make and size.
 - e. Model number and serial number.
 - f. Water flow rate in gpm.
 - g. Water pressure differential in feet of head or psig.
 - h. Required net positive suction head in feet of head or psig.
 - i. Pump rpm.
 - j. Impeller diameter in inches.
 - k. Motor make and frame size.
 - 1. Motor horsepower and rpm.
 - m. Voltage at each connection.
 - n. Amperage for each phase.
 - o. Full-load amperage and service factor.
 - p. Seal type.
 - 2. Test Data (Indicated and Actual Values):
 - a. Static head in feet of head or psig.
 - b. Pump shutoff pressure in feet of head or psig.
 - c. Actual impeller size in inches.
 - d. Full-open flow rate in gpm.
 - e. Full-open pressure in feet of head or psig.

- f. Final discharge pressure in feet of head or psig.
- g. Final suction pressure in feet of head or psig.
- h. Final total pressure in feet of head or psig.
- i. Final water flow rate in gpm.
- j. Voltage at each connection.
- k. Amperage for each phase.

M. Instrument Calibration Reports:

- 1. Report Data:
 - a. Instrument type and make.
 - b. Serial number.
 - c. Application.
 - d. Dates of use.
 - e. Dates of calibration.

3.11 INSPECTIONS

A. Initial Inspection:

- 1. After testing and balancing are complete, operate each system and randomly check measurements to verify that the system is operating according to the final test and balance readings documented in the final report.
- 2. Check the following for each system:
 - a. Measure airflow of at least 10 percent of air outlets.
 - b. Measure water flow of at least 5 percent of terminals.
 - c. Measure room temperature at each thermostat/temperature sensor. Compare the reading to the set point.
 - d. Verify that balancing devices are marked with final balance position.
 - e. Note deviations from the Contract Documents in the final report.

B. Final Inspection:

- 1. After initial inspection is complete and documentation by random checks verifies that testing and balancing are complete and accurately documented in the final report, request that a final inspection be made by Engineer
- 2. The TAB contractor's test and balance engineer shall conduct the inspection in the presence of Engineer
- 3. Engineer shall randomly select measurements, documented in the final report, to be rechecked. Rechecking shall be limited to either 10 percent of the total measurements recorded or the extent of measurements that can be accomplished in a normal 8-hour business day.
- 4. If rechecks yield measurements that differ from the measurements documented in the final report by more than the tolerances allowed, the measurements shall be noted as "FAILED."
- 5. If the number of "FAILED" measurements is greater than 10 percent of the total measurements checked during the final inspection, the testing and balancing shall be considered incomplete and shall be rejected.

- C. TAB Work will be considered defective if it does not pass final inspections. If TAB Work fails, proceed as follows:
 - 1. Recheck all measurements and make adjustments. Revise the final report and balancing device settings to include all changes; resubmit the final report and request a second final inspection.
 - 2. If the second final inspection also fails, Owner may contract the services of another TAB contractor to complete TAB Work according to the Contract Documents and deduct the cost of the services from the original TAB contractor's final payment.
- D. Prepare test and inspection reports.

3.12 ADDITIONAL TESTS

- A. Within 90 days of completing TAB, perform additional TAB to verify that balanced conditions are being maintained throughout and to correct unusual conditions.
- B. Seasonal Periods: If initial TAB procedures were not performed during near-peak summer and winter conditions, perform additional TAB during near-peak summer and winter conditions.

END OF SECTION 230593

SECTION 230700

HVAC INSULATION

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

- 1. Insulation Materials:
 - a. Cellular glass.
 - b. Flexible elastomeric.
 - c. Mineral fiber.
 - d. Polystyrene.
- 2. Fire-rated insulation systems.
- 3. Insulating cements.
- 4. Adhesives.
- 5. Mastics.
- 6. Lagging adhesives.
- 7. Sealants.
- 8. Factory-applied jackets.
- 9. Field-applied fabric-reinforcing mesh.
- 10. Field-applied cloths.
- 11. Field-applied jackets.
- 12. Tapes.
- 13. Securements.
- 14. Corner angles.

1.3 SUBMITTALS

A. Product Data: For each type of product indicated. Include thermal conductivity, thickness, and jackets (both factory and field applied, if any).

B. Shop Drawings:

- 1. Detail application of protective shields, saddles, and inserts at hangers for each type of insulation and hanger.
- 2. Detail attachment and covering of heat tracing inside insulation.
- 3. Detail insulation application at pipe expansion joints for each type of insulation.
- 4. Detail insulation application at elbows, fittings, flanges, valves, and specialties for each type of insulation.
- 5. Detail removable insulation at piping specialties, equipment connections, and access panels.
- 6. Detail application of field-applied jackets.
- 7. Detail application at linkages of control devices.
- 8. Detail field application for each equipment type.
- C. Samples: For each type of insulation and jacket indicated. Identify each Sample, describing product and intended use.
 - 1. Sample Sizes:
 - a. Preformed Pipe Insulation Materials: 12 inches long by NPS 2.
 - b. Sheet Form Insulation Materials: 12 inches square.
 - c. Jacket Materials for Pipe: 12 inches long by NPS 2.
 - d. Sheet Jacket Materials: 12 inches square.
 - e. Manufacturer's Color Charts: For products where color is specified, show the full range of colors available for each type of finish material.
- D. Qualification Data: For qualified Installer.
- E. Material Test Reports: From a qualified testing agency acceptable to authorities having jurisdiction indicating, interpreting, and certifying test results for compliance of insulation materials, sealers, attachments, cements, and jackets, with requirements indicated. Include dates of tests and test methods employed.
- F. Field quality-control reports.

1.4 QUALITY ASSURANCE

- A. Installer Qualifications: Skilled mechanics who have successfully completed an apprenticeship program or another craft training program certified by the Department of Labor, Bureau of Apprenticeship and Training.
- B. Fire-Test-Response Characteristics: Insulation and related materials shall have fire-test-response characteristics indicated, as determined by testing identical products per ASTM E 84, by a testing and inspecting agency acceptable to authorities having jurisdiction. Factory label insulation and jacket materials and adhesive, mastic, tapes,

and cement material containers, with appropriate markings of applicable testing and inspecting agency.

- 1. Insulation Installed Indoors: Flame-spread index of 25 or less, and smoke-developed index of 50 or less.
- 2. Insulation Installed Outdoors: Flame-spread index of 75 or less, and smoke-developed index of 150 or less.
- C. Mockups: Before installing insulation, build mockups for each type of insulation and finish listed below to demonstrate quality of insulation application and finishes. Build mockups in the location indicated or, if not indicated, as directed by Architect. Use materials indicated for the completed Work.

1. Piping Mockups:

- a. One 10-foot section of NPS 2 straight pipe.
- b. One each of a 90-degree threaded, welded, and flanged elbow.
- c. One each of a threaded, welded, and flanged tee fitting.
- d. One NPS 2 or smaller valve, and one NPS 2-1/2 or larger valve.
- e. Four support hangers including hanger shield and insert.
- f. One threaded strainer and one flanged strainer with removable portion of insulation.
- g. One threaded reducer and one welded reducer.
- h. One pressure temperature tap.
- i. One mechanical coupling.

2. Ductwork Mockups:

- a. One 10-foot section each of rectangular and round straight duct.
- b. One each of a 90-degree mitered round and rectangular elbow, and one each of a 90-degree radius round and rectangular elbow.
- c. One rectangular branch takeoff and one round branch takeoff from a rectangular duct. One round tee fitting.
- d. One rectangular and round transition fitting.
- e. Four support hangers for round and rectangular ductwork.

3. Equipment Mockups:

- a. One chilled-water pump and one heating-hot-water pump.
- b. One tank or vessel.
- 4. For each mockup, fabricate cutaway sections to allow observation of application details for insulation materials, adhesives, mastics, attachments, and jackets.
- 5. Notify Engineer seven days in advance of dates and times when mockups will be constructed.
- 6. Obtain Engineer's approval of mockups before starting insulation application.

- 7. Approval of mockups does not constitute approval of deviations from the Contract Documents contained in mockups unless Engineer specifically approves such deviations in writing.
- 8. Maintain mockups during construction in an undisturbed condition as a standard for judging the completed Work.
- 9. Demolish and remove mockups when directed.

1.5 DELIVERY, STORAGE, AND HANDLING

A. Packaging: Insulation material containers shall be marked by manufacturer with appropriate ASTM standard designation, type and grade, and maximum use temperature.

1.6 COORDINATION

A. Coordinate clearance requirements with piping Installer for piping insulation application, duct Installer for duct insulation application, and equipment Installer for equipment insulation application. Before preparing piping and ductwork Shop Drawings, establish and maintain clearance requirements for installation of insulation and field-applied jackets and finishes and for space required for maintenance.

1.7 SCHEDULING

- A. Schedule insulation application after pressure testing systems and, where required, after installing and testing heat tracing. Insulation application may begin on segments that have satisfactory test results.
- B. Complete installation and concealment of plastic materials as rapidly as possible in each area of construction.

PART 2 - PRODUCTS

2.1 INSULATION MATERIALS

- A. Comply with requirements in Part 3 schedule articles for where insulating materials shall be applied.
- B. Products shall not contain asbestos, lead, mercury, or mercury compounds.
- C. Products that come in contact with stainless steel shall have a leachable chloride content of less than 50 ppm when tested according to ASTM C 871.

- D. Insulation materials for use on austenitic stainless steel shall be qualified as acceptable according to ASTM C 795.
- E. Foam insulation materials shall not use CFC or HCFC blowing agents in the manufacturing process.
- F. Cellular Glass: Inorganic, incombustible, foamed or cellulated glass with annealed, rigid, hermetically sealed cells. Factory-applied jacket requirements are specified in "Factory-Applied Jackets" Article.
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. Cell-U-Foam Corporation; Ultra-CUF.
 - b. Pittsburgh Corning Corporation; Foamglas Super K.
 - 2. Block Insulation: ASTM C 552, Type I.
 - 3. Special-Shaped Insulation: ASTM C 552, Type III.
 - 4. Board Insulation: ASTM C 552, Type IV.
 - 5. Preformed Pipe Insulation without Jacket: Comply with ASTM C 552, Type II, Class 1.
 - 6. Preformed Pipe Insulation with Factory-Applied ASJ-SSL: Comply with ASTM C 552, Type II, Class 2.
 - 7. Factory fabricate shapes according to ASTM C 450 and ASTM C 585.
- G. Flexible Elastomeric: Closed-cell, sponge- or expanded-rubber materials. Comply with ASTM C 534, Type I for tubular materials and Type II for sheet materials.
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. Aeroflex USA Inc.; Aerocel.
 - b. Armacell LLC; AP Armaflex.
 - c. Rubatex Corp.
 - d. Armstrong World Industries, Inc.
- H. Mineral-Fiber Blanket Insulation: Mineral or glass fibers bonded with a thermosetting resin. Comply with ASTM C 553, Type II without facing and with all service jacket manufactured from kraft paper, reinforcing scrim, aluminum foil and vinyl film
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. CertainTeed Corp.; Duct Wrap.
 - b. Johns Manville; Microlite.
 - c. Knauf Insulation; Duct Wrap.
 - d. Manson Insulation Inc.; Alley Wrap.
 - e. Owens Corning; All-Service Duct Wrap.

HVAC INSULATION 230700 - 5

- I. Mineral-Fiber Board Insulation: Mineral or glass fibers bonded with a thermosetting resin. Comply with ASTM C 612, Type IB. without facing and with all service jacket manufactured from kraft paper, reinforcing scrim, aluminum foil and vinyl film
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. CertainTeed Corp.; Commercial Board.
 - b. Fibrex Insulations Inc.; FBX.
 - c. Johns Manville; 800 Series Spin-Glas.
 - d. Knauf Insulation; Insulation Board.
 - e. Manson Insulation Inc.; AK Board.
 - f. Owens Corning; Fiberglas 700 Series.
- J. Mineral-Fiber, Preformed Pipe Insulation:
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. Fibrex Insulations Inc.; Coreplus 1200.
 - b. Johns Manville; Micro-Lok.
 - c. Knauf Insulation; 1000 Pipe Insulation.
 - d. Manson Insulation Inc.; Alley-K.
 - e. Owens Corning; Fiberglas Pipe Insulation.
 - 2. Type I, 850 deg F Materials: Mineral or glass fibers bonded with a thermosetting resin. Comply with ASTM C 547, Type I, Grade A, with all purpose factory applied vapor-retarder jacket.
 - 3. Type II, 1200 deg F Materials: Mineral or glass fibers bonded with a thermosetting resin. Comply with ASTM C 547, Type II, Grade A, with all purpose factory applied vapor-retarder jacket.
- K. Mineral-Fiber, Pipe and Tank Insulation: Mineral or glass fibers bonded with a thermosetting resin. Semirigid board material with factory-applied jacket complying with ASTM C 1393, Type II or Type IIIA Category 2, or with properties similar to ASTM C 612, Type IB. Nominal density is 2.5 lb/cu. ft. or more. Thermal conductivity (k-value) at 100 deg F is 0.29 Btu x in./h x sq. ft. x deg F or less.
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. CertainTeed Corp.; CrimpWrap.
 - b. Johns Manville; MicroFlex.
 - c. Knauf Insulation; Pipe and Tank Insulation.
 - d. Manson Insulation Inc.; AK Flex.
 - e. Owens Corning; Fiberglas Pipe and Tank Insulation.

HVAC INSULATION 230700 - 6

2.2 INSULATING CEMENTS

- A. Mineral-Fiber Insulating Cement: Comply with ASTM C 195.
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. Insulco, Division of MFS, Inc.; Triple I.
 - b. P. K. Insulation Mfg. Co., Inc.; Super-Stik.
- B. Expanded or Exfoliated Vermiculite Insulating Cement: Comply with ASTM C 196.
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. P. K. Insulation Mfg. Co., Inc.; Thermal-V-Kote.
- C. Mineral-Fiber, Hydraulic-Setting Insulating and Finishing Cement: Comply with ASTM C 449/C 449M.
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. Insulco, Division of MFS, Inc.; SmoothKote.
 - b. P. K. Insulation Mfg. Co., Inc.; PK No. 127, and Quik-Cote.
 - c. Rock Wool Manufacturing Company; Delta One Shot.

2.3 ADHESIVES

- A. Materials shall be compatible with insulation materials, jackets, and substrates and for bonding insulation to itself and to surfaces to be insulated, unless otherwise indicated.
- B. Flexible Elastomeric and Polyolefin Adhesive: Comply with MIL-A-24179A, Type II, Class I.
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. Aeroflex USA Inc.; Aeroseal.
 - b. Armacell LCC; 520 Adhesive.
 - c. Foster Products Corporation, H. B. Fuller Company; 85-75.
 - d. RBX Corporation; Rubatex Contact Adhesive.
 - 2. For indoor applications, use adhesive that has a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
- C. Cellular-Glass, Phenolic, Polyisocyanurate, and Polystyrene Adhesive: Solvent-based resin adhesive, with a service temperature range of minus 75 to plus 300 deg F.
- 1. Products: Subject to compliance with requirements, provide one of the following:

- a. Childers Products, Division of ITW; CP-96.
- b. Foster Products Corporation, H. B. Fuller Company; 81-33.
- 2. For indoor applications, use adhesive that has a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
- D. Mineral-Fiber Adhesive: Comply with MIL-A-3316C, Class 2, Grade A.
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. Childers Products, Division of ITW; CP-82.
 - b. Foster Products Corporation, H. B. Fuller Company; 85-20.
 - c. ITW TACC, Division of Illinois Tool Works; S-90/80.
 - d. Marathon Industries, Inc.; 225.
 - e. Mon-Eco Industries, Inc.; 22-25.
 - 2. For indoor applications, use adhesive that has a VOC content of 80 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
- E. PVC Jacket Adhesive: Compatible with PVC jacket.
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. Dow Chemical Company (The); 739, Dow Silicone.
 - b. Johns-Manville; Zeston Perma-Weld, CEEL-TITE Solvent Welding Adhesive.
 - c. P.I.C. Plastics, Inc.; Welding Adhesive.
 - d. Speedline Corporation; Speedline Vinyl Adhesive.
 - 2. For indoor applications, use adhesive that has a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

2.4 MASTICS

- A. Materials shall be compatible with insulation materials, jackets, and substrates; comply with MIL-C-19565C, Type II.
- B. Vapor-Barrier Mastic: Water based; suitable for indoor and outdoor use on below ambient services.
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. Childers Products, Division of ITW; CP-35.
 - b. Foster Products Corporation, H. B. Fuller Company; 30-90.
 - c. ITW TACC, Division of Illinois Tool Works; CB-50.

HVAC INSULATION 230700 - 8

- d. Marathon Industries, Inc.; 590.
- e. Mon-Eco Industries, Inc.; 55-40.
- f. Vimasco Corporation; 749.
- 2. Water-Vapor Permeance: ASTM E 96, Procedure B, 0.013 perm at 43-mil dry film thickness.
- 3. Service Temperature Range: Minus 20 to plus 180 deg F.
- 4. Solids Content: ASTM D 1644, 59 percent by volume and 71 percent by weight.
- 5. Color: White.
- C. Vapor-Barrier Mastic: Solvent based; suitable for indoor use on below ambient services.
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. Childers Products, Division of ITW; CP-30.
 - b. Foster Products Corporation, H. B. Fuller Company; 30-35.
 - c. ITW TACC, Division of Illinois Tool Works; CB-25.
 - d. Marathon Industries, Inc.; 501.
 - e. Mon-Eco Industries, Inc.; 55-10.
 - 2. Water-Vapor Permeance: ASTM F 1249, 0.05 perm at 35-mil dry film thickness.
 - 3. Service Temperature Range: 0 to 180 deg F.
 - 4. Solids Content: ASTM D 1644, 44 percent by volume and 62 percent by weight.
 - 5. Color: White.
- D. Vapor-Barrier Mastic: Solvent based; suitable for outdoor use on below ambient services.
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. Childers Products, Division of ITW; Encacel.
 - b. Foster Products Corporation, H. B. Fuller Company; 60-95/60-96.
 - c. Marathon Industries, Inc.; 570.
 - d. Mon-Eco Industries, Inc.; 55-70.
 - 2. Water-Vapor Permeance: ASTM F 1249, 0.05 perm at 30-mil dry film thickness.
 - 3. Service Temperature Range: Minus 50 to plus 220 deg F.
 - 4. Solids Content: ASTM D 1644, 33 percent by volume and 46 percent by weight.
 - 5. Color: White.

2.5 LAGGING ADHESIVES

A. Description: Comply with MIL-A-3316C Class I, Grade A and shall be compatible with insulation materials, jackets, and substrates.

- 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. Childers Products, Division of ITW; CP-52.
 - b. Foster Products Corporation, H. B. Fuller Company; 81-42.
 - c. Marathon Industries, Inc.; 130.
 - d. Mon-Eco Industries, Inc.; 11-30.
 - e. Vimasco Corporation; 136.
- 2. Fire-resistant, water-based lagging adhesive and coating for use indoors to adhere fire-resistant lagging cloths over duct, equipment, and pipe insulation.
- 3. Service Temperature Range: Minus 50 to plus 180 deg F.
- 4. Color: White.

2.6 SEALANTS

- A. Metal Jacket Flashing Sealants:
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. Childers Products, Division of ITW; CP-76-8.
 - b. Foster Products Corporation, H. B. Fuller Company; 95-44.
 - c. Marathon Industries, Inc.; 405.
 - d. Mon-Eco Industries, Inc.; 44-05.
 - e. Vimasco Corporation; 750.
 - 2. Materials shall be compatible with insulation materials, jackets, and substrates.
 - 3. Fire- and water-resistant, flexible, elastomeric sealant.
 - 4. Service Temperature Range: Minus 40 to plus 250 deg F.
 - 5. Color: Aluminum.
 - 6. For indoor applications, use sealants that have a VOC content of 250 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
- B. PVC Jacket Flashing Sealants:
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. Childers Products, Division of ITW; CP-76.
 - b. Foster Products Corporation, H. B. Fuller Company; 95-44.
 - c. Marathon Industries, Inc.; 405.
 - d. Mon-Eco Industries, Inc.; 44-05.
 - e. Vimasco Corporation; 750.
 - 2. Materials shall be compatible with insulation materials, jackets, and substrates.

- 3. Fire- and water-resistant, flexible, elastomeric sealant.
- 4. Service Temperature Range: Minus 40 to plus 250 deg F.
- 5. Color: White.
- 6. For indoor applications, use sealants that have a VOC content of 250 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

2.7 FIELD-APPLIED FABRIC-REINFORCING MESH

- A. Woven Glass-Fiber Fabric for Pipe Insulation: Approximately 2 oz./sq. yd. with a thread count of 10 strands by 10 strands/sq. inch for covering pipe and pipe fittings.
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. Childers Products, Division of ITW; Chil-Glas No. 5.
 - b. Vimasco Corporation; Elastafab 894.
- B. Woven Glass-Fiber Fabric for Duct and Equipment Insulation: Approximately 6 oz./sq. yd. with a thread count of 5 strands by 5 strands/sq. inch for covering equipment.
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. Childers Products, Division of ITW; Chil-Glas No. 5.
 - b. Vimasco Corporation; Elastafab 894.

2.8 FIELD-APPLIED JACKETS

- A. Field-applied jackets shall comply with ASTM C 921, Type I, unless otherwise indicated.
- B. PVC Jacket: High-impact-resistant, UV-resistant PVC complying with ASTM D 1784, Class 16354-C; thickness as scheduled; roll stock ready for shop or field cutting and forming. Thickness is indicated in field-applied jacket schedules.
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. Johns Manville; Zeston.
 - b. P.I.C. Plastics, Inc.; FG Series.
 - c. Proto PVC Corporation; LoSmoke.
 - d. Speedline Corporation; SmokeSafe.
 - 2. Adhesive: As recommended by jacket material manufacturer.

- 3. Color: White
- 4. Factory-fabricated fitting covers to match jacket.
 - a. Shapes: 45- and 90-degree, short- and long-radius elbows, tees, valves, flanges, unions, reducers, end caps, soil-pipe hubs, traps, mechanical joints, and P-trap and supply covers for lavatories.
- 5. Factory-fabricated tank heads and tank side panels.

C. Metal Jacket:

- 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. Childers Products, Division of ITW; Metal Jacketing Systems.
 - b. PABCO Metals Corporation; Surefit.
 - c. RPR Products, Inc.; Insul-Mate.
- 2. Aluminum Jacket: Comply with ASTM B 209 (ASTM B 209M), Alloy 3003, 3005, 3105 or 5005, Temper H-14.
 - a. Factory cut and rolled to size.
 - b. Finish and thickness are indicated in field-applied jacket schedules.
 - c. Moisture Barrier for Indoor Applications: 1-mil- thick, heat-bonded polyethylene and kraft paper .
 - d. Moisture Barrier for Outdoor Applications: 3-mil- thick, heat-bonded polyethylene and kraft paper.
 - e. Factory-Fabricated Fitting Covers:
 - 1) Same material, finish, and thickness as jacket.
 - 2) Preformed 2-piece or gore, 45- and 90-degree, short- and long-radius elbows.
 - 3) Tee covers.
 - 4) Flange and union covers.
 - 5) End caps.
 - 6) Beveled collars.
 - 7) Valve covers.
 - 8) Field fabricate fitting covers only if factory-fabricated fitting covers are not available.
- D. Underground Direct-Buried Jacket: 125-mil- thick vapor barrier and waterproofing membrane consisting of a rubberized bituminous resin reinforced with a woven-glass fiber or polyester scrim and laminated aluminum foil.
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. Pittsburgh Corning Corporation; Pittwrap.

HVAC INSULATION 230700 - 12

b. Polyguard; Insulrap No Torch 125.

2.9 TAPES

- A. ASJ Tape: White vapor-retarder tape matching factory-applied jacket with acrylic adhesive, complying with ASTM C 1136.
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. Avery Dennison Corporation, Specialty Tapes Division; Fasson 0835.
 - b. Compac Corp.; 104 and 105.
 - c. Ideal Tape Co., Inc., an American Biltrite Company; 428 AWF ASJ.
 - d. Venture Tape; 1540 CW Plus, 1542 CW Plus, and 1542 CW Plus/SQ.
 - 2. Width: 3 inches.
 - 3. Thickness: 11.5 mils.
 - 4. Adhesion: 90 ounces force/inch in width.
 - 5. Elongation: 2 percent.
 - 6. Tensile Strength: 40 lbf/inch in width.
 - 7. ASJ Tape Disks and Squares: Precut disks or squares of ASJ tape.
- B. FSK Tape: Foil-face, vapor-retarder tape matching factory-applied jacket with acrylic adhesive; complying with ASTM C 1136.
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. Avery Dennison Corporation, Specialty Tapes Division; Fasson 0827.
 - b. Compac Corp.; 110 and 111.
 - c. Ideal Tape Co., Inc., an American Biltrite Company; 491 AWF FSK.
 - d. Venture Tape; 1525 CW, 1528 CW, and 1528 CW/SQ.
 - 2. Width: 3 inches.
 - 3. Thickness: 6.5 mils.
 - 4. Adhesion: 90 ounces force/inch in width.
 - 5. Elongation: 2 percent.
 - 6. Tensile Strength: 40 lbf/inch in width.
 - 7. FSK Tape Disks and Squares: Precut disks or squares of FSK tape.
- C. PVC Tape: White vapor-retarder tape matching field-applied PVC jacket with acrylic adhesive. Suitable for indoor and outdoor applications.
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. Avery Dennison Corporation, Specialty Tapes Division; Fasson 0555.
 - b. Compac Corp.; 130.

HVAC INSULATION 230700 - 13

- c. Ideal Tape Co., Inc., an American Biltrite Company; 370 White PVC tape.
- d. Venture Tape; 1506 CW NS.
- 2. Width: 2 inches.
- 3. Thickness: 6 mils.
- 4. Adhesion: 64 ounces force/inch in width.
- 5. Elongation: 500 percent.
- 6. Tensile Strength: 18 lbf/inch in width.
- D. Aluminum-Foil Tape: Vapor-retarder tape with acrylic adhesive.
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. Avery Dennison Corporation, Specialty Tapes Division; Fasson 0800.
 - b. Compac Corp.; 120.
 - c. Ideal Tape Co., Inc., an American Biltrite Company; 488 AWF.
 - d. Venture Tape; 3520 CW.
 - 2. Width: 2 inches.
 - 3. Thickness: 3.7 mils.
 - 4. Adhesion: 100 ounces force/inch in width.
 - 5. Elongation: 5 percent.
 - 6. Tensile Strength: 34 lbf/inch in width.

2.10 SECUREMENTS

A. Bands:

- 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. Childers Products; Bands.
 - b. PABCO Metals Corporation; Bands.
 - c. RPR Products, Inc.; Bands.
- 2. Stainless Steel: ASTM A 167 or ASTM A 240/A 240M, Type 304 0.015 inch thick, 3/4 inch wide with wing or closed seal.
- 3. Aluminum: ASTM B 209, Alloy 3003, 3005, 3105, or 5005; Temper H-14, 0.020 inch thick, 3/4 inch wide with wing or closed seal.
- 4. Springs: Twin spring set constructed of stainless steel with ends flat and slotted to accept metal bands. Spring size determined by manufacturer for application.
- B. Insulation Pins and Hangers:

- 1. Capacitor-Discharge-Weld Pins: Copper- or zinc-coated steel pin, fully annealed for capacitor-discharge welding, 0.135-inch- diameter shank, length to suit depth of insulation indicated.
- 2. Products: Subject to compliance with requirements, provide one of the following:
 - 1) AGM Industries, Inc.; CWP-1.
 - 2) GEMCO; CD.
 - 3) Midwest Fasteners, Inc.; CD.
 - 4) Nelson Stud Welding; TPA, TPC, and TPS.
- 3. Cupped-Head, Capacitor-Discharge-Weld Pins: Copper- or zinc-coated steel pin, fully annealed for capacitor-discharge welding, 0.135-inch- diameter shank, length to suit depth of insulation indicated with integral 1-1/2-inch galvanized carbon-steel washer.
 - a. Products: Subject to compliance with requirements, provide one of the following:
 - 1) AGM Industries, Inc.; CWP-1.
 - 2) GEMCO; Cupped Head Weld Pin.
 - 3) Midwest Fasteners, Inc.; Cupped Head.
 - 4) Nelson Stud Welding; CHP.
- 4. Insulation-Retaining Washers: Self-locking washers formed from 0.016-inchthick, galvanized-steel sheet, with beveled edge sized as required to hold insulation securely in place but not less than 1-1/2 inches in diameter.
 - a. Products: Subject to compliance with requirements, provide one of the following:
 - 1) AGM Industries, Inc.; RC-150.
 - 2) GEMCO; R-150.
 - 3) Midwest Fasteners, Inc.; WA-150.
 - 4) Nelson Stud Welding; Speed Clips.
 - b. Protect ends with capped self-locking washers incorporating a spring steel insert to ensure permanent retention of cap in exposed locations.
- C. Staples: Outward-clinching insulation staples, nominal 3/4-inch- wide, stainless steel or Monel.
- D. Wire: 0.080-inch nickel-copper alloy, 0.062-inch soft-annealed, stainless steel or 0.062-inch soft-annealed, galvanized steel.

- 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. C & F Wire.
 - b. Childers Products.
 - c. PABCO Metals Corporation.
 - d. RPR Products, Inc.

2.11 CORNER ANGLES

- A. PVC Corner Angles: 30 mils thick, minimum 1 by 1 inch, PVC according to ASTM D 1784, Class 16354-C. White or color-coded to match adjacent surface.
- B. Aluminum Corner Angles: 0.040 inch thick, minimum 1 by 1 inch, aluminum according to ASTM B 209, Alloy 3003, 3005, 3105 or 5005; Temper H-14.
- C. Stainless-Steel Corner Angles: 0.024 inch thick, minimum 1 by 1 inch, stainless steel according to ASTM A 167 or ASTM A 240/A 240M, Type 304.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine substrates and conditions for compliance with requirements for installation and other conditions affecting performance of insulation application.
 - 1. Verify that systems and equipment to be insulated have been tested and are free of defects.
 - 2. Verify that surfaces to be insulated are clean and dry.
 - 3. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

- A. Surface Preparation: Clean and dry surfaces to receive insulation. Remove materials that will adversely affect insulation application.
- B. Surface Preparation: Clean and prepare surfaces to be insulated. Before insulating, apply a corrosion coating to insulated surfaces as follows:
 - 1. Stainless Steel: Coat 300 series stainless steel with an epoxy primer 5 mils thick and an epoxy finish 5 mils thick if operating in a temperature range between 140 and 300 deg F. Consult coating manufacturer for appropriate coating materials and application methods for operating temperature range.

HVAC INSULATION 230700 - 16

- 2. Carbon Steel: Coat carbon steel operating at a service temperature between 32 and 300 deg F with an epoxy coating. Consult coating manufacturer for appropriate coating materials and application methods for operating temperature range.
- C. Coordinate insulation installation with the trade installing heat tracing. Comply with requirements for heat tracing that apply to insulation.
- D. Mix insulating cements with clean potable water; if insulating cements are to be in contact with stainless-steel surfaces, use demineralized water.

3.3 GENERAL INSTALLATION REQUIREMENTS

- A. Install insulation materials, accessories, and finishes with smooth, straight, and even surfaces; free of voids throughout the length of equipment, ducts and fittings, and piping including fittings, valves, and specialties.
- B. Install insulation materials, forms, vapor barriers or retarders, jackets, and thicknesses required for each item of equipment, duct system, and pipe system as specified in insulation system schedules.
- C. Install accessories compatible with insulation materials and suitable for the service. Install accessories that do not corrode, soften, or otherwise attack insulation or jacket in either wet or dry state.
- D. Install insulation with longitudinal seams at top and bottom of horizontal runs.
- E. Install multiple layers of insulation with longitudinal and end seams staggered.
- F. Do not weld brackets, clips, or other attachment devices to piping, fittings, and specialties.
- G. Keep insulation materials dry during application and finishing.
- H. Install insulation with tight longitudinal seams and end joints. Bond seams and joints with adhesive recommended by insulation material manufacturer.
- I. Install insulation with least number of joints practical.
- J. Where vapor barrier is indicated, seal joints, seams, and penetrations in insulation at hangers, supports, anchors, and other projections with vapor-barrier mastic.
 - 1. Install insulation continuously through hangers and around anchor attachments.
 - 2. For insulation application where vapor barriers are indicated, extend insulation on anchor legs from point of attachment to supported item to point of attachment to

- structure. Taper and seal ends at attachment to structure with vapor-barrier mastic.
- 3. Install insert materials and install insulation to tightly join the insert. Seal insulation to insulation inserts with adhesive or sealing compound recommended by insulation material manufacturer.
- 4. Cover inserts with jacket material matching adjacent pipe insulation. Install shields over jacket, arranged to protect jacket from tear or puncture by hanger, support, and shield.
- K. Apply adhesives, mastics, and sealants at manufacturer's recommended coverage rate and wet and dry film thicknesses.
- L. Install insulation with factory-applied jackets as follows:
 - 1. Draw jacket tight and smooth.
 - 2. Cover circumferential joints with 3-inch- wide strips, of same material as insulation jacket. Secure strips with adhesive and outward clinching staples along both edges of strip, spaced 4 inches o.c.
 - 3. Overlap jacket longitudinal seams at least 1-1/2 inches. Install insulation with longitudinal seams at bottom of pipe. Clean and dry surface to receive self-sealing lap. Staple laps with outward clinching staples along edge at 4 inches o.c.
 - a. For below ambient services, apply vapor-barrier mastic over staples.
 - 4. Cover joints and seams with tape as recommended by insulation material manufacturer to maintain vapor seal.
 - 5. Where vapor barriers are indicated, apply vapor-barrier mastic on seams and joints and at ends adjacent to duct and pipe flanges and fittings.
- M. Cut insulation in a manner to avoid compressing insulation more than 75 percent of its nominal thickness.
- N. Finish installation with systems at operating conditions. Repair joint separations and cracking due to thermal movement.
- O. Repair damaged insulation facings by applying same facing material over damaged areas. Extend patches at least 4 inches beyond damaged areas. Adhere, staple, and seal patches similar to butt joints.
- P. For above ambient services, do not install insulation to the following:
 - 1. Vibration-control devices.
 - 2. Testing agency labels and stamps.
 - 3. Nameplates and data plates.
 - 4. Manholes.
 - 5. Handholes.

- 6. Cleanouts.
- Q. Provide an additional one hundred feet of preformed insulation and one hundred square feet of blanket and board type insulation as well as accessories and labor for each size, thickness and type used on the project to accommodate any changes required to resolve interferences or as directed by the Engineer.

3.4 PENETRATIONS

- A. Insulation Installation at Roof Penetrations: Install insulation continuously through roof penetrations.
 - 1. Seal penetrations with flashing sealant.
 - 2. For applications requiring only indoor insulation, terminate insulation above roof surface and seal with joint sealant. For applications requiring indoor and outdoor insulation, install insulation for outdoor applications tightly joined to indoor insulation ends. Seal joint with joint sealant.
 - 3. Extend jacket of outdoor insulation outside roof flashing at least 2 inches below top of roof flashing.
 - 4. Seal jacket to roof flashing with flashing sealant.
- B. Insulation Installation at Underground Exterior Wall Penetrations: Terminate insulation flush with sleeve seal. Seal terminations with flashing sealant.
- C. Insulation Installation at Aboveground Exterior Wall Penetrations: Install insulation continuously through wall penetrations.
 - 1. Seal penetrations with flashing sealant.
 - 2. For applications requiring only indoor insulation, terminate insulation inside wall surface and seal with joint sealant. For applications requiring indoor and outdoor insulation, install insulation for outdoor applications tightly joined to indoor insulation ends. Seal joint with joint sealant.
 - 3. Extend jacket of outdoor insulation outside wall flashing and overlap wall flashing at least 2 inches.
 - 4. Seal jacket to wall flashing with flashing sealant.
- D. Insulation Installation at Interior Wall and Partition Penetrations (That Are Not Fire Rated): Install insulation continuously through walls and partitions.
- E. Insulation Installation at Fire-Rated Wall and Partition Penetrations: Install insulation continuously through penetrations of fire-rated walls and partitions. Terminate insulation at fire damper sleeves for fire-rated wall and partition penetrations. Externally insulate damper sleeves to match adjacent insulation and overlap duct insulation at least 2 inches.

1. Comply with requirements in Division 07 Section "Penetration Firestopping" and fire-resistive joint sealers.

F. Insulation Installation at Floor Penetrations:

- 1. Duct: Install insulation continuously through floor penetrations that are not fire rated. For penetrations through fire-rated assemblies, terminate insulation at fire damper sleeves and externally insulate damper sleeve beyond floor to match adjacent duct insulation. Overlap damper sleeve and duct insulation at least 2 inches.
- 2. Pipe: Install insulation continuously through floor penetrations.
- 3. Seal penetrations through fire-rated assemblies. Comply with requirements in Division 07 Section "Penetration Firestopping."

3.5 EQUIPMENT, TANK, AND VESSEL INSULATION INSTALLATION

- A. Mineral Fiber, Pipe and Tank Insulation Installation for Tanks and Vessels: Secure insulation with adhesive and anchor pins and speed washers.
 - 1. Apply adhesives according to manufacturer's recommended coverage rates per unit area, for 100 percent coverage of tank and vessel surfaces.
 - 2. Groove and score insulation materials to fit as closely as possible to equipment, including contours. Bevel insulation edges for cylindrical surfaces for tight joints. Stagger end joints.
 - 3. Protect exposed corners with secured corner angles.
 - 4. Install adhesively attached or self-sticking insulation hangers and speed washers on sides of tanks and vessels as follows:
 - a. Do not weld anchor pins to ASME-labeled pressure vessels.
 - b. Select insulation hangers and adhesive that are compatible with service temperature and with substrate.
 - c. On tanks and vessels, maximum anchor-pin spacing is 3 inches from insulation end joints, and 16 inches o.c. in both directions.
 - d. Do not overcompress insulation during installation.
 - e. Cut and miter insulation segments to fit curved sides and domed heads of tanks and vessels.
 - f. Impale insulation over anchor pins and attach speed washers.
 - g. Cut excess portion of pins extending beyond speed washers or bend parallel with insulation surface. Cover exposed pins and washers with tape matching insulation facing.
 - 5. Secure each layer of insulation with stainless-steel or aluminum bands. Select band material compatible with insulation materials.
 - 6. Where insulation hangers on equipment and vessels are not permitted or practical and where insulation support rings are not provided, install a girdle network for

securing insulation. Stretch prestressed aircraft cable around the diameter of vessel and make taut with clamps, turnbuckles, or breather springs. Place one circumferential girdle around equipment approximately 6 inches from each end. Install wire or cable between two circumferential girdles 12 inches o.c. Install a wire ring around each end and around outer periphery of center openings, and stretch prestressed aircraft cable radially from the wire ring to nearest circumferential girdle. Install additional circumferential girdles along the body of equipment or tank at a minimum spacing of 48 inches o.c. Use this network for securing insulation with tie wire or bands.

- 7. Stagger joints between insulation layers at least 3 inches.
- 8. Install insulation in removable segments on equipment access doors, manholes, handholes, and other elements that require frequent removal for service and inspection.
- 9. Bevel and seal insulation ends around manholes, handholes, ASME stamps, and nameplates.
- 10. For equipment with surface temperatures below ambient, apply mastic to open ends, joints, seams, breaks, and punctures in insulation.
- B. Flexible Elastomeric Thermal Insulation Installation for Tanks and Vessels: Install insulation over entire surface of tanks and vessels.
 - 1. Apply 100 percent coverage of adhesive to surface with manufacturer's recommended adhesive.
 - 2. Seal longitudinal seams and end joints.

C. Insulation Installation on Pumps:

- 1. Fabricate metal boxes lined with insulation. Fit boxes around pumps and coincide box joints with splits in pump casings. Fabricate joints with outward bolted flanges. Bolt flanges on 6-inch centers, starting at corners. Install 3/8-inch-diameter fasteners with wing nuts. Alternatively, secure the box sections together using a latching mechanism.
- 2. Fabricate boxes from aluminum, at least 0.060 inch thick.
- 3. For below ambient services, install a vapor barrier at seams, joints, and penetrations. Seal between flanges with replaceable gasket material to form a vapor barrier.

3.6 CELLULAR-GLASS INSULATION INSTALLATION

- A. Insulation Installation on Straight Pipes and Tubes:
 - 1. Secure each layer of insulation to pipe with wire or bands and tighten bands without deforming insulation materials.
 - 2. Where vapor barriers are indicated, seal longitudinal seams, end joints, and protrusions with vapor-barrier mastic and joint sealant.

- 3. For insulation with factory-applied jackets on above ambient services, secure laps with outward clinched staples at 6 inches o.c.
- 4. For insulation with factory-applied jackets on below ambient services, do not staple longitudinal tabs but secure tabs with additional adhesive as recommended by insulation material manufacturer and seal with vapor-barrier mastic and flashing sealant.

B. Insulation Installation on Pipe Flanges:

- 1. Install preformed pipe insulation to outer diameter of pipe flange.
- 2. Make width of insulation section same as overall width of flange and bolts, plus twice the thickness of pipe insulation.
- 3. Fill voids between inner circumference of flange insulation and outer circumference of adjacent straight pipe segments with cut sections of cellular-glass block insulation of same thickness as pipe insulation.
- 4. Install jacket material with manufacturer's recommended adhesive, overlap seams at least 1 inch, and seal joints with flashing sealant.

C. Insulation Installation on Pipe Fittings and Elbows:

- 1. Install preformed sections of same material as straight segments of pipe insulation when available. Secure according to manufacturer's written instructions.
- 2. When preformed sections of insulation are not available, install mitered sections of cellular-glass insulation. Secure insulation materials with wire or bands.

D. Insulation Installation on Valves and Pipe Specialties:

- 1. Install preformed sections of cellular-glass insulation to valve body.
- 2. Arrange insulation to permit access to packing and to allow valve operation without disturbing insulation.
- 3. Install insulation to flanges as specified for flange insulation application.

3.7 FLEXIBLE ELASTOMERIC INSULATION INSTALLATION

- A. Seal longitudinal seams and end joints with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.
- B. Insulation Installation on Pipe Flanges:
 - 1. Install pipe insulation to outer diameter of pipe flange.
 - 2. Make width of insulation section same as overall width of flange and bolts, plus twice the thickness of pipe insulation.
 - 3. Fill voids between inner circumference of flange insulation and outer circumference of adjacent straight pipe segments with cut sections of sheet insulation of same thickness as pipe insulation.
 - 4. Secure insulation to flanges and seal seams with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.

C. Insulation Installation on Pipe Fittings and Elbows:

- 1. Install mitered sections of pipe insulation.
- 2. Secure insulation materials and seal seams with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.

D. Insulation Installation on Valves and Pipe Specialties:

- 1. Install preformed valve covers manufactured of same material as pipe insulation when available.
- 2. When preformed valve covers are not available, install cut sections of pipe and sheet insulation to valve body. Arrange insulation to permit access to packing and to allow valve operation without disturbing insulation.
- 3. Install insulation to flanges as specified for flange insulation application.
- 4. Secure insulation to valves and specialties and seal seams with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.

3.8 MINERAL-FIBER INSULATION INSTALLATION

A. Insulation Installation on Straight Pipes and Tubes:

- 1. Secure each layer of preformed pipe insulation to pipe with wire or bands and tighten bands without deforming insulation materials.
- 2. Where vapor barriers are indicated, seal longitudinal seams, end joints, and protrusions with vapor-barrier mastic and joint sealant.
- 3. For insulation with factory-applied jackets on above ambient surfaces, secure laps with outward clinched staples at 6 inches o.c.
- 4. For insulation with factory-applied jackets on below ambient surfaces, do not staple longitudinal tabs but secure tabs with additional adhesive as recommended by insulation material manufacturer and seal with vapor-barrier mastic and flashing sealant.

B. Insulation Installation on Pipe Flanges:

- 1. Install preformed pipe insulation to outer diameter of pipe flange.
- 2. Make width of insulation section same as overall width of flange and bolts, plus twice the thickness of pipe insulation.
- 3. Fill voids between inner circumference of flange insulation and outer circumference of adjacent straight pipe segments with mineral-fiber blanket insulation.
- 4. Install jacket material with manufacturer's recommended adhesive, overlap seams at least 1 inch, and seal joints with flashing sealant.

C. Insulation Installation on Pipe Fittings and Elbows:

- 1. Install preformed sections of same material as straight segments of pipe insulation when available.
- 2. When preformed insulation elbows and fittings are not available, install mitered sections of pipe insulation, to a thickness equal to adjoining pipe insulation. Secure insulation materials with wire or bands.

D. Insulation Installation on Valves and Pipe Specialties:

- 1. Install preformed sections of same material as straight segments of pipe insulation when available.
- 2. When preformed sections are not available, install mitered sections of pipe insulation to valve body.
- 3. Arrange insulation to permit access to packing and to allow valve operation without disturbing insulation.
- 4. Install insulation to flanges as specified for flange insulation application.

E. Blanket Insulation Installation on Ducts and Plenums: Secure with adhesive and insulation pins.

- 1. Apply adhesives according to manufacturer's recommended coverage rates per unit area, for 100 percent coverage of duct and plenum surfaces.
- 2. Apply adhesive to entire circumference of ducts and to all surfaces of fittings and transitions.
- 3. Install either capacitor-discharge-weld pins and speed washers or cupped-head, capacitor-discharge-weld pins on sides and bottom of horizontal ducts and sides of vertical ducts as follows:
 - a. On duct sides with dimensions 18 inches and smaller, place pins along longitudinal centerline of duct. Space 3 inches maximum from insulation end joints, and 16 inches o.c.
 - b. On duct sides with dimensions larger than 18 inches, place pins 16 inches o.c. each way, and 3 inches maximum from insulation joints. Install additional pins to hold insulation tightly against surface at cross bracing.
 - c. Pins may be omitted from top surface of horizontal, rectangular ducts and plenums.
 - d. Do not overcompress insulation during installation.
 - e. Impale insulation over pins and attach speed washers.
 - f. Cut excess portion of pins extending beyond speed washers or bend parallel with insulation surface. Cover exposed pins and washers with tape matching insulation facing.
- 4. For ducts and plenums with surface temperatures below ambient, install a continuous unbroken vapor barrier. Create a facing lap for longitudinal seams

and end joints with insulation by removing 2 inches from 1 edge and 1 end of insulation segment. Secure laps to adjacent insulation section with 1/2-inch outward-clinching staples, 1 inch o.c. Install vapor barrier consisting of factory-or field-applied jacket, adhesive, vapor-barrier mastic, and sealant at joints, seams, and protrusions.

- a. Repair punctures, tears, and penetrations with tape or mastic to maintain vapor-barrier seal.
- b. Install vapor stops for ductwork and plenums operating below 50 deg F at 18-foot intervals. Vapor stops shall consist of vapor-barrier mastic applied in a Z-shaped pattern over insulation face, along butt end of insulation, and over the surface. Cover insulation face and surface to be insulated a width equal to 2 times the insulation thickness but not less than 3 inches.
- 5. Overlap unfaced blankets a minimum of 2 inches on longitudinal seams and end joints. At end joints, secure with steel bands spaced a maximum of 18 inches o.c.
- 6. Install insulation on rectangular duct elbows and transitions with a full insulation section for each surface. Install insulation on round and flat-oval duct elbows with individually mitered gores cut to fit the elbow.
- 7. Insulate duct stiffeners, hangers, and flanges that protrude beyond insulation surface with 6-inch- wide strips of same material used to insulate duct. Secure on alternating sides of stiffener, hanger, and flange with pins spaced 6 inches o.c.
- F. Board Insulation Installation on Ducts and Plenums: Secure with adhesive and insulation pins.
 - 1. Apply adhesives according to manufacturer's recommended coverage rates per unit area, for 100 percent coverage of duct and plenum surfaces.
 - 2. Apply adhesive to entire circumference of ducts and to all surfaces of fittings and transitions.
 - 3. Install either capacitor-discharge-weld pins and speed washers or cupped-head, capacitor-discharge-weld pins on sides and bottom of horizontal ducts and sides of vertical ducts as follows:
 - a. On duct sides with dimensions 18 inches and smaller, place pins along longitudinal centerline of duct. Space 3 inches maximum from insulation end joints, and 16 inches o.c.
 - b. On duct sides with dimensions larger than 18 inches, space pins 16 inches o.c. each way, and 3 inches maximum from insulation joints. Install additional pins to hold insulation tightly against surface at cross bracing.
 - c. Pins may be omitted from top surface of horizontal, rectangular ducts and plenums.
 - d. Do not overcompress insulation during installation.

- e. Cut excess portion of pins extending beyond speed washers or bend parallel with insulation surface. Cover exposed pins and washers with tape matching insulation facing.
- 4. For ducts and plenums with surface temperatures below ambient, install a continuous unbroken vapor barrier. Create a facing lap for longitudinal seams and end joints with insulation by removing 2 inches from 1 edge and 1 end of insulation segment. Secure laps to adjacent insulation section with 1/2-inch outward-clinching staples, 1 inch o.c. Install vapor barrier consisting of factory-or field-applied jacket, adhesive, vapor-barrier mastic, and sealant at joints, seams, and protrusions.
 - a. Repair punctures, tears, and penetrations with tape or mastic to maintain vapor-barrier seal.
 - b. Install vapor stops for ductwork and plenums operating below 50 deg F at 18-foot intervals. Vapor stops shall consist of vapor-barrier mastic applied in a Z-shaped pattern over insulation face, along butt end of insulation, and over the surface. Cover insulation face and surface to be insulated a width equal to 2 times the insulation thickness but not less than 3 inches.
- 5. Install insulation on rectangular duct elbows and transitions with a full insulation section for each surface. Groove and score insulation to fit as closely as possible to outside and inside radius of elbows. Install insulation on round and flat-oval duct elbows with individually mitered gores cut to fit the elbow.
- 6. Insulate duct stiffeners, hangers, and flanges that protrude beyond insulation surface with 6-inch- wide strips of same material used to insulate duct. Secure on alternating sides of stiffener, hanger, and flange with pins spaced 6 inches o.c.

3.9 FIELD-APPLIED JACKET INSTALLATION

- A. Where glass-cloth jackets are indicated, install directly over bare insulation or insulation with factory-applied jackets.
 - 1. Draw jacket smooth and tight to surface with 2-inch overlap at seams and joints.
 - 2. Embed glass cloth between two 0.062-inch- thick coats of lagging adhesive.
 - 3. Completely encapsulate insulation with coating, leaving no exposed insulation.
- B. Where FSK jackets are indicated, install as follows:
 - 1. Draw jacket material smooth and tight.
 - 2. Install lap or joint strips with same material as jacket.
 - 3. Secure jacket to insulation with manufacturer's recommended adhesive.
 - 4. Install jacket with 1-1/2-inch laps at longitudinal seams and 3-inch- wide joint strips at end joints.

- 5. Seal openings, punctures, and breaks in vapor-retarder jackets and exposed insulation with vapor-barrier mastic.
- C. Where PVC jackets are indicated, install with 1-inch overlap at longitudinal seams and end joints; for horizontal applications, install with longitudinal seams along top and bottom of tanks and vessels. Seal with manufacturer's recommended adhesive.
 - 1. Apply two continuous beads of adhesive to seams and joints, one bead under lap and the finish bead along seam and joint edge.
- D. Where metal jackets are indicated, install with 2-inch overlap at longitudinal seams and end joints. Overlap longitudinal seams arranged to shed water. Seal end joints with weatherproof sealant recommended by insulation manufacturer. Secure jacket with stainless-steel bands 12 inches (300 mm) o.c. and at end joints.

3.10 FIRE-RATED INSULATION SYSTEM INSTALLATION

- A. Where fire-rated insulation system is indicated, secure system to ducts and duct hangers and supports to maintain a continuous fire rating.
- B. Insulate duct access panels and doors to achieve same fire rating as duct.
- C. Install firestopping at penetrations through fire-rated assemblies. Fire-stop systems are specified in Division 07 Section "Penetration Firestopping."

3.11 FINISHES

- A. Duct, Equipment, and Pipe Insulation with ASJ, Glass-Cloth, or Other Paintable Jacket Material: Paint jacket with paint system identified below and as specified in Division 09 painting Sections.
 - 1. Flat Acrylic Finish: Two finish coats over a primer that is compatible with jacket material and finish coat paint. Add fungicidal agent to render fabric mildew proof.
 - a. Finish Coat Material: Interior, flat, latex-emulsion size.
- B. Flexible Elastomeric Thermal Insulation: After adhesive has fully cured, apply two coats of insulation manufacturer's recommended protective coating.
- C. Color: Final color as selected by Architect. Vary first and second coats to allow visual inspection of the completed Work.
- D. Do not field paint aluminum or stainless-steel jackets.

3.12 FIELD QUALITY CONTROL

- A. Testing Agency: Engage a qualified testing agency to perform tests and inspections.
- B. Perform tests and inspections.
- C. Tests and Inspections:
 - 1. Inspect ductwork, randomly selected by Engineer, by removing field-applied jacket and insulation in layers in reverse order of their installation. Extent of inspection shall be limited to ten location(s) for each duct system defined in the "Duct Insulation Schedule, General" Article.
 - 2. Inspect field-insulated equipment, randomly selected by Engineer, by removing field-applied jacket and insulation in layers in reverse order of their installation. Extent of inspection shall be limited to ten location(s) for each type of equipment defined in the "Equipment Insulation Schedule" Article. For large equipment, remove only a portion adequate to determine compliance.
 - 3. Inspect pipe, fittings, strainers, and valves, randomly selected by Engineer, by removing field-applied jacket and insulation in layers in reverse order of their installation. Extent of inspection shall be limited to ten locations of straight pipe, ten locations of threaded fittings, ten locations of welded fittings, five locations of threaded strainers, five locations of welded strainers, ten locations of threaded valves, and ten locations of flanged valves for each pipe service defined in the "Piping Insulation Schedule, General" Article.
- D. All insulation applications will be considered defective Work if sample inspection reveals noncompliance with requirements.

3.13 DUCT INSULATION SCHEDULE, GENERAL

- A. Plenums and Ducts Requiring Insulation:
 - 1. Indoor, concealed supply and outdoor air.
 - 2. Indoor, exposed supply and outdoor air.
 - 3. Indoor, concealed return located in nonconditioned space.
 - 4. Indoor, exposed return located in nonconditioned space.
 - 5. Indoor, concealed, Type I, commercial, kitchen hood exhaust.
 - 6. Indoor, exposed, Type I, commercial, kitchen hood exhaust.
 - 7. Indoor, concealed oven and warewash exhaust.
 - 8. Indoor, exposed oven and warewash exhaust.
 - 9. Indoor, concealed exhaust between isolation damper and penetration of building exterior.
 - 10. Indoor, exposed exhaust between isolation damper and penetration of building exterior.
 - 11. Outdoor, concealed supply and return.

- 12. Outdoor, exposed supply and return.
- B. Items Not Insulated:
 - 1. Factory-insulated plenums and casings.
 - 2. Flexible connectors.
 - 3. Vibration-control devices.
 - 4. Factory-insulated access panels and doors.

3.14 INDOOR DUCT AND PLENUM INSULATION SCHEDULE

- A. Concealed, round and flat-oval, supply-air duct insulation shall be the following:
 - 1. Mineral-Fiber Blanket: 2 inches thick and 1.5-lb/cu. ft. nominal density.
- B. Concealed, round and flat-oval, return-air duct insulation shall be the following:
 - 1. Mineral-Fiber Blanket: 2 inches thick and 1.5-lb/cu. ft. nominal density.
- C. Concealed, round and flat-oval, outdoor-air duct insulation shall be the following:
 - 1. Mineral-Fiber Blanket: 2 inches thick and 1.5-lb/cu. ft. nominal density.
- D. Concealed, round and flat-oval, exhaust-air duct insulation shall be the following:
 - 1. Mineral-Fiber Blanket: 2 inches thick and 1.5-lb/cu. ft. nominal density.
- E. Concealed, rectangular, supply-air duct insulation shall be the following:
 - 1. Mineral-Fiber Blanket: 2 inches thick and 1.5-lb/cu. ft. nominal density.
- F. Concealed, rectangular, return-air duct insulation shall be the following:
 - 1. Mineral-Fiber Blanket: 2 inches thick and 1.5-lb/cu. ft. nominal density.
- G. Concealed, rectangular, outdoor-air duct insulation shall be the following:
 - 1. Mineral-Fiber Blanket: 2 inches thick and 1.5-lb/cu. ft. nominal density.

- H. Concealed, rectangular, exhaust-air duct insulation between isolation damper and penetration of building exterior shall be the following:
 - 1. Mineral-Fiber Blanket: 2 inches thick and 1.5-lb/cu. ft. nominal density.
- I. Concealed, Type I, Commercial, Kitchen Hood Exhaust Duct and Plenum Insulation: Fire-rated blanket; thickness as required to achieve 2-hour fire rating.
- J. Concealed, supply-air plenum insulation shall be the following:
 - 1. Mineral-Fiber Blanket: 2 inches thick and 1.5-lb/cu. ft. nominal density.
- K. Concealed, return-air plenum insulation shall be the following:
 - 1. Mineral-Fiber Blanket: 2 inches thick and 1.5-lb/cu. ft. nominal density.
- L. Concealed, outdoor-air plenum insulation shall be the following:
 - 1. Mineral-Fiber Blanket: 2 inches thick and 1.5-lb/cu. ft. nominal density.
- M. Concealed, exhaust-air plenum insulation shall be the following:
 - 1. Mineral-Fiber Blanket: 2 inches thick and 1.5-lb/cu. ft. nominal density.
- N. Exposed, round and flat-oval, supply-air duct insulation shall be the following:
 - 1. Mineral-Fiber Blanket: 2 inches thick and 1.5-lb/cu. ft. nominal density.
- O. Exposed, round and flat-oval, return-air duct insulation shall be the following:
 - 1. Mineral-Fiber Blanket: 2 inches thick and 1.5-lb/cu. ft. nominal density.
- P. Exposed, round and flat-oval, outdoor-air duct insulation shall be the following:
 - 1. Mineral-Fiber Blanket: 2 inches thick and 1.5-lb/cu. ft. nominal density.
- Q. Exposed, round and flat-oval, exhaust-air duct insulation shall be the following:
- R.1. Mineral-Fiber Blanket: 2 inches thick and 1.5-lb/cu. ft. nominal density.

- S. Exposed, rectangular, supply-air duct insulation shall be the following:
 - 1. Mineral-Fiber Board: 2 inches thick 3-lb/cu. ft. nominal density.
- T. Exposed, rectangular, return-air duct insulation shall be the following:
 - 1. Mineral-Fiber Board: 2 inches thick 3-lb/cu. ft. nominal density.
- U. Exposed, rectangular, outdoor-air duct insulation shall be the following:
 - 1. Mineral-Fiber Board: 2 inches thick 3-lb/cu. ft. nominal density.
- V. Exposed, rectangular, exhaust-air duct insulation shall be the following:
 - 1. Mineral-Fiber Board: 2 inches thick 3-lb/cu. ft. nominal density.
- W. Exposed, Type I, Commercial, Kitchen Hood Exhaust Duct and Plenum Insulation: Fire-rated board, thickness as required to achieve 2-hour fire rating.
- X. Exposed, supply-air plenum insulation shall be the following:
 - 1. Mineral-Fiber Board: 2 inches thick 3-lb/cu. ft. nominal density.
- Y. Exposed, return-air plenum insulation shall be the following:
 - 1. Mineral-Fiber Board: 2 inches thick 3-lb/cu. ft. nominal density.
- Z. Exposed, outdoor-air plenum insulation shall be the following:
 - 1. Mineral-Fiber Board: 2 inches thick 3-lb/cu. ft. nominal density.
- AA. Exposed, exhaust-air plenum insulation shall be the following:
 - 1. Mineral-Fiber Board: 2 inches thick 3-lb/cu. ft. nominal density.

3.15 ABOVEGROUND, OUTDOOR DUCT AND PLENUM INSULATION SCHEDULE

- A. Concealed, round and flat-oval, supply-air duct insulation shall be the following:
 - 1. Mineral-Fiber Board: 2 inches thick 3-lb/cu. ft. nominal density.
- B. Concealed, round and flat-oval, return-air duct insulation shall be the following:
 - 1. Mineral-Fiber Board: 2 inches thick 3-lb/cu. ft. nominal density.
- C. Concealed, round and flat-oval, outdoor-air duct insulation shall be the following:
 - 1. Mineral-Fiber Board: 2 inches thick 3-lb/cu. ft. nominal density.
- D. Concealed, rectangular, supply-air duct insulation shall be the following:
 - 1. Mineral-Fiber Board: 2 inches thick 3-lb/cu. ft. nominal density.
- E. Concealed, rectangular, return-air duct insulation shall be the following:
 - 1. Mineral-Fiber Board: 2 inches thick 3-lb/cu. ft. nominal density.
- F. Concealed, supply-air plenum insulation shall be the following:
 - 1. Mineral-Fiber Board: 2 inches thick 3-lb/cu. ft. nominal density.
- G. Concealed, return-air plenum insulation shall be the following:
 - 1. Mineral-Fiber Board: 2 inches thick 3-lb/cu. ft. nominal density.
- H. Exposed, round and flat-oval, supply-air duct insulation shall be the following:
 - 1. Mineral-Fiber Board: 2 inches thick 3-lb/cu. ft. nominal density.
- I. Exposed, round and flat-oval, return-air duct insulation shall be the following:
 - 1. Mineral-Fiber Board: 2 inches thick 3-lb/cu. ft. nominal density.

- J. Exposed, rectangular, supply-air duct insulation shall be the following:
 - 1. Mineral-Fiber Board: 2 inches thick 3-lb/cu. ft. nominal density.
- K. Exposed, rectangular, return-air duct insulation shall be the following:
 - 1. Mineral-Fiber Board: 2 inches thick 3-lb/cu. ft. nominal density.
- L. Exposed, supply-air plenum insulation shall be the following:
 - 1. Mineral-Fiber Board: 2 inches thick 3-lb/cu. ft. nominal density.
- M. Exposed, return-air plenum insulation shall be the following:
 - 1. Mineral-Fiber Board: 2 inches thick 3-lb/cu. ft. nominal density.

3.16 EQUIPMENT INSULATION SCHEDULE

- A. Insulate indoor and outdoor equipment in paragraphs below that is not factory insulated.
- B. Chillers: Insulate cold surfaces on chillers, including, but not limited to, evaporator bundles, condenser bundles, suction piping, compressor inlets, tube sheets, water boxes, and nozzles with the following:
 - 1. Flexible Elastomeric: 1 inch thick.
- C. Heat-exchanger (water-to-water for cooling service) insulation shall be the following
 - 1. Cellular Glass: 2 inches thick.
- D. Chilled-water pump insulation shall be the following:
 - 1. Mineral-Fiber: 2 inches thick 3-lb/cu. ft. nominal density.
- E. Condenser-water pump insulation shall be the following:
 - 1. Mineral-Fiber Board: 2 inches thick 3-lb/cu. ft. nominal density.
- F. Dual-Temp. heating and cooling pump insulation shall be the following:

- 1. Mineral-Fiber: 2 inches thick 3-lb/cu. ft. nominal density.
- G. Heating-hot-water pump insulation shall be the following:
 - 1. Mineral-Fiber: 2 inches thick 3-lb/cu. ft. nominal density.
- H. Heat-recovery pump insulation shall be the following:
 - 1. Mineral-Fiber Board: 2 inches thick 3-lb/cu. ft. nominal density.
- I. Chilled-water / Dual Temp. expansion/compression tank insulation shall be the following:
 - 1. Mineral-Fiber Pipe and Tank: 2 inches thick.
- J. Condenser-water expansion/compression tank insulation shall be the following:
 - 1. Mineral-Fiber Pipe and Tank: 2 inches thick.
- K. Dual-service heating and cooling expansion/compression tank insulation shall be the following:
 - 1. Mineral-Fiber Pipe and Tank: 2 inches thick.
- L. Heating-hot-water expansion/compression tank insulation shall be the following:
 - 1. Mineral-Fiber Pipe and Tank: 2 inches thick.
- M. Heat-recovery expansion/compression tank insulation shall be the following:
 - 1. Mineral-Fiber Pipe and Tank: 2 inches thick.
- N. Chilled-water/Dual Temp. air-separator insulation shall be the following:
 - 1. Mineral-Fiber Pipe and Tank: 2 inches thick.
- O. Condenser-water air-separator insulation shall be the following:
 - 1. Mineral-Fiber Pipe and Tank: 2 inches thick.

- P. Dual-service heating and cooling air-separator insulation shall be the following:
 - 1. Mineral-Fiber Pipe and Tank: 2 inches thick.
- Q. Heating-hot-water air-separator insulation shall be the following:
 - 1. Mineral-Fiber Pipe and Tank: 2 inches thick.
- R. Heat-recovery air-separator insulation shall be the following:
 - 1. Mineral-Fiber Pipe and Tank: 2 inches thick.
- S. Piping system filter-housing insulation shall be the following:
 - 1. Mineral-Fiber Pipe and Tank: 2 inches thick.
- T. Outdoor, aboveground, heated, fuel-oil storage tank insulation shall be the following:
 - 1. Mineral-Fiber Pipe and Tank: 2 inches thick.

3.17 INDOOR, FIELD-APPLIED JACKET SCHEDULE

- A. Install jacket over insulation material. For insulation with factory-applied jacket, install the field-applied jacket over the factory-applied jacket.
- B. If more than one material is listed, selection from materials listed is Contractor's option.
- C. Ducts and Plenums, Concealed:
 - 1. Paper and Foil with Vapor Retarder
- D. Ducts and Plenums, Exposed:
 - 1. Painted Aluminum, Smooth: 0.032 inches thick.
- E. Equipment, Concealed:

- 1. Paper and Foil with Vapor Retarder
- F. Heat Exchanger
 - 1. Aluminum, Corrugated: 0.020 inch thick.
- G. Equipment, Exposed, up to 48 Inches in Diameter or with Flat Surfaces up to 72 Inches:
 - 1. PVC 30 mils thick.
- H. Equipment, Exposed, Larger Than 48 Inches in Diameter or with Flat Surfaces Larger Than 72 Inches:
 - 1. Painted Aluminum, Smooth 0.032 inch thick.
- I. Piping, Concealed:
 - 1. Paper and Foil with Vapor Retarder
- J. Piping, Exposed:
 - 1. PVC 30 mils thick.

3.18 OUTDOOR, FIELD-APPLIED JACKET SCHEDULE

- A. Install jacket over insulation material. For insulation with factory-applied jacket, install the field-applied jacket over the factory-applied jacket.
- B. If more than one material is listed, selection from materials listed is Contractor's option.
- C. Ducts and Plenums, Concealed:
 - 1. Aluminum, Smooth 0.040 inch thick.
- D. Ducts and Plenums, Exposed, up to 48 Inches in Diameter or with Flat Surfaces up to 72 Inches:

- 1. Aluminum, Smooth 0.040 inch thick.
- E. Ducts and Plenums, Exposed, Larger Than 48 Inches in Diameter or with Flat Surfaces Larger Than 72 Inches:
 - 1. Aluminum, Smooth 0.040 inch thick.
- F. Equipment, Concealed:
 - 1. Aluminum, Smooth 0.040 inch thick.
- G. Equipment, Exposed, up to 48 Inches in Diameter or with Flat Surfaces up to 72 Inches:
 - 1. Aluminum, Smooth 0.040 inch thick.
- H. Equipment, Exposed, Larger Than 48 Inches in Diameter or with Flat Surfaces Larger Than 72 Inches:
 - 1. Aluminum, Smooth 0.040 inch thick.
- I. Piping, Concealed:
 - 1. Aluminum, Smooth 0.040 inch thick.
- J. Piping, Exposed:
 - 1. Aluminum, Smooth 0.040 inch thick.

END OF SECTION 230700

SECTION 230900

INSTRUMENTATION AND CONTROLS FOR HVAC

PART 1 GENERAL

- 1.0 SECTION INCLUDES
 - 1.1 BUILDING AUTOMATION SYSTEM GENERAL DESCRIPTION
 - 1.2 APPROVED CONTROL SYSTEM MANUFACTURES
 - 1.3 QUALITY ASSURANCE
 - 1.4 CODES AND STANDARDS
 - 1.5 SYSTEM PERFORMANCE
 - 1.6 SUBMITTAL REQUIREMENTS
 - 1.7 WARRANTY REQUIREMENTS
 - 1.8 SYSTEM MAINTENANCE AND REMOTE ANALYSIS
 - 1.9 OWNERSHIP OF PROPRIETARY MATERIAL
 - 1.10 DEFINITIONS
- 1.1 BUILDING AUTOMATION SYSTEM GENERAL DESCRIPTION
 - A. Provide a new Building Automation System (BAS) to integrate and control all mechanical equipment associated with this project.
 - 1. The Building Automation System shall be as indicated on the drawings and described in these specifications. System must be fully integrated and coordinated with mechanical equipment DDC controllers furnished and installed in the equipment manufacturer's factory as specified in those sections. The intent of the BAS is to integrate all mechanical equipment into one system for global monitoring, control, and alarming associated with the building. It is the BAS manufacturer's responsibility to provide all the design, engineering, and field coordination required to ensure all equipment sequence of operations are met as specified and the designated BAS operators have the capability of managing the building mechanical system to ensure occupant comfort while maintaining energy efficiency.
 - 2. The BAS shall meet open standard protocol communication standards (As defined in System Communications Section) to ensure the system maintains "interoperability" to avoid proprietary arrangements that will make it difficult for the Owner to consider other BAS manufacturers in future projects.
 - 3. Direct Digital Control (DDC) technology shall be used to provide the functions necessary for control of mechanical systems and terminal devices on this project.

- 4. Approved vendors, products and web services shall comply with SOC2 Type I as defined by the AICPA. SOC2 Type 1 compliance is a certification that confirms that a service provider has established and implemented effective controls to secure their clients' data in accordance with the Trust Services Criteria (TSC).
- 5. The BAS shall accommodate simultaneous multiple user operation. Access to the control system data should be limited only by the security permissions of the operator role. Multiple users shall have access to all valid system data. An operator shall be able to log onto any workstation on the control system and have access to all appropriate data.

1.2 APPROVED CONTROL SYSTEM MANUFACTURES

- 1. Approved vendors, products and web services shall comply with SOC2 Type I as defined by the AICPA. SOC2 Type 1 compliance is a certification that confirms that a service provider has established and implemented effective controls to secure their clients' data in accordance with the Trust Services Criteria (TSC).
 - a. To achieve SOC2 Type 1 compliance, the manufacturer shall have completed an independent audit to assess design and implementation of their controls, policies, and procedures. SOC2 Type 1 compliance provides assurance to customers that the service provider has established and implemented effective security controls and is committed to protecting their data.
 - b. To achieve SOC2 Type 1 compliance, the manufacturer shall have completed an independent audit to assess design and implementation of their controls, policies, and procedures.
- 2. Approved Control System Contractors and Manufacturers:

Manufacturer Name	Product Line	Contractor Name/Address
Trane (Basis of Design)	Tracer SC	Trane, King Of Prussia, PA
Honeywell Building Solutions	Honeywell Building Manager	Honeywell Building Solutions, Fort Washington, Pennsylvania
Siemens	Apogee	Siemens Corporate Sales Office, Blue Bell, PA
Substitution		None Allowed

3. The above list of manufacturers applies to operator workstation software, controller software, the custom application programming language, Building Controllers, Custom Application Controllers, and Application Specific Controllers. All other products specified herein (i.e., sensors, valves, dampers, and actuators) need not be manufactured by the above manufacturers.

4. NOTE: All controls to be provided, engineered, and installed by the CORPORATE SALES OFFICES of each manufacturer. Independent distributors, integrators, ABCS, ACI, BCS, control contractors, etc. are NOT ACCEPTABLE. Due to liability and reliability issues of past projects ONLY THE MANUFACTURER'S CORPORATE SALES OFFICE WILL BE ALLOWED.

1.3 QUALITY ASSURANCE

A. BAS Manufacturer Qualifications

- 1. The BAS manufacturer shall have an established business office within 50.00 miles of the project site and must provide 24 hours/day, 7 days/week response in the event of a customer warranty or service call.
- 2. The BAS Manufacturer shall have factory trained and certified personnel providing all engineering, service, startup, and commissioning field labor for the project from their local office location. BAS manufacturer shall be able to provide training certifications for all local office personnel upon request.
- 3. The BAS shall be provided by a single manufacturer and this manufacturer's equipment must consist of operator workstation software, Web-based hardware/software, Open Standard Protocol hardware/software, Custom application Programming Language, Graphical Programming Language, Building Controllers, Custom Application Controllers, and Application Specific Controllers. All other products specified herein (i.e., sensors, valves, dampers, actuators, etc.) need not be manufactured by the BAS manufacturer listed in this specification.
- 4. Independent representatives of BAS manufacturers are not acceptable. BAS vendor must be corporate owned entity of BAS manufacturer.

1.4 CODES AND STANDARDS

- A. Codes and Standards: Meet requirements of all applicable standards and codes, except when more detailed or stringent requirements are indicated by the Contract Documents, including requirements of this Section.
 - 1. Underwriters Laboratories: Products shall be UL-916-PAZX listed.
 - 2. National Electrical Code -- NFPA 70.
 - 3. Federal Communications Commission -- Part J.
 - 4. ASHRAE/ANSI 135-2012 (BACnet) (System Level Devices) Building Controllers shall conform to the listed version of the BACnet specification in order to improve interoperability with various building system manufacturers' control systems and devices.
 - 5. ASHRAE/ANSI 135-2012 (BACnet) (Unit Level Devices) Unit Controllers shall conform to the listed version of the BACnet specification in order to improve interoperability with various building system manufacturers' control systems and devices.

1.5 SYSTEM PERFORMANCE

A. Performance Standards. The BAS system shall conform to the following:

- 1. Graphic Display. The system shall display a graphic with a minimum of 20 dynamic points. All current data shall be displayed within 10 seconds of the operator's request.
- 2. Graphic Refresh. The system shall update all dynamic points with current data within 10 seconds.
- 3. Object Command. The maximum time between the command of a binary object by the operator and the reaction by the device shall be 5 seconds. Analog objects shall start to adjust within 5 seconds.
- 4. Object Scan. All changes of state and change of analog values shall be transmitted over the high-speed network such that any data used or displayed at a controller or workstation will be current within the prior 10 seconds.
- 5. Alarm Response Time. The maximum time from when an object goes into alarm to when it is annunciated at the workstation shall not exceed 10 seconds.
- 6. Program Execution Frequency. Custom and standard applications shall be capable of running as often as once every 5 seconds. The Contractor shall be responsible for selecting execution times consistent with the mechanical process under control.
- 7. Programmable Controllers shall be able to execute DDC PID control loops at a selectable frequency from at least once every 5 seconds. The controller shall scan and update the process value and output generated by this calculation at this same frequency.
- 8. Multiple Alarm Annunciations. All workstations on the network shall receive alarms within 5 seconds of each other.

1.6 SUBMITTAL REQUIREMENTS

- A. BAS manufacturer shall provide shop drawings and manufacturers' standard specification data sheets on all hardware and software being provided for this project. No work may begin on any segment of this project until the Engineer and Owner have reviewed submittals for conformity with the plan and specifications.
 - 1. Provide three (3) printed copies of submittal package for review and approval.
- B. Quantities of items submitted shall be reviewed by the Engineer and Owner. Such review shall not relieve the BAS manufacturer of furnishing quantities required based upon contract documents.
- C. Provide the Engineer and Owner, any additional information or data which is deemed necessary to determine compliance with the specifications or which is deemed valuable in documenting and understanding the system to be installed.
- D. All shop drawings shall be provided to the Owner electronically as .dwg or .dxf file formats once they have been approved and as-built drawings have been completed.
- E. Submit the following within 90 days of contract award:
 - 1. A complete bill of materials of equipment to be used indicating quantities, manufacturers and model numbers.

- 2. A schedule of all control valves including the valve size, pressure drop, model number (including pattern and connections), flow, CV, body pressure rating, and location.
- 3. A schedule of all control dampers including damper size, pressure drop, manufacturer, and model number.
- 4. Provide all manufacturers' technical cut sheets for major system components. When technical cut sheets apply to a product series rather than a specific product, the data specifically applicable to the project shall be highlighted or clearly indicated by other means. Include:
 - a. Building Controllers
 - b. Custom Application Controllers
 - c. Application Specific Controllers
 - d. Operator Workstations
 - e. Operator Display Touchscreens
 - f. Auxiliary Control Devices
- 5. Provide proposed Building Automation System architectural diagram depicting various controller types, workstations, device locations, addresses, and communication cable requirements
- 6. Provide detailed termination drawings showing all required field and factory terminations, as well as terminal tie-ins to DDC controls provided by mechanical equipment manufacturers. Terminal numbers shall be clearly labeled.
- 7. Provide a sequence of operation for each controlled mechanical system and terminal end devices.
- 8. For each controller, provide points lists that show all points that are analog input (AI), analog output (AO), binary input (BI), binary output (BO), software point (SFT), hardware interlock (HDW), and Network (WLS / NET). See all points listed in the controls details of the mechanical plans.
- 9. For each controller, provide alarms list that show all alarms that are High Analog Limit, Low Analog Limit, Binary, Latch Diagnostics, Sensor Fail, and Communications Fail. See all alarms listed in the controls details of the mechanical plans.
- 10. Provide a BACnet Protocol Implementation Conformance Statement (PICS) for each BACnet system level device (i.e. Building Controller & Operator Workstations) type. This defines the points list for proper coordination of interoperability with other building systems if applicable for this project.
- 11. Manufacturer shall provide a published user and applications guide(s) that detail the system application operation, configuration, setup and troubleshooting.
- F. Project Record Documents: Upon completion of installation, submit three (3) copies of record (asbuilt) documents. The documents shall be submitted for approval prior to final completion and include:

- 1. Project Record Drawings These shall be as-built versions of the submittal shop drawings. One set of electronic media including CAD .dwg and .pdf drawing files shall be provided.
- 2. Testing and Commissioning Reports and Checklists signed off by trained factory (equipment manufacturers) and field (BAS) commissioning personnel.
- 3. Operating and Maintenance (O & M) Manuals These shall be as-built versions of the submittal product data. In addition to the information required for the submittals, Operating & Maintenance manual shall include:
 - a. Procedures for operating the BAS including logging on/off, alarm management, generation of reports, trends, overrides of computer control, modification of setpoints, and other interactive system requirements.
 - b. Explanation of how to design and install new points, new DDC controllers, and other BAS hardware.
 - c. Documentation, installation, and maintenance information for all third party hardware/software products provided including personal computers, printers, hubs, sensors, valves, etc.
 - d. Original issue media for all software provided, including operating systems, programming language, operator workstation software, and graphics software.
 - e. Licenses, Guarantee, and Warranty documents for all equipment and systems.
- G. Training Manuals: The BAS manufacturer shall provide a course outline and copies of training manuals at least two weeks prior to the start of any corporate training class to be attended by the Owner.

1.7 WARRANTY REQUIREMENTS

A. Warrant all work as follows:

- 1. BAS system labor and materials shall be warranted free from defects for a period of twenty-four (24) months after final completion acceptance by the Owner. BAS failures during the warranty period shall be adjusted, repaired, or replaced at no charge to the Owner. The BAS manufacturer shall respond to the Owner's request for warranty service within 24 hours of the initiated call and will occur during normal business hours (8AM-5PM).
- 2. At the end of the final start-up/testing, if equipment and systems are operating satisfactorily to the Owner and Engineer, the Owner shall sign certificates certifying that the BAS is operational and has been tested and accepted in accordance with the terms of this specification. The date of Owner's acceptance shall be the start of the warranty period.
- 3. To ensure that the owner will have the most current operating system provided by the manufacturer, the BAS manufacturer shall include licensing and labor costs to facilitate software/firmware updates throughout the warranty period at no charge to the owner. These updates shall include upgrades for functional enhancements associated with the following: operator workstation software, project specific software, graphics, database, firmware updates, and all security related service packs. Written authorization by the Owner must be granted prior to the installation of these updates.

4. The BAS manufacturer shall provide a web-accessible Users Network for the proposed System and give the Owner free access to question/answer forum, user tips, upgrades, and training schedules for a one year period of time correlating with the warranty period.

1.8 SYSTEM MAINTENANCE AND REMOTE ANALYSIS

- A. The BAS Manufacture shall provide Building Automation System remote support and system analysis for a period of 2 years (beginning the date of substantial completion).
 - 1. The BAS Vendor shall provide data collection, cloud analytics and professional analysis for the facility HVAC Systems. The analysis shall consist of an evaluation of HVAC Systems including charts and graphs which indicate both current building performance and opportunities for building and HVAC system performance improvement. Controls manufacturer shall provide 2 year product support after substantial completion of project, 4 hours owner training, one BAS inspection, 24 months of remote building performance analytics, one performance report, one consultation meeting & one product (software) update to the latest available version.
 - 2. To ensure that the owner will have the most current operating system provided by the manufacturer, the BAS manufacturer shall include licensing and labor costs to facilitate software/firmware updates throughout the warranty period at no charge to the owner. These updates shall include upgrades for functional enhancements associated with the following: operator workstation software, project specific software, graphics, database, firmware updates, and all security related service packs.
- B. The BAS manufacturer shall setup a secure remote connection for data collection, analytics and remote technical support for the HVAC systems included in this contract.
 - 1. Provide technician support during the warranty period to diagnose issues remotely through the secure remote connection.
 - 2. The building owner is responsible for providing adequate internet access.
- C. Connectivity / Remote Access / Network Security
 - 1. Provide and maintain secure remote access to the facilities Building Automation System (BAS) or other building systems. Users accessing service through this connection shall not have access to the building owners network. Secure remote access to the BAS shall not require ANY inbound ports on a firewall to be "exposed" or "forwarded".
 - 2. Secure remote access to the BAS shall be available anywhere, anytime, using a compatible client device (PC/tablet/phone)
 - 3. The Owner will provide up to Three (3) IP drops and IP addresses on the owners network to gain access to the internet. The BAS manufacture shall coordinate with the Owners IT team, verify the proposed system shall meet all network security requirements and any other network configuration information necessary to each control contractor for the purpose of configuring each Area Controller on the network. It shall be the responsibility of the BAS manufacture to coordinate with the owner for network connectivity.
- D. Do not assign or transfer maintenance service to agent or subcontractor without prior written consent of owner.

1.9 OWNERSHIP OF PROPRIETARY MATERIAL

- A. Project specific software and documentation shall become the owner's property upon project completion. This includes the following:
 - 1. Operator Graphic files
 - 2. As-built hardware design drawings
 - 3. Operating & Maintenance Manuals
 - 4. BAS System software database

1.10 DEFINITIONS

- A. DDC: Direct digital control
- B. I/O: Input/output.
- C. MS/TP: Manager Subordinate / Token Passing.
- D. POT: Portable Operator's Terminal.
- E. PID: Proportional plus integral plus derivative.
- F. RTD: Resistance temperature detector.
- G. BAS/ATC: Building Automation System/Automatic Temperature Controls.

PART 2 PRODUCTS

- 2.0 SECTION INCLUDES
 - 2.1 MATERIALS:
 - 2.2 SYSTEM COMMUNICATION
 - 2.3 OPERATOR INTERFACE
 - 2.4 BUILDING CONTROLLER SOFTWARE
 - 2.5 BUILDING / SYSTEM CONTROLLERS
 - 2.6 ADVANCED APPLICATION CONTROLLERS
 - 2.7 APPLICATION-SPECIFIC CONTROLLERS
 - 2.8 INPUT/OUTPUT INTERFACE:
 - 2.9 BAS SOFTWARE SERVICE TOOLS
 - 2.10 POWER SUPPLIES:
 - 2.11 AUXILLARY CONTROL DEVICES:

2.12 WIRING AND RACEWAYS:

2.1 MATERIALS:

A. Use new products that the manufacturer is currently manufacturing and that have been installed in a minimum of 25 installations. Do not use this installation as a product test site unless explicitly approved in writing by the owner or the owner's representative. Spare parts shall be available for at least five years after completion of this contract.

2.2 SYSTEM COMMUNICATION

A. System Communications

1. Each workstation, building controller, and equipment/plant controller communication interface shall utilize the BACnetTM protocol with an Ethernet (IEEE 802.3) or RS485 (EIA-485) physical interface and an appropriate data link technology as defined in ANSI®/ASHRAE® Standard 135-2012. (e.g. BACnet over IP, BACnet over IPv6, BACnet SC, BACnet over MS/TP).

Wireless communication shall utilize open standard protocols, of which BACnet and ZigBee shall be considered appropriate.

Each equipment controller wireless communication interface shall self-heal to maintain operation in the event of network communication failure.

Each zone sensor wireless communication interface shall be capable of many-to-one sensors per controller to support averaging, monitoring, and multiple zone applications. Sensing options shall include temperature, relative humidity, CO2, and occupancy.

- 2. All system controllers shall be BTL listed as a BACnet Building Controller (B-BC) as defined in ANSI®/ASHRAE® Standard 135-2012.
- 3. All equipment and plant controllers shall be BTL listed as a BACnet Application Specific Controller (B-ASC) or a BACnet Advanced Application Controller (B-AAC) as defined in ANSI®/ASHRAE® Standard 135-2012.
- 4. All documented status & control points, schedule, alarm, and data-log services or objects shall be available as standard types as defined in ANSI®/ASHRAE® Standard 135-2012.
- 5. All Operator Workstations (B-OWS, B-AWS), and Building Controllers (B-BC) shall support BACnet Secure Connect (BACnet/SC), a secure and encrypted datalink layer specifically design for those networks.
- 6. All documented status and control points, schedule, alarm, and data-log services or objects shall be available as standard object types as defined in ANSI®/ASHRAE® Standard 135-2012.
- 7. Each System Controller shall communicate with a network of Custom Application and Application Specific Controllers utilizing one or more of the interfaces documented within Field Bus Communications below.

B. Field Bus Communications

1. BACnetTM

- a. All equipment and plant controllers shall be BTL listed as a BACnet Application Specific Controller (B-ASC) or a BACnet Advanced Application Controller (B-AAC) as defined in ANSI®/ASHRAE® Standard 135-2012.
- b. All communication shall conform to ANSI®/ASHRAE® Standard 135-2012.
- c. System Controller shall function as a BACnet router to each unit controller providing a globally unique BACnet Device ID for all BACnet controllers within the system.
- d. BACnet MS/TP
 - 1) Communication between System Controller and equipment/plant controllers shall utilize BACnet MS/TP as defined in ANSI®/ASHRAE® Standard 135-2012.
- C. Variable Refrigerant Flow (VRF) Communications
 - 1. The VRF system shall communicate with the BAS using one of the following communications methods.
 - a. The VRF system and the BAS shall utilize ANSI®/ASHRAE® Standard 135 (BACnet) protocol revision 12 or greater.
 - b. Recognizing that VRF manufacturers utilize proprietary protocols to pass information between VRF equipment components. A gateway device is an accepted method to convert proprietary data to BACnet data. BACnet data shall conform to BACnet protocol revision 12 or greater.
 - c. When a device is capable of data exchange with the BACnet protocol across non-IP network segments, the BACnet protocol shall be used to exchange data. If a device does not support the BACnet protocol an alternative protocol may be used. Data exchanged using the alternative protocol shall be converted to the BACnet protocol to allow integration to the BAS.
 - 2. To promote BAS interoperability, each instance of the following VRF system components shall be visible to the BAS network as a virtual BACnet device.
 - a. Indoor equipment
 - b. Outdoor equipment
 - c. Refrigerant manifold devices
 - d. Outdoor air ventilation systems
 - 3. Virtual BACnet device functionality shall conform to BACnet protocol revision 12 or greater and meet the minimum functionality defined by BACnet device profile B-ASC.

2.3 OPERATOR INTERFACE

- A. Provide Building Operator Web Interface
 - 1. Manufacturer shall provide a user interface with time-of-day schedules, data collection, dashboards, reports and building summary, system applications, and self-expiring timed

overrides. Manufacturer shall provide a published user and applications guide(s) that detail the system application operation, configuration, setup and troubleshooting. Must provide as part of the approved controls submittal package for delivered application.

- a. Controls manufacturer shall provide a user-configurable dashboard of key performance indicators that illustrate HVAC system and BAS status to include selectable dials, gauges, trends, tables, and charts of performance metrics.
- b. The controls manufacturer shall provide a user interface with the following out-of-the box features: An auto-populating user interface navigation system, alarm handling, automatic generation and storage of system-created data logs, time-of-day schedules, self expiring timed manual overrides, ability to generate scheduled reports of multiple types, ability to add graphical and bindable widgets to the user interface, and a user security system with password management and role based access rights.
- c. The manufacturer shall provide online help, published user and applications guide(s) that detail operation, configuration, setup, and troubleshooting. Must provide as part of the approved controls submittal package for delivered application.
- 2. The building operator web interface shall be accessible via a web browser without requiring any "plug-ins" (i.e. JAVA Runtime Environment (JRE), Adobe Flash).

3. User Roles

- a. The system shall include pre-defined "roles" that allow a system administrator to quickly assign permissions to a user.
- b. User logon/logoff attempts shall be recorded.
- c. The system shall protect itself from unauthorized use by automatically logging off following the last keystroke. The delay time shall be user definable.

4. On-Line Help and Training

- a. Provide a context sensitive, on line help system to assist the operator in operation and configuration of the system.
- b. On-line help shall be available for all system functions and shall provide the relevant data for each particular screen.
- 5. Equipment and Application Pages
 - a. The building operator web interface shall include standard pages for all equipment and applications. These pages shall allow an operator to obtain information relevant to the operation of the equipment and/or application, including:
 - 1) Animated Equipment Graphics for each major piece of equipment and floor plan in the System. This includes:
 - a) Each Chiller, Air Handler, VAV Terminal, Fan Coil, Boiler, and Cooling Tower. These graphics shall show all points dynamically as specified in the points list.

- b) Animation capabilities shall include the ability to show a sequence of images reflecting the position of analog outputs, such as valve or damper positions. Graphics shall be capable of launching other web pages.
- 2) Alarms relevant to the equipment or application without requiring a user to navigate to an alarm page and perform a filter.
- 3) Historical Data (As defined in Trend Logs section of CONTROLLER SOFTWARE) for the equipment or application without requiring a user to navigate to a Data Log page and perform a filter.
- 6. System Graphics. Building operator web interface shall be graphically based and shall include at least one graphic per piece of equipment or occupied zone, graphics for each chilled water and hot water system, and graphics that summarize conditions on each floor of each building area included in this contract. Indicate thermal comfort on floor plan summary graphics using colors to represent zone temperature relative to zone set point.
 - a. Graphic imagery graphics shall use 3D images for all standard and custom graphics. The only allowable exceptions will be photo images, maps, schematic drawings, and selected floor plans.
 - b. Animation. Graphics shall be able to animate by displaying different Image lies for changed object status.
 - c. Alarm Indication. Indicate areas or equipment in an alarm condition using color or other visual indicator.
- 7. Graphics Library. Furnish a library of standard HVAC equipment such as chillers, air handlers, terminals, fan coils, unit ventilators, rooftop units, and VAV boxes, in 3-dimensional graphic depictions. The library shall be furnished in a file format compatible with the graphics generation package program.
- 8. Manual Control and Override
 - a. Point Control. Provide a method for a user to view, override, and edit if applicable, the status of any object and property in the system. The point status shall be available by menu, on graphics or through custom programs.
 - b. Temporary Overrides. The user shall be able to perform a temporary override wherever an override is allowed, automatically removing the override after a specified period of time.
 - c. Override Owners. The system shall convey to the user the owner of each override for all priorities that an override exists.
 - d. Provide a specific icon to show timed override or operator override, when a point, unit controller or application has been overridden manually.
- 9. Scheduling. The scheduling application shall provide graphical representation of the day, week, month and exception events.
- 10. Alarm/Event Notification

- a. Alarm/Event Log. The operator shall be able to view all logged system alarms/events from any building operator web interface.
 - 1) The operator shall be able to sort and filter alarms from events. Alarms shall be sorted in a minimum of 4 categories based on severity.
 - 2) The operator shall be able to acknowledge and add comments to alarms
 - 3) Alarm/event messages shall use full language, easily recognized descriptors.
- b. Alarm Suppression. Alarms shall be able to be suppressed based on load/source relationships to present the likely root cause to the building operator as described in ASHRAE Guideline 36. Load/Source relationships shall be configurable by the user through a web interface.

11. Reports and Logs.

- a. The building operator web interface shall provide a reporting package that allows the operator to select reports.
- b. The building operator web interface shall provide the ability to schedule reports to run at specified intervals of time.
- c. The following standard reports shall be available without requiring a user to manually configure the report:
 - 1) All Points in Alarm Report: Provide an on demand report showing all current alarms.
 - 2) All Points in Override Report: Provide an on demand report showing all overrides in effect.
 - 3) Commissioning Report: Provide a one-time report that lists all equipment with the unit configuration and present operation.
 - 4) Points report: Provide a report that lists the current value of all points
- d. The controls vendor shall provide a hardening report that summarizes the port configuration details to ensure sites have not been exposed to the Internet in alignment with Cyber Security best practices.

B. Provide Mobile App Interface

- 1. Provide mobile (smart phone or tablet) interfaces to the building automation system, compatible with iOS and AndroidTM operating systems.
- 2. Controls manufacturer shall provide a phone/tablet interface with the ability to view/override status & setpoints, view/change schedules, view/acknowledge/comment on alarms, and view graphics for all spaces and equipment. This phone/tablet interface shall resize itself appropriately for the size of the interface (i.e. no "pinching & zooming" required). This phone/tablet interface shall function remotely from the facility while following IT security best-practices (e.g. no ports exposed to the internet).

- 3. This phone/tablet interface shall resize itself appropriately for the size of the interface (i.e. no "pinching and zooming" required).
- 4. This phone/tablet interface shall function remotely from the facility while following IT security best practices (e.g. no ports exposed to the internet).
- 5. The operator interface shall support system access on a mobile device via a mobile app to:
 - a. Alarm log
 - b. System Status
 - c. Equipment status
 - d. Space Status
 - e. Standard Equipment graphics
 - f. Override set points
 - g. Override occupancy
 - h. Acknowledge Alarms
 - i. Add Comment(s) to Alarms
- C. Provide Local Operator Interface Touch sensitive display
 - 1. Provide a color touch sensitive display that allows the building occupants to accomplish the following tasks:
 - a. Control the set points for multiple pieces of equipment with a single touch. Set point adjustment by the occupant shall be bound by editable limits.
 - b. Occupant override of the system/equipment operating mode shall be possible with a single touch on the local operator display. With the ability to set up point overrides to expire at designated times.
 - c. The local operator display shall provide occupant access to system time of day scheduling. Occupants shall have the ability to schedule events more than one year in advance. Exception schedules and holidays shall be shown clearly on the calendar, visible to the occupant on the touchscreen display.
 - d. The local operator display shall offer PIN control, which shall limit system control access to only those with proper login credentials.
 - e. The local operator display shall display the alerts that require service of the connected equipment.
 - 2. To ensure interoperability with the Building Automation System (BAS), the local operator display shall be provided by the BAS solution provider associated with this project.
 - 3. Local operator display shall be a minimum of 10 inches in size and be provided with mounting hardware to allow it to be installed on an office wall or control panel door.

2.4 BUILDING CONTROLLER SOFTWARE

- A. Manufacturer shall provide standard applications to deliver HVAC system control. Standard applications include Time of Day Scheduling with Optimal Start/Stop, VAV Air Systems Control, Chiller Plant Control, Historical Trend Logs and Trim and Respond. Manufacturer shall provide system optimization strategies for functions such as fan pressure optimization and ventilation optimization.
- B. Furnish the following applications software for building and energy management. All software applications shall reside and run in the system controllers. Editing of applications shall occur at the building operator interface.

1. Trend Logs

a. The system shall harvest trend logs for defined key measurements for each controlled HVAC device and HVAC application. Trend logs shall be captured for a minimum of 5 key operating points for each piece of HVAC equipment and HVAC application and stored for no less than 1 year at 15-minute intervals. Data Logs shall be capable of being configured on an interval or change of value basis.

- 1) Fan Coil
 - a) Discharge Air Temperature
 - b) Space Temperature Active
 - c) Space Temperature Setpoint Active
 - d) Air Flow Setpoint Active
 - e) Space Humidity

2. Trim and Respond

a. The BAS shall provide a setpoint reset application program based on 'trim and respond' functionality as outlined in ASHRAE Guideline 36.

2.5 BUILDING / SYSTEM CONTROLLERS

- A. There shall be one or more independent, standalone microprocessor based System Controllers to manage the global strategies described in CONTROLLER SOFTWARE section.
 - 1. The controller shall provide a USB communications port for connection to a PC.
 - 2. The operating system of the Controller shall manage the input and output communications signals to allow distributed controllers to share real and virtual point information and allow central monitoring and alarms.
 - 3. All System Controllers shall have a real time clock and shall be able to accept a BACnet time synchronization command for automatic time synchronization.
 - 4. Data shall be shared between networked System Controllers.

- 5. Serviceability The System Controller shall have a display on the main board that indicates the current operating mode of the controller.
- B. Controls manufacturer shall provide secure remote access to the Building Automation System (BAS). Secure remote access shall not require IP ports to be "exposed" (i.e. port-forwarded or external public IP addresses) to the Internet. Controls manufacturer shall update secure remote access software as necessary to follow cyber security best practices and respond to cyber security events.

2.6 ADVANCED APPLICATION CONTROLLERS

- A. The Application Controller shall be a microprocessor-based DDC controller which, through hardware or firmware design, controls specified equipment. The controller is not user programmable, but is customized for operation within the confines of the equipment it is designed to serve.
- B. The Application Controller shall be capable of operating as a stand-alone controller or as a member of a Building Automation System (BAS).
- C. When the Application Controller is operating as a member of a Building Automation System (BAS), the application controller shall operate as follows:
 - 1. Application Controller will receive operation mode commands from the BAS network controller. The BAS commands shall include but not be limited to the follow: Occupied Heat/Cool, Unoccupied Heat/Cool, Morning Warm-up, / Pre-cool, Occupied Bypass).
 - 2. Application Controller will provide equipment status parameters to the BAS through BACnet communication.
 - 3. Application Controller will operate as a stand-alone controller in the event of communication failure with the BAS.
 - 4. In case of communications failure stand-alone operation shall use default values or last known values for remote sensors read over the network such as outdoor air temperature.
- D. The HVAC equipment controllers shall be installed, wired and commissioned in the factory.

E. Software

- 1. To meet the sequence of operation for each zone control, the controller shall use programs developed and tested by the controller manufacturer that are either factory loaded or customized with use of service tool native to the controller.
- F. Environment: Controller hardware shall be suitable for the anticipated ambient conditions.
 - 1. Storage: -55° to 203° F (-48° to 95° C) and 5 to 95% Rh, non-condensing.
 - 2. Operating: -40° to 158° F (-40 to 70° C) and 5 to 95% Rh, non-condensing.
 - 3. Controllers used indoors shall be mounted in a NEMA 1 enclosure at a minimum.
 - 4. Controllers used outdoors and/or in wet ambient shall be mounted within NEMA 4 type waterproof enclosures, and shall be rated for operation at -40° to 158° F [-40° to 70° C].

- G. Controller Input/Output: The controller shall have on board capable of performing all functionality needed for the application. Controls provided by the equipment manufacture must supply the required I/O for the equipment.
 - 1. For flexibility in selection and replacement of valves, the controllers shall be capable of supporting all of the following output types; 0-10VDC, 0-5VDC, 4-20mA, Binary.
 - 2. For flexibility in selection and replacement of sensors, the controllers shall be capable of reading sensor input ranges of 0 to 10V, 0 to 20mA, Pulse counts, and 200 to 20K ohm.
- H. Serviceability The controller shall provide the following in order to improve serviceability of the controller.
 - 1. Diagnostic LEDs shall indicate correct operation or failures/faults for all of the following: power, sensors, BACnet communications, and I/O communications bus.
 - 2. All binary output shall have LED's indicating the output state.
 - 3. All wiring connectors shall removable without the use of a tool.
 - 4. Software service tool connection through the following methods: direct cable connection to the controller, connection through another controller on BACnet link.
- I. Software Retention: All Zone Controller operating parameters, setpoints, BIOS, and sequence of operation code must be stored in non-volatile memory in order to maintain such information for months without power.
- J. Controller shall meet the following Agency Compliance:
 - 1. UL916 PAZX, Open Energy Management Equipment
 - 2. UL94-5V, Flammability
 - 3. FCC Part 15, Subpart B, Class B Limit
 - 4. BACnet Testing Laboratory (BTL) listed

2.7 APPLICATION-SPECIFIC CONTROLLERS

A. General Description

- 1. Application Specific Controllers (ASC) shall be microprocessor-based DDC controllers which, through hardware or firmware design, control specified equipment. They are not user programmable, but are customized for operation within the confines of the equipment they are designed to serve.
- 2. Zone Controllers are controllers that operate equipment that control the space temperature of single zone. Examples are controllers for VAV, Fan coil, Blower Coils, Unit Ventilators, Heat Pumps, and Water Source Heat Pumps.
- B. The Application Specific Controller shall be capable of operating as a stand-alone controller or as a member of a Building Automation System (BAS).

- C. When the Application Specific Controller is operating as a member of a Building Automation System (BAS), the application controller shall operate as follows:
 - 1. Application Controller will receive operation mode commands from the BAS network controller. The BAS commands shall include but not be limited to the follow: Occupied Heat/Cool, Unoccupied Heat/Cool, Morning Warm-up, / Pre-cool, Occupied Bypass).
 - 2. Application Controller will provide equipment status parameters to the BAS through BACnet communication.
 - 3. Application Controller will operate as a stand-alone controller in the event of communication failure with the BAS.
 - 4. In case of communications failure stand-alone operation shall use default values or last known values for remote sensors read over the network such as outdoor air temperature.
- D. Stand-Alone Operation: Each piece of equipment specified in section "A" shall be controlled by a single controller and provide stand-alone control in the event that a BAS is not present.
- E. The HVAC equipment controllers shall be installed, wired and commissioned in the factory.

F. Software

- 1. To meet the sequence of operation for each zone control, the controller shall use programs developed and tested by the controller manufacturer that are either factory loaded or downloaded with service tool to the controller.
- 2. For controlling ancillary devices and for flexibility to change the sequence of operation in the future, the controller shall be capable running custom programs written in a graphical programming language.
- G. Environment: Controller hardware shall be suitable for the anticipated ambient conditions.
 - 1. Storage: -55° to 203° F (-48° to 95° C) and 5 to 95% Rh, non-condensing.
 - 2. Operating: -40° to 158° F (-40 to 70° C) and 5 to 95% Rh, non-condensing.
 - 3. Controllers used indoors shall be mounted in a NEMA 1 enclosure at a minimum.
 - 4. Controllers used outdoors and/or in wet ambient shall be mounted within NEMA 4 type waterproof enclosures, and shall be rated for operation at -40° to 158° F [-40° to 70° C].

H. Input/Output:

- 1. For flexibility in selection and replacement of valves, the controllers shall be capable of supporting all of the following valve control types 0-10VDC, 0-5VDC, 4-20mA, 24VAC floating point, 24VAC 2 position (Normally Open or Normally Closed).
- 2. For flexibility in selection and replacement of sensors, the controllers shall be capable of reading sensor input ranges of 0 to 10V, 0 to 20mA, pulse counts, and 200 to 20Kohm.

- 3. For flexibility in selection and replacement of binary devices, the controller shall support dry and wetted (24VAC) binary inputs.
- 4. For flexibility in selection and replacement devices, the controller's shall have binary output which are able to drive at least 12VA each.
- 5. For flexibility in selection and replacement of motors, the controller shall be capable of outputting 24VAC (binary output), DC voltage (0 to 10VDC minimum range) and PWM (in the 80 to 100 Hz range).
- 6. For future needs, any I/O that is unused by functionality of equipment control shall be available to be used by custom program on the controller and by another controller on the network.
- 7. For future expansion and flexibility, the controller shall have either on board or through expansion, 20 hardware input/output points. Expansion points must communicate with the controller via an internal communications bus. Expansion points must be capable of being mounted up to 650ft. (200 m) from the controller. Expansion points that require the BACnet network for communication with the controller are not allowed.
- I. Serviceability The controller shall provide the following in order to improve serviceability of the controller.
 - 1. Diagnostic LEDs shall indicate correct operation or failures/faults for all of the following: power, sensors, BACnet communications, and I/O communications bus.
 - 2. All binary output shall have LED's indicating the output state.
 - 3. All wiring connectors shall removable without the use of a tool.
 - 4. Software service tool connection through the following methods: direct cable connection to the controller, connection through another controller on BACnet link.
 - 5. For safety purposes, the controller shall be capable of being powered by a portable computer for the purposes of configuration, programming, and testing programs so that this work can be accomplished with the power off to the equipment.
 - 6. Capabilities to temporarily override of BACnet point values with built-in time expiration in the controller.
 - 7. BACnet MAC Address shall be set using decimal (0-9) based rotary switches.
 - a. Configuration change shall not be made in a programming environment, but rather by a configuration page utilizing dropdown list, check boxes, and numeric boxes.
 - 8. For ease of troubleshooting, the Controller shall support BACnet data trend logging.
 - a. With a minimum of 20,000 trending points total on controller
 - b. Trends shall be capable of being collected at a minimum sample rate of once every second.
 - c. Shall be capable of trending all BACnet points used by controller

- d. Trends shall be capable of being scheduled or triggered
- J. Software Retention: All Zone Controller operating parameters, setpoints, BIOS, and sequence of operation code must be stored in non-volatile memory in order to maintain such information for months without power.
- K. Application controller shall have meet the Agency Compliance:
 - 1. UL916 PAZX, Open Energy Management Equipment
 - 2. UL94-5V, Flammability
 - 3. FCC Part 15, Subpart B, Class B Limit
 - 4. BACnet Testing Laboratory (BTL) listed as BACnet Application Specific Controller (B-ASC)

2.8 INPUT/OUTPUT INTERFACE:

- A. Hardwired inputs and outputs may tie into the system through building, custom application, or ASCs.
- B. All input points and output points shall be protected such that shorting of the point to itself, to another point, or to ground will cause no damage to the controller. All input and output points shall be protected from voltage up to 24V of any duration, such that contact with this voltage will cause no damage to the controller.
- C. Binary inputs shall allow the monitoring of on/off signals from remote devices. The binary inputs shall provide a wetting current of at least 12 mA to be compatible with commonly available control devices and shall be protected against the effects of contact bounce and noise. Binary inputs shall sense "dry contact" closure without external power (other than that provided by the controller) being applied.
- D. Pulse accumulation input objects. This type of object shall conform to all the requirements of binary input objects and also accept up to 10 pulses per second for pulse accumulation.
- E. Analog inputs shall allow the monitoring of low voltage (0 to 10 VDC), current (4 to 20 mA), or resistance signals (thermistor, RTD). Analog inputs shall be compatible with and field configurable to commonly available sensing devices.
- F. Binary outputs shall provide for on/off operation or a pulsed low-voltage signal for pulse width modulation control. Binary outputs on building and custom application controllers shall have status lights. Outputs shall be selectable for either normally open or normally closed operation.
- G. Analog outputs shall provide a modulating signal for the control of end devices. Outputs shall provide either a 0 to 10VDC or a 4 to 20 mA signal as required to provide proper control of the output device. Analog outputs shall not exhibit a drift of greater than 0.4% of range per year.
- H. Tri-State Outputs. Provide tri-state outputs (two coordinated binary outputs) for control of three-point floating type electronic actuators without feedback. Use of three-point floating devices shall be limited to zone control and terminal unit control applications (VAV terminal units, duct-mounted heating coils, zone dampers, radiation, etc.). Control algorithms shall run the zone actuator to one end of its stroke once every 24 hours for verification of operator tracking.

I. System Object Capacity. The system size shall be expandable to at least twice the number of input/output objects required for this project. Additional controllers (along with associated devices and wiring) shall be all that is necessary to achieve this capacity requirement. The operator interfaces installed for this project shall not require any hardware additions or software revisions in order to expand the system.

2.9 POWER SUPPLIES:

- A. Control transformers shall be UL listed. Furnish Class 2 current-limiting type or furnish overcurrent protection in both primary and secondary circuits for Class 2 service in accordance with NEC requirements. Limit connected loads to 80% of rated capacity.
 - 1. DC power supply output shall match output current and voltage requirements. Unit shall be full-wave rectifier type with output ripple of 5.0 mV maximum peak-to-peak. Regulation shall be 1.0% line and load combined, with 100-microsecond response time for 50% load changes. Unit shall have built-in overvoltage and overcurrent protection and shall be able to withstand a 150% current overload for at least three seconds without trip-out or failure.
 - a. Unit shall operate between 0°C and 50°C (32°F and 120°F). EM/RF shall meet FCC Class B and VDE 0871 for Class B and MIL-STD 810C for shock and vibration.
 - b. Line voltage units shall be UL recognized and CSA approved.

2.10 AUXILLARY CONTROL DEVICES:

- A. Motorized dampers, unless otherwise specified elsewhere, shall be as follows:
 - 1. Damper frames shall be 16 gauge galvanized sheet metal or 1/8" extruded aluminum with reinforced corner bracing.
 - 2. Damper blades shall not exceed 8" in width or 48" in length. Blades are to be suitable for medium velocity performance (2,000 fpm). Blades shall be not less than 16 gauge.
 - 3. Damper shaft bearings shall be as recommended by manufacturer for application.
 - 4. All blade edges and top and bottom of the frame shall be provided with compressible seals. Side seals shall be compressible stainless steel. The blade seals shall provide for a maximum leakage rate of 10 CFM per square foot at 2.5" w.c. differential pressure.
 - 5. All leakage testing and pressure ratings will be based on AMCA Publication 500.
 - 6. Individual damper sections shall not be larger than 48" x 60". Provide a minimum of one damper actuator per section.
- B. Control dampers shall be parallel or opposed blade types as scheduled on drawings.
- C. Electric damper/valve actuators
 - 1. The actuator shall have electronic overload or digital rotation sensing circuitry to prevent damage to the actuator throughout the rotation of the actuator.
 - 2. Where shown, for power-failure/safety applications, an internal mechanical, spring return mechanism shall be built into the actuator housing.

- 3. All rotary spring return actuators shall be capable of both clockwise or counter clockwise spring return operation. Linear actuators shall spring return to the retracted position.
- 4. Proportional actuators shall accept a 0-10 VDC or 0-20 ma control signal and provide a 2-10 VDC or 4-20 ma operating range.
- 5. All non-spring return actuators shall have an external manual gear release to allow manual positioning of the damper when the actuator is not powered. Spring return actuators with more than 60 in-lb. torque capacity shall have a manual crank for this purpose.
- 6. Actuators shall be provided with a conduit fitting and a minimum 1m electrical cable and shall be pre-wired to eliminate the necessity of opening the actuator housing to make electrical connections.
- 7. Actuators shall be Underwriters Laboratories Standard 873 listed.
- 8. Actuators shall be designed for a minimum of 60,000 full stroke cycles at the actuator's rated torque.

D. Control Valves

- 1. Control valves shall be two-way or three-way type for two-position or modulating service as scheduled or shown.
- 2. Close-off (differential) Pressure Rating: Valve actuator and trim shall be furnished to provide the following minimum close-off pressure ratings:
 - a. Water Valves:
 - 1) Two-way: 150% of total system (pump) head.
 - 2) Three-way: 300% of pressure differential between ports A and B at design flow or 100% of total system (pump) head.
 - b. Steam Valves: 150% of operating (inlet) pressure.

E. Water Valves

- 1. Body and trim style and materials shall be in accordance with manufacturer's recommendations for design conditions and service shown, with equal percentage ports for modulating service.
- 2. Sizing Criteria:
 - a. Two-position service: Line size.
 - b. Two-way modulating service: Pressure drop shall be equal to twice the pressure drop through heat exchanger (load), 50% of the pressure difference between supply and return mains, or 34.5 kPa (5 psi), whichever is greater.
 - c. Three-way modulating service: Pressure drop equal to twice the pressure drop through the coil exchanger (load), 34.5 kPa (5 psi) maximum.

- d. Valves DN 15 (1/2 in.) through DN 50 (2 in.) shall be bronze body or cast brass ANSI Class 250, spring-loaded, PTFE packing, quick opening for two-position service. Two-way valves to have replaceable composition disc or stainless steel ball.
- e. Valves DN 65 (2 1/2 in.) and larger shall be cast iron ANSI Class 125 with guided plug and PTFE packing.
- 3. Water valves shall fail normally open or closed, as scheduled on plans, or as follows:
 - a. Water zone valves—normally open preferred
 - b. Heating coils in air handlers normally open
 - c. Chilled-water control valves normally closed
 - d. Other applications—as scheduled or as required by sequences of operation
- 4. Zone valves shall be sized to meet the control application and they shall maintain their last position in the event of a power failure.

F. Steam Valves

- 1. Body and trim materials shall be in accordance with manufacturer's recommendations for design conditions and service with linear ports for modulating service.
- 2. Sizing Criteria:
 - a. Two-position service: pressure drop 10% to 20% of inlet psig
 - b. Modulating service: 100 kPa (15 psig) or less; pressure drop 80% of inlet psig
 - c. Modulating service: 101 to 350 kPa (16 to 50 psig); pressure drop 50% of inlet psig
 - d. Modulating service: over 350 kPa (50 psig); pressure drop as scheduled on plans

G. Binary Temperature Devices

- 1. Low-voltage space thermostat shall be 24 V, bimetal-operated, mercury-switch type, with either adjustable or fixed anticipation heater, concealed setpoint adjustment, 13°C to 30°C (55°F to 85°F) setpoint range, 1°C (2°F) maximum differential, and vented ABS plastic cover.
- 2. Line-voltage space thermostat shall be bimetal-actuated, open contact type, or bellows-actuated, enclosed, snap-switch type or equivalent solid-state type, with heat anticipator, UL listed for electrical rating, concealed setpoint adjustment, 13°C to 30°C (55°F to 85°F) setpoint range, 1°C (2°F) maximum differential, and vented ABS plastic cover.
- 3. Low-limit thermostats. Low-limit airstream thermostats shall be UL listed, vapor pressure type, with an element of 6 m (20 ft) minimum length. Element shall respond to the lowest temperature sensed by any 30 cm (1 ft) section. The low-limit thermostat shall be manual reset only.

H. Wired Temperature Sensors

1. Temperature sensors shall be RTD or thermistor.

- 2. Duct sensors shall be single point or averaging as shown. Averaging sensors shall be a minimum of 1.5 m (5 ft) in length per 1 m2 (10 ft2) of duct cross section.
- 3. Immersion sensors shall be provided with a separable stainless steel well. Pressure rating of well is to be consistent with the system pressure in which it is to be installed. The well must withstand the flow velocities in the pipe.
- 4. Space sensors shall be equipped with setpoint adjustment, override switch, display, and/or communication port as shown on plans.
- 5. Provide matched temperature sensors for differential temperature measurement.

I. Wired Humidity Sensors

- 1. Duct and room sensors shall have a sensing range of 20% to 80%.
- 2. Duct sensors shall be provided with a sampling chamber.

J. Static Pressure Sensors

- 1. Sensor shall have linear output signal. Zero and span shall be field-adjustable.
- 2. Sensor sensing elements shall withstand continuous operating conditions plus or minus 50% greater than calibrated span without damage.
- 3. Water pressure sensor shall have stainless steel diaphragm construction, proof pressure of 150 psi minimum. Sensor shall be complete with 4-20 ma output, required mounting brackets, and block and bleed valves. Mount in location accessible for service.
- 4. Water differential pressure sensor shall have stainless steel diaphragm construction, proof pressure of 150 psi minimum. Over-range limit (DP) and maximum static pressure shall be 3,000 psi. Transmitter shall be complete with 4-20 ma output, required mounting brackets, and five-valve manifold. Mount in a location accessible for service.

K. Low Limit Thermostats

- 1. Safety low limit thermostats shall be vapor pressure type with an element 6m [20 ft] minimum length. Element shall respond to the lowest temperature sensed by any one foot section.
- 2. Low limit shall be manual reset only.

2.11 WIRING AND RACEWAYS:

- A. General: Provide copper wiring, plenum cable, and raceways as specified in the applicable sections of this specification.
- B. All insulated wire to be copper conductors, UL labeled for 90°C (194°F) minimum service.
- C. Fiber Optic Cable. Optical cables shall be duplex 900 mm tight-buffer construction designed for intra-building environments. The sheath shall be UL Listed OFNP in accordance with NEC Article 770. The optical fiber shall meet the requirements of FDDI, ANSI X3T9.5 PMD for 62.5/125 µm.

PART 3 EXECUTION

- 3.0 SECTION INCLUDES
 - 3.1 EXAMINATION:
 - 3.2 PROTECTION:
 - 3.3 COORDINATION:
 - 3.4 GENERAL WORKMANSHIP:
 - 3.5 FIELD QUALITY CONTROL:
 - 3.6 COMMUNICATION WIRING:
 - 3.7 FIBER OPTIC CABLE:
 - 3.8 INSTALLATION OF SENSORS:
 - 3.9 FLOW SWITCH INSTALLATION:
 - 3.10 WARNING LABELS:
 - 3.11 IDENTIFICATION OF HARDWARE AND WIRING:
 - 3.12 CONTROLLERS:
 - 3.13 PROGRAMMING:
 - 3.14 CONTROL SYSTEM CHECKOUT AND TESTING:
 - 3.15 CLEANING:
 - 3.16 TRAINING:
- 3.1 EXAMINATION:
 - A. The Contract Documents shall be thoroughly examined for coordination of control devices, their installation, wiring, and commissioning. Coordinate and review mechanical equipment specifications, locations, and identify any discrepancies, conflicts, or omissions that shall be reported to the Architect/Engineer for resolution before rough-in work is started.
 - B. The BAS manufacturer shall inspect the jobsite in order to verify that control equipment can be installed as required, and any dis¬crepancies, conflicts, or omissions shall be reported to the Architect/Engineer for resolution before rough-in work is started.

3.2 PROTECTION:

- A. The BAS installation contractor shall protect all work and material from damage by their work or personnel, and shall be liable for all damage thus caused.
- B. The BAS manufacturer shall be responsible for their work and equipment until final inspection, testing, and acceptance. The BAS installing contractor shall protect their work against theft or damage, and shall carefully store material and equipment received on site that is not immediately

installed. The Contractor shall close all open ends of work with temporary covers or plugs during storage and construction to prevent entry of foreign objects.

3.3 COORDINATION:

A. Site

- 1. Where the mechanical work will be installed in close proximity to, or will interfere with, work of other trades, the contractor shall assist in working out space conditions to make a satisfactory adjustment. If the contractor installs his/her work before coordinating with other trades, so as to cause any interference with work of other trades, the contractor shall make the necessary changes in his/her work to correct the condition without extra charge.
- 2. Coordinate and schedule work with all other work in the same area, or with work that is dependent upon other work, to facilitate mutual progress.
- B. Submittals. Refer to the "Submittals," section of this specification for requirements.

C. Test and Balance

- 1. The contractor shall furnish a single set of all tools necessary to interface to the control system for test and balance purposes.
- 2. The contractor shall provide training in the use of these tools. This training will be planned for a duration of 4 hours.
- 3. In addition, the contractor shall provide a qualified technician to assist in the test and balance process, until the first 20 terminal units are balanced.
- 4. The tools used during the test and balance process shall be returned to the contractor at the completion of the testing and balancing.

D. Life Safety

- 1. Duct smoke detectors required for air handler shutdown shall be supplied under Section 26100 of this specification. The contractor shall interlock smoke detectors to air handlers for shutdown as described in the Sequences of Operation for this project.
- 2. Smoke dampers and actuators required for duct smoke isolation are provided under Section 26100. The contractor shall interlock these dampers to the air handlers as described in the Sequences of Operation for this project as applicable.
- 3. Fire/smoke dampers and actuators required for fire rated walls are provided under another Section 26100. Control of these dampers shall be by 26100
- E. Coordination with Controls Specified in Other Sections or Divisions. Other sections and/or divisions of this specification include controls and control devices that are to be part of or interfaced to the control system specified in this section. These controls shall be integrated into the system and coordinated by the contractor as follows:
 - 1. All communication media and equipment shall be provided as specified in the "Communication" section of this specification.

- 2. Each supplier of a controls product is responsible for the configuration, programming, start-up, and testing of that product to meet the sequences of operation described in this section.
- 3. The Contractor shall coordinate and resolve any incompatibility issues that arise between the control products provided under this section and those provided under other sections or divisions of this specification.

3.4 GENERAL WORKMANSHIP:

- A. Install equipment, piping, wiring/conduit, parallel to building lines (i.e. horizontal, vertical, and parallel to walls) wherever possible.
- B. Provide sufficient slack and flexible connections to allow for vibration of piping and equipment.
- C. Install all equipment in readily accessible locations as defined by National Electric Code (NEC). Control panels shall be attached to structural walls or properly supported in a free-standing configuration, unless mounted in equipment enclosure specifically designed for that purpose. Panels shall be mounted to allow for unobstructed access for service.
- D. Verify integrity of all control wiring to ensure continuity and freedom from shorts and grounds prior to commencing the startup and commissioning procedures.
- E. All control device installation and wiring shall comply with Contract Documents, acceptable industry specifications, and industry standards for performance, reliability, and compatibility. Installation and wiring shall be executed in strict adherence to local codes and standard practices referenced in Contract Documents.

3.5 FIELD QUALITY CONTROL:

- A. All work, materials, and equipment shall comply with the rules and regulations of applicable local, state, and federal codes and ordinances as identified in Contract Documents.
- B. BAS manufacturer shall continually monitor the field installation for building code compliance and quality of workmanship. All visible piping and or wiring runs shall be installed parallel to building lines and properly supported.
- C. BAS installing Contractor(s) shall arrange for field inspections by local and/or state authorities having jurisdiction over the work.

3.6 COMMUNICATION WIRING:

- A. All cabling shall be installed in a neat and workmanlike manner. Follow manufacturer's installation recommendations for all communication cabling.
- B. Do not install communication wiring in raceway and enclosures containing Class 1 or other Class 2 wiring.
- C. Maximum pulling, tension, and bend radius for cable installation, as specified by the cable manufacturer shall not be exceeded during installation.
- D. Contractor shall verify the integrity of the entire network following cable installation. Use appropriate test measures for each particular cable.

- E. When a cable enters or exits a building, a lighting arrestor must be installed between the line and ground.
- F. All runs of communication wiring shall be unspliced length when the length is commercially available.
- G. All communication wiring shall be labeled to indicate origin and destination.

3.7 FIBER OPTIC CABLE:

- A. All cabling shall be installed in a neat and workmanlike manner. Minimum cable and unjacketed fiber bend radii as specified by cable manufacturer shall be maintained.
- B. Maximum pulling tensions as specified by the cable manufacturer shall not be exceeded during installation. Post installation residual cable tension shall be within cable manufacturer's specifications.
- C. Fiber optic cabinets, hardware, and cable entering the cabinet shall be installed in accordance with manufacturers' instructions. Minimum cable and unjacketed fiber bend radii as specified by cable manufacturer shall be maintained.

3.8 INSTALLATION OF SENSORS:

- A. Sensors required for mechanical equipment operation shall be factory installed and wired as specified in mechanical equipment specifications. BAS manufacturer shall be responsible for coordinating these control devices and ensuring the sequence of operations will be met. Installation and wiring shall be in accordance with the BAS manufacturer's recommendations.
- B. Sensors that require field mounting shall meet the BAS manufacturer's recommendations and be coordinated with the mechanical equipment they will be associated.
- C. Mount sensors rigidly and adequately for the environment the sensor will operate.
- D. Room temperature sensors shall be installed on concealed junction boxes properly supported by the block wall framing. For installation in dry wall ceilings, the low voltage sensor wiring can be installed exposed and must meet applicable National and Local Electrical Codes.
- E. All wires attached to wall mounted sensors shall be sealed off to prevent air from transmitting in the associated conduit and affecting the room sensor readings.
- F. Install duct static pressure tap with tube end facing directly down-stream of air flow.
- G. Install space static pressure sensor with static sensing probe applicable for space installation where applicable.
- H. Sensors used in mixing plenums, and hot and cold decks shall be of the averaging type. Averaging sensors shall be installed in a serpentine manner horizontally across duct. Each bend shall be supported with a capillary clip.
- I. All pipe mounted temperature sensors shall be installed in matched thermowells. Install all liquid temperature sensors with heat conducting fluid in thermal wells for adequate thermal conductance.

- J. Wiring for space sensors shall be concealed in building drywall. EMT conduit is acceptable within mechanical equipment and service rooms.
- K. Install outdoor air temperature sensors on north wall complete with sun shield at manufacturer's recommended location and coordinated with Engineer.

3.9 FLOW SWITCH INSTALLATION:

- A. Coordinate installation of flow switch with Mechanical Contractor who will be responsible for installing a thread o let in steel piping applications. Copper pipe applications will require the use CxCxF Tee, and no pipe extensions or substitutions will be allowed.
- B. Mount a minimum of 5 pipe diameters upstream and 5 pipe diameters downstream, or two feet, whichever is greater, from pipe fittings and other inline potential obstructions.
- C. Install in accordance with manufacturers' instructions, which will require proper flow direction, horizontal alignment with flow switch mounting on the top of pipe.

3.10 WARNING LABELS:

- A. Permanent warning labels shall be affixed to all equipment that can be automatically started by the BAS system.
- B. Permanent warning labels shall be affixed to all motor starters and all control panels that are connected to multiple power sources utilizing separate disconnects.

3.11 IDENTIFICATION OF HARDWARE AND WIRING:

- A. All field wiring and cabling, including that within factory mounted, and wired control panels and devices for mechanical equipment, shall be labeled at each end within 2" of termination with a cable identifier and other descriptive information for troubleshooting, maintenance, and service purposes. BAS manufacturer to coordinate this labeling requirement with mechanical equipment manufacturer as it relates to controls.
- B. Permanently label or code each point of field terminal strips to show the instrument or item served and correlate them to the BAS design drawings.
- C. Identify control panels with minimum 1-cm letters on laminated plastic nameplates.
- D. Identifiers shall match record documents. All plug-in components shall be labeled such that removal of the component does not remove the label.

3.12 CONTROLLERS:

- A. Provide a separate DDC Controller for individual HVAC mechanical equipment. BAS manufacturer shall furnish and coordinate DDC controllers and control devices and ensure that installation and wiring adhere to BAS manufacturer's design recommendations. For those mechanical equipment units that do not have factory installed controls specified, the BAS manufacturer shall field mount controls and coordinate all installation and termination information to ensure the specified sequence of operations are met.
- B. Building Controllers and Custom Application Controllers shall be selected to provide a minimum of 15% spare I/O point capacity for each point type (analog or digital) found at each location. If input

points are not universal, 15% of each type is required. If outputs are not universal, 15% of each type is required. A minimum of one spare is required for each type of point used in each controller.

1. Future use of spare I/O point capacity shall require providing the field instrument and control device, field wiring, engineering, programming, and commissioning. No additional Controller boards or point modules shall be required to implement use of these spare points.

3.13 PROGRAMMING:

- A. Provide sufficient internal memory for all controllers to ensure specified sequence of operations, alarming, trending, and reporting requirements are achieved. BAS manufacturer shall provide a minimum of 25% spare memory capacity for future use.
- B. Point Naming: System point names shall be modular in design, allowing easy operator interface without the use of a written point index.

C. Software Programming

1. Provide programming for individual mechanical systems to achieve all aspects of the sequence of operation specified. It is the BAS manufacturer's responsibility to ensure all mechanical equipment functions and operates as specified in sequence of operations. Provide sufficient programming comments in controller application software to clearly describe each section of the program. The comment statements shall reflect the language used in the sequence of operations.

D. BAS Operator's Interface

- 1. When Operator Workstation is specified, provide color graphics for each piece of mechanical equipment depicting sufficient I/O to monitor and troubleshoot operation. Operator color graphics shall include Chiller Plant, Cooling Tower System, Boiler Plant, Air Handling Units, Rooftop Units, VAV Terminal Boxes, Fan Coil Units, Unit Ventilators, Heat Exchangers, Exhaust Fans, etc. These standard graphics shall depict all points dynamically as specified in the points list and/or indicated in sequence of operation.
- 2. The BAS manufacturer shall provide all the labor necessary to install, initialize, start up, and trouble-shoot all operator interface software and their functions as described in this section. This includes any operating system software, the operator interface data base, and any third party software installation and integration required for successful operation of the operator interface.
- 3. As part of this execution phase, the BAS manufacturer shall perform a complete test of the operator interface.

3.14 CONTROL SYSTEM CHECKOUT AND TESTING:

- A. Start-up testing. All testing in this section shall be performed by the contractor and shall make up part of the necessary verification of an operating control system. This testing shall be completed before the owner's representative is notified of the system demonstration.
 - 1. The contractor shall furnish all labor and test apparatus required to calibrate and prepare for service all of the instruments, controls, and accessory equipment furnished under this specification.

- 2. Verify that all control wiring is properly connected and free of all shorts and ground faults. Verify that terminations are tight.
- 3. Enable the control systems and verify calibration of all input devices individually. Perform calibration procedures according to manufacturer's recommendations.
- 4. Verify all binary output devices (relays, solenoid valves, two-position actuators and control valves, magnetic starter, etc.) operate properly and normal positions are correct.
- 5. Verify all analog output devices (I/Ps, actuators, etc) are functional, that startand span are correct, and that direction and normal positions are correct. The contractor shall check all control valves and autoatic dampers to ensure proper action and closure. The contractor shall make any necessary adjustments to valve stem and damper blade travel.
- 6. Verify the system operation adheres to the sequences of operation. Simulate and observe all modes of operation by overriding and varying inputs and schedules. Tune all DDC loops and optimal start/stop routimes.

7. Alarms and Interlocks

- a. Check each alarm separately by including an appropriate signal at a value that will trip the alarm.
- b. Interlocks shall be tripped using field contacts to check the logic, as well as to ensure that the fail-safe condition for all actuators is in the proper direction.
- c. Interlock actions shall be tested by simulating alarm conditions to check the initiating value of the variable and interlock action.

3.15 CLEANING:

- A. The BAS manufacturer's installing contractor(s) shall clean up all debris resulting from their installation activities on a daily basis. The installation contractors shall remove all cartons, containers, crates, etc. under his control as soon as their contents have been removed. Waste shall be collected and placed in a location designated by the Owner, Construction Manager, General Contractor, and/or Mechanical Contractor.
- B. At the completion of work in any area, the installation contractor shall clean all of their work, equipment, etc., making it free from dust, dirt and debris.
- C. At the completion of work, all equipment furnished under this Section shall be checked for paint damage. Any factory finished paint that has been damaged shall be repaired to match the adjacent areas. Any metal cabinet or enclosure that has been deformed shall be replaced with new material and repainted to match the adjacent areas.

3.16 TRAINING:

A. Provide minimum of (4) hours of operator training sessions ((4) hours for each session), throughout the contract period. The training will be provided for personnel designated by the Owner.

- B. These objectives will be divided into logical groupings; participants may attend one or more of these, depending on level of knowledge required:
 - 1. Day-to-day BAS Operators
 - 2. BAS Troubleshooting & Maintenance
- C. The instructor(s) shall be factory-trained and experienced in teaching this technical material.

SECTION 230923 DIRECT DIGITAL CONTROL SYSTEM

PART 1 - GENERAL

1.0 SECTION INCLUDES

- A. Products Furnished But Not Installed Under This Section
- B. Products Installed But Not Furnished Under This Section
- C. Products Not Furnished or Installed But Integrated with the Work of this Section
- D. Related Sections
- E. Description
- F. Approved Control System Contractor
- G. Quality Assurance
- H. Codes and Standards
- I. System Performance
- J. Submittals
- K. Warranty
- L. Ownership of Proprietary Material

1.2 PRODUCTS FURNISHED BUT NOT INSTALLED UNDER THIS SECTION

- A. Division 23 Hydronic Piping:
 - 1. Control Valves
 - 2. Flow Switches
 - 3. Temperature Sensor Wells and Sockets
 - 4. Flow Meters
- B. Division 23 Refrigerant Piping:
 - 1. Pressure and Temperature Sensor Wells and Sockets
- C. Division 23 Ductwork Accessories:
 - 1. Automatic Dampers
 - 1. Airflow Stations
 - 2. Terminal Unit Controls

1.3 PRODUCTS INSTALLED BUT NOT FURNISHED UNDER THIS SECTION

- A. Division 23 Rooftop Air Handling Equipment:
 - 1. Thermostats
 - 2. Sensors
 - 3. Controllers

1.4 PRODUCTS NOT FURNISHED OR INSTALLED BUT INTEGRATED WITH THE WORK OF THIS SECTION

A. Division 23 – Heat Generation Equipment

- 1. Boilers
- B. Division 23 Rooftop Air Conditioning Equipment
 - 1. Discharge Air Temperature Control
 - 2. Economizer Control
 - 3. Air volume control
- C. Division 23 Variable Frequency Drives
 - 1. Pump controls

1.5 RELATED SECTIONS

- A. The General Conditions of the Contract, Supplementary Conditions, and General Requirements are a part of these Specifications and shall be used in conjunction with this Section as a part of the Contract Documents. Consult them for further instructions pertaining to this work. The Contractor is bound by the provisions of Division 0 and Division 1.
- B. The following sections constitute related work:
 - 1. Division 1 Commissioning
 - 2. Division 23 Basic Mechanical Requirements
 - 3. Division 23 Air Distribution Materials and Methods
 - 4. Division 23 Refrigeration Piping
 - 5. Division 23 Valves, Fittings, and Piping Accessories
 - 6. Division 23 Refrigeration Equipment
 - 7. Division 23 Air Handling Equipment
 - 8. Division 23 Air Distribution
 - 9. Division 23 Test and Balance
 - 10. Division 26 Basic Electrical Requirements
 - 11. Division 26 Basic Electrical Materials
 - 12. Division 26 General Wiring
 - 13. Division 26 Equipment and Motor Wiring
 - 14. Division 26 Uninterruptible Power Supply
 - 15. Division 26 Emergency Systems
 - 16. Division 26 Fire Alarm Systems

1.6 DESCRIPTION

A. General: The control system shall be as indicated on the drawings and described in the specifications, and consist of a peer-to-peer network of digital building control panels and operator workstation(s). The operator workstation shall be a personal computer (PC) including a color monitor, mouse and keyboard. The PC shall provide users an interface with the system though dynamic color graphics of building areas and systems.

- B. Direct Digital Control (DDC) technology shall be used to provide the functions necessary for control of systems defined for control on this project.
- C. The control system shall accommodate simultaneous multiple user operation. Access to the control system data should be limited by operator password. An operator shall be able to log onto any workstation of the control system and have access to all designated data.
- D. The control system shall be designed such that each mechanical system will operate under stand-alone control. As such, in the event of a network communication failure, or the loss of other controllers, the control system shall continue to independently operate the unaffected equipment.
- E. Communication between the control panels and all workstations shall be over a high-speed network. All nodes on this network shall be peers. A modem or network communications card shall be provided to for remote access to the system.

1.7 APPROVED CONTROL SYSTEM CONTRACTORS AND MANUFACTURERS

A. Approved Control System Contractors and Manufacturers:

Manufacturer Name	Product Line	Contractor Name/Address
Trane (Basis of	Trane SC	Trane North Jersey, Pine Brook
Design)		
Honeywell Building	Honeywell Building	Honeywell Building Solutions -
Solutions	Manager	Morristown Branch
Siemens	Apogee	Siemens Corporate Sales Office,
		Florham Park

- 1. The above list of manufacturers applies to operator workstation software, controller software, the custom application programming language, Building Controllers, Custom Application Controllers, and Application Specific Controllers. All other products specified herein (i.e., sensors, valves, dampers, and actuators) need not be manufactured by the above manufacturers.
- 2. NOTE: All controls to be provided, engineered, and installed by the CORPORATE SALES OFFICES of each manufacturer. Independent distributors, integrators, ABCS, ACI, BCS, control contractors, etc. are NOT ACCEPTABLE. Due to liability and reliability issues of past projects ONLY THE MANUFACTURER'S CORPORATE SALES OFFICE WILL BE ALLOWED.

1.8 QUALITY ASSURANCE

A. System Installer Qualifications

- 1. Must work directly for the Corporate Sales office of the specified manufacturer. No contractors, integrators, distributors, ABCS's allowed.
- 2. The Installer shall be the Control System Manufacturer and have a working history of not less than five years.
- 3. The Installer shall have successfully completed Control System Manufacturer's classes on the control system. The Installer shall present for review the certification of completed training, including the hours of instruction and course outlines upon request.
- 4. The installer shall have an office within 75 miles of the project site and provide 24-hour response in the event of a customer call.

1.9 CODES AND STANDARDS

- A. Work, materials, and equipment shall comply with the rules and regulations of all codes and ordinances of local, state and federal authorities. As a minimum, the installation shall comply with the current editions in effect 30 days prior to receipt of bids of the following codes:
 - 1. National Electric Code (NEC)
 - 2. International Building Code (IBC)
 - 3. International Mechanical Code (IMC)
 - 4. Underwriters Laboratories: Products shall be UL-916-PAZX listed.
 - 5. ANSI/ASHRAE Standard 135-2004 (BACnet)
 - 6. IEEE 802.15.4 radios to minimize risk of interference and maximize battery life, reliability, and range.

1.10 SYSTEM PERFORMANCE

- A. Performance Standards. The system shall conform to the following:
 - 1. Graphic Display. The system shall display a graphic with a minimum of 20 dynamic points with current data displayed within 20 seconds of the request.
 - 2. Graphic Refresh. The system shall update all dynamic points with current data within 30 seconds.
 - 3. Object Command. The maximum time between the command of a binary object by the operator and the reaction by the device shall be 10 seconds. Analog objects shall start to adjust within 10 seconds.
 - 4. Object Scan. All changes of state and change of analog values shall be transmitted over the high-speed network such that any data used or displayed at a controller or workstation will be current, within the prior 60 seconds.
 - 5. Alarm Response Time. The maximum time from when an object goes into alarm to when it is annunciated at the workstation shall not exceed 45 seconds.
 - 6. Program Execution Frequency. Custom and standard applications shall be capable of running as often as once every 5 seconds. The Contractor shall be responsible for selecting execution times consistent with the mechanical process under control.
 - 7. Performance. Programmable Controllers shall be able to execute DDC PID control loops at a selectable frequency from at least once every 5 seconds. The controller shall

- scan and update the process value and output generated by this calculation at this same frequency.
- 8. Multiple Alarm Annunciation. All workstations on the network shall receive alarms within 5 seconds of each other.
- 9. Reporting Accuracy. Table 1 lists minimum acceptable reporting accuracies for all values reported by the specified system.

Table 1
Reporting Accuracy

Measured Variable	Reported Accuracy
Space Temperature	±0.5°C [±1°F]
Ducted Air	±1.0°C [±2°F]
Outside Air	±1.0°C [±2°F]
Water Temperature	±0.5°C [±1°F]
Delta-T	±0.15°C[±0.25°F]
Relative Humidity	±5% RH
Water Flow	±5% of full scale
Air Flow (terminal)	$\pm 10\%$ of reading *Note 1
Air Flow (measuring stations)	±5% of reading
Air Pressure (ducts)	±25 Pa [±0.1 "W.G.]
Air Pressure (space)	±3 Pa [±0.01 "W.G.]
Water Pressure	±2% of full scale *Note 2
Electrical Power	\pm 5% of reading *Note 3
Carbon Monoxide (CO)	\pm 5% of reading
Carbon Dioxide (CO2)	± 50 PPM

Note 1: (10%-100% of scale) (cannot read accurately below 10%)

Note 2: for both absolute and differential pressure

Note 3: * not including utility supplied meters

1.11 SUBMITTALS

- A. Contractor shall provide shop drawings and manufacturers' standard specification data sheets on all hardware and software to be provided. No work may begin on any segment of this project until the Engineer and Owner have reviewed submittals for conformity with the plan and specifications. Six (6) copies are required. All shop drawings shall be provided to the Owner electronically as .dwg or .dxf file formats.
- B. Quantities of items submitted shall be reviewed by the Engineer and Owner. Such review shall not relieve the contractor from furnishing quantities required for completion.
- C. Provide the Engineer and Owner, any additional information or data which is deemed necessary to determine compliance with these specifications or which is deemed valuable in documenting the system to be installed.
- D. Submit the following within 14 days of contract award:
 - 1. A complete bill of materials of equipment to be used indicating quantity, manufacturer and model number.

- 2. A schedule of all control valves including the valve size, model number (including pattern and connections), flow, CV, pressure rating, and location.
- 3. A schedule of all control dampers. This shall include the damper size, pressure drop, manufacturer and model number.
- 4. Provide manufacturers cut sheets for major system components. When manufacturer's cut sheets apply to a product series rather than a specific product, the data specifically applicable to the project shall be highlighted or clearly indicated by other means. Each submitted piece of literature and drawings shall clearly reference the specification and/or drawing that the submittal is being submitted to cover. Include:
 - a. Building Controllers
 - b. Custom Application Controllers
 - c. Application Specific Controllers
 - d. Operator Interface Computer(s)
 - e. Portable Operator Workstation
 - f. Auxiliary Control Devices
 - g. Proposed control system riser diagram showing system configuration, device locations, addresses, and cabling
 - h. Detailed termination drawings showing all required field and factory terminations. Terminal numbers shall be clearly labeled
 - i. Points list showing all system objects, and the proposed English language object names
 - j. Sequence of operations for each system under control. This sequence shall be specific for the use of the Control System being provided for this project
 - k. Provide a BACnet Product Implementation Conformance Statement (PICS) for each BACnet device type in the submittal
 - 1. Color prints of proposed graphics with a list of points for display
- E. Project Record Documents. Upon completion of installation submit three (3) copies of record (as-built) documents. The documents shall be submitted for approval prior to final completion and include:
 - 1. Project Record Drawings. These shall be as-built versions of the submittal shop drawings. One set of electronic media including CAD .DWG or .DXF drawing files shall also be provided.
 - 2. Testing and Commissioning Reports and Checklists.
 - 3. Operating and Maintenance (O & M) Manual. These shall be as-built versions of the submittal product data. In addition to that required for the submittals, the O & M manual shall include:
 - a. Names, address and 24-hour telephone numbers of Contractors installing equipment, and the control systems and service representative of each.
 - b. Operators Manual with procedures of operating the control systems including logging on/off, alarm handling, producing point reports, trending data, overriding computer control, and changing set points and other variables.
 - c. Programming Manual with a description of the programming language including syntax, statement descriptions including algorithms and calculations used, point

- database creation and modification, program creation and modification, and use of the editor.
- d. Engineering, Installation and Maintenance Manual(s) that explains how to design and install new points, panels, and other hardware; preventative maintenance and calibration procedures; how to debug hardware problems; and how to repair or replace hardware.
- e. A listing and documentation of all custom software created using the programming language including the point database. One set of magnetic media containing files of the software and database shall also be provided.
- f. One set of electronic media containing files of all color-graphic screens created for the project.
- g. Complete original issue documentation, installation, and maintenance information for all third party hardware provided including computer equipment and sensors.
- h. Complete original issue media for all software provided including operating systems, programming language, operator workstation software, and graphics software.
- i. Licenses and warranty documents for all equipment and systems.
- j. Recommended preventive maintenance procedures for all system components including a schedule of tasks, time between tasks, and task descriptions.
- F. Training Materials: The Contractor shall provide a course outline and training material for all training classes at least six weeks prior to the first class. The Owner reserves the right to modify any or all of the training course outline and training materials. Review and approval by Owner and Engineer shall be completed at least 3 weeks prior to first class.

1.12 WARRANTY

- A. Warrant all work as follows:
 - 1. Labor & materials for control system specified shall be warranted free from defects for a period of twelve (24) months after final completion acceptance by the Owner. Control System failures during the warranty period shall be adjusted, repaired, or replaced at no charge or reduction in service to the Owner. The Contractor shall respond to the Owner's request for warranty service within 24 hours during customary business hours.
 - 2. At the end of the final start-up/testing, if equipment and systems are operating satisfactorily to the Owner and Engineer, the Owner shall sign certificates certifying that the control system's operation has been tested and accepted in accordance with the terms of this specification. The date of Owner's acceptance shall be the start of warranty.
 - 3. Operator workstation software, project specific software, graphics, database, and firmware updates shall be provided to the Owner at no charge during the warranty period. Written authorization by Owner must, however, be granted prior to the installation of such changes.

4. The system provider shall provide a web-accessible system and support on-line resource that provides the Owner access to a question/answer forum, graphics library, user tips, upgrades, and manufacturer training schedules.

1.13 OWNERSHIP OF PROPRIETARY MATERIAL

- A. All project-developed hardware and software shall become the property of the Owner. These items include but are not limited to:
 - 1. Project graphic images
 - 2. Record drawings
 - 3. Project database
 - 4. Project-specific application programming code
 - 5. All documentation

PART 2 - PRODUCTS

2.0 SECTION INCLUDES

- A. General Description
- B. Architecture/Communication
- C. Operator Interface
- D. Application and Control Software
- E. System Controllers
- F. Equipment Controllers
- G. Input/Output Modules
- H. Auxiliary Control Devices
- I. System Tools

2.1 GENERAL DESCRIPTION

A. Provide a Building Automation System to control the HVAC systems of both the Ice Rink and the Pool house.

2.1 ARCHITECTURE/COMMUNICATION

- A. This project shall be comprised of a high speed Ethernet network utilizing BACnet/IP communications between System Controllers and Workstations. Communications between System Controllers and sub-networks of Custom Application Controllers and/or Application Specific Controllers shall utilize BACnet/MSTP (RS485) or BACnet/Zigbee.
- B. Each System Controller shall perform communications to a network of Custom Application and Application Specific Controllers using BACnet/Zigbee (802.15.4) as defined by the Zigbee Standard.
 - 1. Each communication interface shall be Zigbee Building Automation Certified product as defined by the BACnet Standard and the Zigbee Alliance.

- 2. Each System Controller shall function as a BACnet Router to each unit controller providing a unique BACnet Device ID for all controllers within the system.
- C. Each System Controller shall perform communications to a network of Custom Application and Application Specific Controllers using BACnet/MSTP (RS485) as defined by the BACnet standard.
 - 1. Each System Controller shall function as a BACnet Router to each unit controller providing a unique BACnet Device ID for all controllers within the system.
- D. The Owner will provide all communication media, connectors, repeaters, network switches, and routers necessary for the high speed Ethernet network. An active Ethernet port will be provided adjacent to each System Controller and operator interface (PC) for connection to this high speed Ethernet network.
 - 1. All values within the system contained in both the system and unit controllers (i.e. Schedules, Data Logs, Points, Application Variables, Custom Program Variables) shall be readable and controllable (where appropriate) by any System Controller or BACnet Workstation on the communications network via BACnet.

2.3 OPERATOR INTERFACE

- A. Furnish [1] PC based operator interface as shown on the system drawings. Each of these operator interfaces shall be able to access all information in the system. The operator interface shall reside on the Enterprise wide network, which is same high-speed communications network as the System Controllers. The Enterprise wide network will be provided by the owner and supports the Internet Protocol (IP).
 - 1. Each operator interface PC shall include the following:
 - a. Hardware type PC
 - b. Operating Systems Windows 10
 - c. Minimum Hardware
 - 1) Pentium Core 2 DUO or better
 - 2) 4 GB RAM
 - 3) 100 GB hard drive space
 - 4) Internet Browser compatible with operator interface requirements outlined in the operator interface section

2. Operator Interface

- a. The operator interface shall be accessible via a web browser without requiring any "plug-ins" (i.e. JAVA Runtime Environment (JRE), Adobe Flash).
- b. The operator interface shall support the following Internet web browsers:
 - 1) Internet Explorer 11.0+
 - 2) Firefox latest version
 - 3) Chrome latest version

- c. The operator interface shall support the following mobile web browsers:
 - 1) iOS (iPad/iPhone) 8, 9 +
 - 2) Android (Tablet) V4.4+
 - 3) Android (Phone) V4.4+

3. System Security

- a. Each operator shall be required to login to the system with a user name and password in order to view, edit, add, or delete data.
- b. User Profiles shall restrict the user to only the objects, applications, and system functions as assigned by the system administrator.
- c. Each operator shall be allowed to change their user password
- d. The System Administrator shall be able to manage the security for all other users
- e. The system shall include pre-defined "roles" that allow a system administrator to quickly assign permissions to a user.
- f. User logon/logoff attempts shall be recorded.
- g. The system shall protect itself from unauthorized use by automatically logging off following the last keystroke. The delay time shall be user definable.
- h. All system security data shall be stored in an encrypted format.

4. Database

- a. Database Save. A system operator with the proper password clearance shall be able to archive the database on the designated operator interface PC.
- b. Database Restore. The system operator shall also be able to clear a panel database and manually initiate a download of a specified database to any panel in the system.

5. On-Line Help and Training

- a. Provide a context sensitive, on line help system to assist the operator in operation and configuration of the system.
- b. On-line help shall be available for all system functions and shall provide the relevant data for each particular screen.

6. System Diagnostics

- a. The system shall automatically monitor the operation of all network connections, building management panels, and controllers.
- b. The failure of any device shall be annunciated to the operators.

7. Equipment & Application Pages

- a. The operator interface shall include standard pages for all equipment and applications. These pages shall allow an operator to obtain information relevant to the operation of the equipment and/or application, including:
 - 1) Animated Equipment Graphics for each major piece of equipment and floor plan in the System. This includes:

- a) Each Chiller, Air Handler, VAV Terminal, Fan Coil, Boiler, and Cooling Tower. These graphics shall show all points dynamically as specified in the points list.
- b) Animation capabilities shall include the ability to show a sequence of images reflecting the position of analog outputs, such as valve or damper positions. Graphics shall be capable of launching other web pages.
- 2) Alarms relevant to the equipment or application without requiring a user to navigate to an alarm page and perform a filter.
- 3) Historical Data (As defined in Data Log section below) for the equipment or application without requiring a user to navigate to a Data Log page and perform a filter.
- 8. System Graphics. Operator interface shall be graphically based and shall include at least one graphic per piece of equipment or occupied zone, graphics for each chilled water and hot water system, and graphics that summarize conditions on each floor of each building included in this contract. Indicate thermal comfort on floor plan summary graphics using colors to represent zone temperature relative to zone set point.
 - a. Functionality. Graphics shall allow operator to monitor system status, to view a summary of the most important data for each controlled zone or piece of equipment, to use point and-click navigation between zones or equipment, and to edit set points and other specified parameters.
 - b. Graphic imagery graphics shall use 3D images for all standard and custom graphics. The only allowable exceptions will be photo images, maps, schematic drawings, and selected floor plans.
 - c. Animation. Graphics shall be able to animate by displaying different Image lies for changed object status.
 - d. Alarm Indication. Indicate areas or equipment in an alarm condition using color or other visual indicator.
 - e. Format. Graphics shall be saved in an industry-standard format such as BMP, JPEG, PNG, or GIF. Web-based system graphics shall be viewable on browsers compatible with World Wide Web Consortium browser standards. Web graphic format shall require no plug-in (such as HTML and JavaScript) or shall only require widely available no-cost plug-ins (such as Active-X and Macromedia Flash).

9. Custom Graphics

- a. The operator interface shall be capable of displaying custom graphics in order to convey the status of the facility to its operators.
- b. Graphical Navigation. The operator interface shall provide dynamic color graphics of building areas, systems and equipment.
- c. Graphical Data Visualization. The operator interface shall support dynamic points including analog and binary values, dynamic text, static text, and animation files.
- d. Custom background images. Custom background images shall be created with the use of commonly available graphics packages such as Adobe Photoshop. The

graphics generation package shall create and modify graphics that are saved in industry standard formats such as GIF and JPEG.

10. Graphics Library. Furnish a library of standard HVAC equipment such as chillers, air handlers, terminals, fan coils, unit ventilators, rooftop units, and VAV boxes, in 3-dimensional graphic depictions. The library shall be furnished in a file format compatible with the graphics generation package program.

11. Manual Control and Override.

- a. Point Control. Provide a method for a user to view, override, and edit if applicable, the status of any object and property in the system. The point status shall be available by menu, on graphics or through custom programs.
- b. Temporary Overrides. The user shall be able to perform a temporary override wherever an override is allowed, automatically removing the override after a specified period of time.
- c. Override Owners. The system shall convey to the user the owner of each override for all priorities that an override exists.
- d. Provide a specific icon to show timed override or operator override, when a point, unit controller or application has been overridden manually.

12. Engineering Units

- a. Allow for selection of the desired engineering units (i.e. Inch pound or SI) in the system.
- b. Unit selection shall be able to be customized by locality to select the desired units for each measurement.
- c. Engineering units on this project shall be [Option 1] IP [Option 2] SI
- 13. Scheduling. A user shall be able to perform the following tasks utilizing the operator interface:
- a. Create a new schedule, defining the default values, events and membership.
- b. Create exceptions to a schedule for any given day.
- c. Apply an exception that spans a single day or multiple days.
- d. View a schedule by day, week and month.
- e. Exception schedules and holidays shall be shown clearly on the calendar.
- f. Modify the schedule events, members and exceptions.

14. Data Logs

- a. Data Logs Definition.
 - 1) The operator interface shall allow a user with the appropriate security permissions to define a Data Log for any data in the system.
 - 2) The operator interface shall allow a user to define any Data Log options as described in the Application and Control Software section.
- b. Data Log Viewer.
 - 1) The operator interface shall allow Data Log data to be viewed and printed.

- 2) The operator interface shall allow a user to view Data Log data in a text-based format (time –stamp/value).
- 3) The operator shall be able to view the data collected by a Data Log in a graphical chart in the operator interface.
- 4) Data Log viewing capabilities shall include the ability to show a minimum of 5 points on a chart.
- 5) Each data point data line shall be displayed as a unique color.
- 6) The operator shall be able to specify the duration of historical data to view by scrolling and zooming.
- 7) The system shall provide a graphical trace display of the associated time stamp and value for any selected point along the x-axis.

c. Export Data Logs.

1) The operator interface shall allow a user to export Data Log data in CSV or PDF format for use by other industry standard word processing and spreadsheet packages.

15. Alarm/Event Notification

- a. An operator shall be notified of new alarms/events as they occur while navigating through any part of the system via an alarm icon.
- b. Alarm/Event Log. The operator shall be able to view all logged system alarms/events from any operator interface.
 - 1) The operator shall be able to sort and filter alarms from events. Alarms shall be sorted in a minimum of 4 categories based on severity.
 - 2) Alarm/event messages shall use full language, easily recognized descriptors.
 - 3) An operator with the proper security level may acknowledge and clear alarms/events.
 - 4) All alarms/events that have not been cleared by the operator shall be stored by the building controller.
 - 5) The alarm/event log shall include a comment field for each alarm/event that allows a user to add specific comments associated with any alarm.

c. Alarm Processing.

- 1) The operator shall be able to configure any object in the system to generate an alarm when transitioning in and out of a normal state.
- 2) The operator shall be able to configure the alarm limits, warning limits, states, and reactions for each object in the system.

16. Reports and Logs.

- a. The operator interface shall provide a reporting package that allows the operator to select reports.
- b. The operator interface shall provide the ability to schedule reports to run at specified intervals of time.
- c. The operator interface shall allow a user to export reports and logs from the building controller in a format that is readily accessible by other standard software applications including spreadsheets and word processing. Acceptable formats include:

- 1) CSV, HTML, XML, PDF
- d. Reports and logs shall be readily printed to the system printer.
- e. Provide a means to list and access the last 10 reports viewed by the user.
- f. The following standard reports shall be available without requiring a user to manually configure the report:
 - 1) All Points in Alarm Report: Provide an on demand report showing all current alarms.
 - 2) All Points in Override Report: Provide an on demand report showing all overrides in effect.
 - 3) Commissioning Report: Provide a one-time report that lists all equipment with the unit configuration and present operation.
 - 4) Points report: Provide a report that lists the current value of all points
 - 5) VAV Air System. An operator shall be able to view and control (where applicable) the following parameters via the operator interface:
 - a) System Mode
 - b) System Occupancy
 - c) Ventilation (Outdoor air flow) setpoint
 - d) Ventilation (Outdoor air flow) status
 - e) Air Handler Static pressure setpoint
 - f) Air Handler Static pressure status
 - g) Air Handler occupancy status
 - h) Air Handler Supply air cooling and heating set points
 - i) Air Handler minimum, maximum and nominal static pressure setpoints
 - j) VAV box minimum and maximum flow
 - k) VAV box drive open and close overrides
 - 1) VAV box occupancy status
 - m) VAV box Airflow to space
 - n) Average space temperature
 - o) Minimum space temperature
 - p) Maximum space temperature
- 17. Custom Application Programming. Provide the tools to create, modify, and debug custom application programming. The operator shall be able to create, edit, and download custom programs at the same time that all other system applications are operating. The system shall be fully operable while custom routines are edited, compiled, and downloaded.

2.4 APPLICATION AND CONTROL SOFTWARE

A. Furnish the following applications software for building and energy management. All software applications shall reside and run in the system controllers. Editing of applications shall occur at the operator interface.

- 1. Scheduling. Provide the capability to schedule each object or group of objects in the system. Each of these schedules shall include the capability for start, stop, optimal start, optimal stop, and night economizer actions. Each schedule may consist of up to [10] events. When a group of objects are scheduled together, provide the capability to define advances and delays for each member. Each schedule shall consist of the following:
 - a. Weekly Schedule. Provide separate schedules for each day of the week.
 - b. Exception Schedules. Provide the ability for the operator to designate any day of the year as an exception schedule. This exception schedule shall override the standard schedule for that day. Exception schedules may be defined up to a year in advance. Once an exception schedule is executed it will be discarded and replaced by the standard schedule for that day of the week.
 - c. Holiday Schedules. Provide the capability for the operator to define up to 99 special or holiday schedules. These schedules may be placed on the scheduling calendar and will be repeated each year. The operator shall be able to define the length of each holiday period.
 - d. Optimal Start. The scheduling application outlined above shall support an optimal start algorithm. This shall calculate the thermal characteristics of a zone and start the equipment prior to occupancy to achieve the desired space temperature at the specified occupancy time. The algorithm shall calculate separate sets of heating and cooling rates for zones that have been unoccupied for less then and greater than 24 hours. Provide the ability to modify the start algorithm based on outdoor air temperature. Provide an early start limit in minutes to prevent the system from starting before an operator determined time limit.

2. Data Log Application

- a. Data Log data shall be sampled and stored on the System Controller panel and shall be capable of being archived to a BACnet Workstation for longer term storage.
 - 1) Data Log sample types shall include interval, start-time, and stop-time.
 - 2) Data Log intervals shall be configurable as frequently as 1 minute and as infrequently as 1 year.
- b. Data Logs
 - 1) The system controller shall contain Data Log information for defined key measurements for each controlled HVAC device and HVAC application.
 - 2) The Data Logs shall monitor these parameters for a minimum of 7 days at 15 minute intervals. The Data Logs intervals shall be user adjustable.
 - 3) The following is a list of key measurements required to be data logged:
- a) Air Systems

Rooftop (VAV)	Discharge Air Temperature	
	Discharge Air Temperature Setpoint Active	
	Space Temperature Active	
	Cooling Capacity Status	
	Discharge Air Flow	

VAV Box	Discharge Air Temperature	
	Space Temperature Active	
	Space Temperature Setpoint Active	
	Air Flow Setpoint Active	
	Discharge Air Flow	

Variable Air System	Duct Static Optimization Duct Static	
(Application)	Setpoint	
	Space Temperature Average	
	Ventilation Optimization Air Setpoint	
	Operating Mode	
	Duct Pressure Optimization Maximum	

b) Area

Area	Active Setpoint	
	Heat/Cool Mode Status	
	Space Temperature Average	
	Space Maximum Temperature	
	Space Minimum Temperature	
	Space Temperature Sensor	

3. Alarm/Event Log

- a. Any object in the system shall be configurable to generate an alarm when transitioning in and out of a normal or fault state.
- b. Any object in the system shall allow the alarm limits, warning limits, states, and reactions to be configured for each object in the system.
- c. An alarm/event shall be capable of triggering any of the following actions:
 - 1) Route the alarm/event to one or more alarm log
 - a) The alarm message shall include the name of the alarm location, the device that generated the alarm, and the alarm message itself.
 - 2) Route an e-mail message to an operator(s)
 - 3) Log a data point(s) for a period of time
 - 4) Run a custom control program

- 4. VAV System Coordination. Provide applications software to properly coordinate and control the VAV system to ensure equipment safety and minimize energy use. This application shall perform the following functions:
 - a. Startup and shutdown the air handler safely. Ensure the VAV boxes are open sufficiently when the air handler is running, to prevent damage to the ductwork and VAV boxes due to high air pressure.
 - b. Calibrate VAV boxes.
 - c. Fan Pressure Optimization (ASHRAE 90.1) Minimize energy usage by controlling system static pressure to the lowest level while maintaining zone airflow requirements. System static pressure controlled to keep the "most open" zone damper between 65% and 75% open.
 - 1) The Fan Pressure Optimization application shall have the ability to identify and display the discharge air setpoint of the air-handler and the VAV box that serves the critical zone (e.g., the zone with the most open VAV box damper). This information shall dynamically update with changes in the location of the critical zone.
 - 2) During commissioning, and with the engineer/owner, the controls contractor shall confirm the performance of Fan Pressure Optimization by conducting a field functional test that demonstrates critical zone reset.
 - d. Ventilation Optimization (ASHRAE 62) properly ventilate all spaces while minimizing operating energy costs, using measured outdoor air flow. Dynamically calculate the system outdoor air requirement based on "real time" conditions in the spaces (i.e., number of occupants, CO2 levels, etc.) minimizing the amount of unconditioned outdoor air that must be brought into the building.
 - e. Demand Controlled Ventilation the active ventilation setpoint shall modulate between the occupied ventilation and occupied standby ventilation setpoint; Reset the setpoint based on CO2 levels in the space.
- 5. Point Control. User shall have the option to set the update interval, minimum on/off time, event notification, custom programming on change of events.
- 6. Timed Override. A standard application shall be utilized to enable/disable temperature control when a user selects on/cancel at the zone sensor, operator interface, or the local operator display. The amount of time that the override takes precedence will be selectable from the operator interface.
- 7. Anti-Short Cycling. All binary output points shall be protected from short cycling.

2.5 SYSTEM CONTROLLERS

A. There shall be one or more independent, standalone microprocessor based System Controllers to manage the global strategies described in Application and Control Software section.

- B. The System Controller shall have sufficient memory to support its operating system, database, and programming requirements.
 - 1. The controller shall provide a USB communications port for connection to a PC
 - 2. The operating system of the Controller shall manage the input and output communications signals to allow distributed controllers to share real and virtual point information and allow central monitoring and alarms.
 - 3. All System Controllers shall have a real time clock.
 - 4. Data shall be shared between networked System Controllers.
 - 5. The System Controller shall continually check the status of its processor and memory circuits. If an abnormal operation is detected, the controller shall:
 - a. Assume a predetermined failure mode.
 - b. Generate an alarm notification.
 - c. Create a retrievable file of the state of all applicable memory locations at the time of the failure.
 - d. Automatically reset the System Controller to return to a normal operating mode.
 - 6. Environment. Controller hardware shall be suitable for the anticipated ambient conditions. Controller used in conditioned ambient shall be mounted in an enclosure, and shall be rated for operation at -40 C to 50 C.
 - 7. Clock Synchronization.
 - a. All System Controllers shall be able to synchronize with a NTP server for automatic time synchronization.
 - b. All System Controllers shall be able to accept a BACnet time synchronization command for automatic time synchronization.
 - c. All System Controllers shall automatically adjust for daylight savings time if applicable.
 - 8. Serviceability
 - a. Provide diagnostic LEDs for power, communications, and processor.
 - b. The System Controller shall have a display on the main board that indicates the current operating mode of the controller.
 - c. All wiring connections shall be made to field removable, modular terminal connectors.
 - d. The System controller shall utilize standard DIN mounting methods for installation and replacement.
 - 9. Memory. The System Controller shall maintain all BIOS and programming information indefinitely without power to the System controller

- 10. Immunity to power and noise. Controller shall be able to operate at 90% to 110% of nominal voltage rating and shall perform an orderly shut-down below 80% nominal voltage
- 11. BACnet Test Labs (BTL) Listing. Each System Controller shall be listed as a Building Controller (B-BC) by the BACnet Test Labs with a minimum BACnet Protocol Revision of 14.

2.6 APPLICATION SPECIFIC CONTROLLERS

- A. General. Application specific controllers (ASC) are microprocessor-based DDC controllers, which through hardware or firmware design are dedicated to control a specific piece of equipment. They are not fully user programmable, but are customized for operation within the confines of the equipment they are designed to serve.
 - 0. Each ASC shall be capable of stand-alone operation and shall continue to provide control functions without being connected to the network.
 - 1. Each ASC will contain sufficient I/O capacity to control the target system.
- C. Environment. The hardware shall be suitable for the anticipated ambient conditions.
 - 1. Controller used in conditioned ambient spaces shall be mounted in NEMA 1 type rated enclosures. Controllers located where not to be disturbed by building activity (such as above ceiling grid), may be provided with plenum-rated enclosures and non-enclosed wiring connections for plenum cabling. All controllers shall be rated for operation at 0 C to 50 C [32 F to 120 F].
 - 2. Controllers used outdoors and/or in wet ambient shall be mounted within NEMA 4 type waterproof enclosures, and shall be rated for operation at -40 C to 65 C [-40 F to 150 F].
- D. Serviceability. Provide diagnostic LEDs for power and communications. All wiring connections shall be clearly labeled and made to be field removable.
- E. Memory. The Application Specific Controller shall maintain all BIOS and programming information in the event of a power loss for at least 90 days.
- F. Immunity to Power and noise. Controller shall be able to operate at 90% to 110% of nominal voltage rating and shall perform an orderly shutdown below 80%.
- G.Transformer. Power supply for the ASC must be rated at minimum of 125% of ASC power consumption, and shall be fused or current limiting type.

2.7 INPUT/OUTPUT INTERFACE

A. Hard-wired inputs and outputs may tie into the system through Building, Custom, or Application Specific Controllers.

- B. All input points and output points shall be protected such that shorting of the point to itself, another point, or ground will cause no damage to the controller. All input and output points shall be protected from voltage up to 24V of any duration, such that contact with this voltage will cause no damage to the controller.
- C. Binary inputs shall allow the monitoring of on/off signals from remote devices. The binary inputs shall provide a wetting current of at least 12 mA to be compatible with commonly available control devices.
- D. Pulse accumulation input points. This type of point shall conform to all the requirements of Binary Input points, and also accept up to 3 pulses per second for pulse accumulation, and shall be protected against effects of contact bounce and noise.
- E. Analog inputs shall allow the monitoring of low voltage (0-10 Vdc), current (4-20 ma), or resistance signals (thermistor, RTD). Analog inputs shall be compatible with, and field configurable to commonly available sensing devices.
- F. Binary outputs shall provide for on/off operation. Terminal unit and zone control applications may use 2 outputs for drive-open, drive-close (tri-state) modulating control.
- G. Analog outputs shall provide a modulating signal for the control of end devices. Outputs shall provide either a 0-10 Vdc or a 4-20 ma signal as required to provide proper control of the output device.

2.8 AUXILIARY CONTROL DEVICES

- A. Motorized dampers, unless otherwise specified elsewhere, shall be as follows:
 - 1. Damper frames shall be 16 gauge galvanized sheet metal or 1/8" extruded aluminum with reinforced corner bracing.
 - 2. Damper blades shall not exceed 8" in width or 48" in length. Blades are to be suitable for medium velocity performance (2,000 fpm). Blades shall be not less than 16 gauge.
 - 3. Damper shaft bearings shall be as recommended by manufacturer for application.
 - 4. All blade edges and top and bottom of the frame shall be provided with compressible seals. Side seals shall be compressible stainless steel. The blade seals shall provide for a maximum leakage rate of 10 CFM per square foot at 2.5" w.c. differential pressure.
 - 5. All leakage testing and pressure ratings will be based on AMCA Publication 500.
 - 6. Individual damper sections shall not be larger than 48" x 60". Provide a minimum of one damper actuator per section.
- B. Control dampers shall be parallel or opposed blade types as scheduled on drawings.
- C. Electric damper/valve actuators.

- 1. The actuator shall have electronic overload or digital rotation sensing circuitry to prevent damage to the actuator throughout the rotation of the actuator.
- 2. Where shown, for power-failure/safety applications, an internal mechanical, spring return mechanism shall be built into the actuator housing.
- 3. All rotary spring return actuators shall be capable of both clockwise or counter clockwise spring return operation. Linear actuators shall spring return to the retracted position.
- 4. Proportional actuators shall accept a 0-10 VDC or 0-20 ma control signal and provide a 2-10 VDC or 4-20 ma operating range.
- 5. All non-spring return actuators shall have an external manual gear release to allow manual positioning of the damper when the actuator is not powered. Spring return actuators with more than 60 in-lb. torque capacity shall have a manual crank for this purpose.
- 6. Actuators shall be provided with a conduit fitting and a minimum 1m electrical cable and shall be pre-wired to eliminate the necessity of opening the actuator housing to make electrical connections.
- 7. Actuators shall be Underwriters Laboratories Standard 873 listed.
- 8. Actuators shall be designed for a minimum of 60,000 full stroke cycles at the actuator's rated torque.

D. Control Valves

- 1. Control valves shall be two-way or three-way type for two-position or modulating service as scheduled or shown.
- 2. Close-off (differential) Pressure Rating: Valve actuator and trim shall be furnished to provide the following minimum close-off pressure ratings:
 - a) Water Valves:
 - i. Two-way: 150% of total system (pump) head.
 - ii. Three-way: 300% of pressure differential between ports A and B at design flow or 100% of total system (pump) head.

3. Water Valves:

- a) Body and trim style and materials shall be per manufacturer's recommendations for design conditions and service shown, with equal percentage ports for modulating service.
- b) Sizing Criteria:
 - i. Two-position service: Line size.
 - ii. Two-way modulating service: Pressure drop shall be equal to twice the pressure drop through heat exchanger (load), 50% of the pressure difference between supply and return mains, or [5] psi, whichever is greater.
 - iii. Three-way Modulating Service: Pressure drop equal to twice the pressure drop through the coil exchanger (load), [5] psi maximum.
 - iv. Valves 1/2" through 2" shall be bronze body or cast brass ANSI Class 250, spring loaded, Teflon packing, quick opening for two-position service. Two-way valves to have replaceable composition disc, or stainless steel ball.

- v. 2-1/2" valves and larger shall be cast iron ANSI Class 125 with guided plug and Teflon packing.
- c) Water valves shall fail normally open or closed as scheduled on plans or as follows:
 - i. Heating coils in air handlers normally open.
 - ii. Chilled water control valves normally closed.
 - iii. Other applications as scheduled or as required by sequence of operation.
- d) Zone valves shall be sized to meet the control application and they shall maintain their last position in the event of a power failure.

E. Binary Temperature Devices

- 1. Low-Voltage Space Thermostats shall be 24 V, bimetal-operated, mercury-switch type, with either adjustable or fixed anticipation heater, concealed setpoint adjustment, 13°C-30°C (55°F-85°F) setpoint range, 1°C (2°F) maximum differential, and vented cover.
- 2. Line-Voltage Space Thermostats shall be bimetal-actuated, open-contact type or bellows-actuated, enclosed, snap-switch type or equivalent solid-state type, with heat anticipator, UL listing for electrical rating, concealed setpoint adjustment, 13°C-30°C (55°F-85°F) setpoint range, 1°C (2°F) maximum differential, and vented cover.
- 3. Low-Limit airstream thermostats shall be UL listed, vapor pressure type. Element shall be at least 6 m (20 ft) long. Element shall sense temperature in each 30 cm (1 ft) section and shall respond to lowest sensed temperature. Low-limit thermostat shall be manual reset only.

F. Temperature Sensors

- 1. Temperature sensors shall be Resistance Temperature Device (RTD) or Thermistor
- 2. Duct sensors shall be rigid or averaging as shown. Averaging sensors shall be a minimum of 1.5m [5 feet] in length.
- 3. Immersion sensors shall be provided with a separable stainless steel well. Pressure rating of well is to be consistent with the system pressure in which it is to be installed.
- 4. Space sensors shall be equipped with set-point adjustment, override switch, display, and/or communication port as shown on the drawings.
- 5. Provide matched temperature sensors for differential temperature measurement. Differential accuracy shall be within 0.1 C [0.2 F].

G. Humidity Sensors

- 1. Duct and room sensors shall have a sensing range of 20% to 80% with accuracy of $\pm 5\%$ R H
- 2. Duct sensors shall be provided with a sampling chamber.
- 3. Outdoor air humidity sensors shall have a sensing range of 20% to 95% R.H. It shall be suitable for ambient conditions of -40 C to 75 C [-40 F to 170 F].
- 4. Humidity sensor's drift shall not exceed 1% of full scale per year.

H. Static Pressure Sensors

1. Sensor shall have linear output signal. Zero and span shall be field-adjustable.

- 2. Sensor sensing elements shall withstand continuous operating conditions plus or minus 50% greater than calibrated span without damage.
- 3. Water pressure sensor shall have stainless steel diaphragm construction, proof pressure of 150 psi minimum. Sensor shall be complete with 4-20 ma output, required mounting brackets, and block and bleed valves. Mount in location accessible for service.
- 4. Water differential pressure sensor shall have stainless steel diaphragm construction, proof pressure of 150 psi minimum. Over-range limit (DP) and maximum static pressure shall be 3,000 psi. Transmitter shall be complete with 4-20 ma output, required mounting brackets, and five-valve manifold. Mount in a location accessible for service.

I. Low Limit Thermostats

- 1. Safety low limit thermostats shall be vapor pressure type with an element 6m [20 ft] minimum length. Element shall respond to the lowest temperature sensed by any one foot section.
- 2. Low limit shall be manual reset only.

J. Carbon Dioxide (CO2) Sensors

1. Carbon Dioxide sensors shall measure CO2 in PPM in a range of 0-2000 ppm. Accuracy shall be +/- 3% of reading with stability within 5% over 5 years. Sensors shall be duct or space mounted as indicated in the sequence of operation.

K. Flow Switches

- 1. Flow-proving switches shall be either paddle or differential pressure type, as shown.
- 2. Paddle type switches (water service only) shall be UL listed, SPDT snap-acting with pilot duty rating (125 VA minimum). Adjustable sensitivity with NEMA 1 Type enclosure unless otherwise specified:
- 3. Differential pressure type switches (air or water service) shall be UL listed, SPDT snapacting, pilot duty rated (125 VA minimum), NEMA 1 Type enclosure, with scale range and differential suitable for intended application, or as specified.
- 4. Current sensing relays may be used for flow sensing or terminal devices.

L. Relays

- 1. Control relays shall be UL listed plug-in type with dust cover. Contact rating, configuration, and coil voltage suitable for application.
- 2. Time delay relays shall be UL listed solid-state plug-in type with adjustable time delay. Delay shall be adjustable plus or minus 200% (minimum) from set-point shown on plans. Contact rating, configuration, and coil voltage suitable for application. Provide NEMA 1 Type enclosure when not installed in local control panel.

M. Transformers and Power Supplies

1. Control transformers shall be UL listed, Class 2 current-limiting type, or shall be furnished with over-current protection in both primary and secondary circuits for Class 2 service.

- 2. Unit output shall match the required output current and voltage requirements. Current output shall allow for a 50% safety factor. Output ripple shall be 3.0 mV maximum Peak-to-Peak. Regulation shall be 0.10% line and load combined, with 50 microsecond response time for 50% load changes. Unit shall have built-in over-voltage protection.
- 3. Unit shall operate between 0 C and 50 C.
- 4. Unit shall be UL recognized.

N. Current Switches

1. Current-operated switches shall be self-powered, solid state with adjustable trip current. The switches shall be selected to match the current of the application and output requirements of the DDC system.

O. LOCAL CONTROL PANELS

- 1. All indoor control cabinets shall be fully enclosed NEMA 1 Type construction with hinged door, and removable sub-panels or electrical sub-assemblies.
- 2. Interconnections between internal and face-mounted devices shall be pre-wired with color-coded stranded conductors neatly installed in plastic troughs and/or tie-wrapped. Terminals for field connections shall be UL listed for 600-volt service, individually identified per control/interlock drawings, with adequate clearance for field wiring. Control terminations for field connection shall be individually identified per control drawings.
- 3. Provide on/off power switch with over-current protection for control power sources to each local panel.

PART 3 - ACTIVE MONITORING SERVICE

3.0 ACTIVE MONITORING SERVICE DESCRIPTION

- A. Continuously monitors building systems, generates equipment level faults and alarms, and professional analysis to either resolve issues remotely or direct necessary on-site services.
- B. LENGTH OF CONTRACT 2 year monitoring date of substantial completion.

3.1 REMOTE MONITORING CENTER REQUIREMENTS

- A. Remote Monitoring Center infrastructure and staff shall provide alarm detection and professional analysis, leading to alarm resolution or diagnostic details relayed to onsite personnel.
- B. Shall be available 24 hours/day, 7 days/week, 365 days per year.
- C. Shall have full redundancy in systems at the data center level to fully support a 24/7/365 operation. This includes, but is not limited to, the following systems: electrical, phone, database, and support.
- D. Shall have a staff of controls specialists who have relevant field experience in HVAC applied systems operations
- E. In the event of an outage at the primary remote center, a redundant site shall be in place to provide additional backup and support.

F. To ensure quality standards, the center shall have shift supervisors available for any escalated measures 24/7/365.

3.2 MANDATORY SERVICE REQUIREMENTS

- A. Shall design and set-up specified alarms per site requirements
- B. Shall detect failures in building systems and procedures including, but not limited to:
- 1. Monitoring energy use, overrides, equipment performance or other variables deviate from desired parameters.
- 2. Space comfort monitoring service shall generate alarms indicating temperatures have risen above acceptable norms in your facility.
- C. Shall include monitoring by experienced HVAC professionals to analyze what each alarm means, resolve issues quickly and or initiate on-site actions to resolve the issue.
- D. Shall support on-site technical services by identifying the necessary parts and equipment to resolve detected faults. ACTIVE MONITORING RESPONSE REQUIREMENTS AND TESTS
- E. Alarms: Upon receipt of an alarm, a technical specialist from the Remote Monitoring Center shall diagnose the issue and troubleshoot in an attempt to correct the problem without initiating any on-site requirement.
- F. Dispatch: If correcting the alarm remotely is not possible, the Remote Monitoring Center shall dispatch a service technician with information about the issue and provide recommendations to correct the problem in the field.
- G. Phone Support: Service provider shall use telephone support to dispatch a service technician, and ensuring that only the most appropriate owner contacts, technicians, and field support personnel are involved. This allows for smarter and more efficient service that ensures accurate calls in cases where this type of maintenance is required.
- H. Remote Monitoring Center shall compile and store a history of all critical alarms and actions associated with it.
- I. Start-up test: During start-up and commissioning of alarm reporting, service provider may trip alarms to demonstrate remote capability
- J. Communications Test: Service Provider shall routinely test the communication link between the remote monitoring center and provide a record of this test.

3.3 APPROVED ACTIVE MONITORING SYSTEM MANUFACTURERS

A. Approved Control System Contractors and Manufacturers:

Manufacturer Name	Product Line	Contact
Trane	TIS Remote	Trane North Jersey,
	Monitoring	Pine Brook, New Jersey,
	_	PH:(888) 928-4615

B. Alternates: Siemens or ADT

PART 4 - EXECUTON

4.0 SECTION INCLUDES:

- 1. Examination
- 2. Protection
- 3. General Workmanship
- 4. Field Quality Control
- 5. Wiring
- 6. Fiber Optic Cable
- 7. Installation of Sensors
- 8. Flow Switch Installation
- 9. Actuators
- 10. Warning Labels
- 11. Identification of Hardware and Wiring
- 12. Controllers
- 13. Programming
- 14. Cleaning
- 15. Training
- 16. Acceptance

4.1 EXAMINATION

- a. The project plans shall be thoroughly examined for control device and equipment locations, and any discrepancies, conflicts, or omissions shall be reported to the Architect/Engineer for resolution before rough-in work is started.
- b. The contractor shall inspect the site to verify that equipment is installable as shown, and any discrepancies, conflicts, or omissions shall be reported to the Architect/Engineer for resolution before rough-in work is started.

4.2 PROTECTION

- a. The Contractor shall protect all work and material from damage by his/her work or workers, and shall be liable for all damage thus caused.
- b. The Contractor shall be responsible for his/her work and equipment until finally inspected, tested, and accepted. The Contractor shall protect his/her work against theft or damage, and shall carefully store material and equipment received on site that is not immediately installed. The Contractor shall close all open ends of work with temporary covers or plugs during storage and construction to prevent entry of foreign objects.

4.3 GENERAL WORKMANSHIP

- a. Install equipment, piping, wiring/conduit parallel to building lines (i.e. horizontal, vertical, and parallel to walls) wherever possible.
- b. Provide sufficient slack and flexible connections to allow for vibration of piping and equipment.
- c. Install all equipment in readily accessible location as defined by chapter 1 article 100 part A of the NEC. Control panels shall be attached to structural walls unless mounted in equipment enclosure specifically designed for that purpose. Panels shall be mounted to allow for unobstructed access for service.
- d. Verify integrity of all wiring to ensure continuity and freedom from shorts and grounds.
- e. All equipment, installation, and wiring shall comply with acceptable industry specifications and standards for performance, reliability, and compatibility and be executed in strict adherence to local codes and standard practices.

4.4 FIELD QUALITY CONTROL

- a. All work, materials and equipment shall comply with the rules and regulations of applicable local, state, and federal codes and ordinances as identified in Part 1 of this Section.
- b. Contractor shall continually monitor the field installation for code compliance and quality of workmanship. All visible piping and or wiring runs shall be installed parallel to building lines and properly supported.
- c. Contractor shall arrange for field inspections by local and/or state authorities having jurisdiction over the work.

4.5 WIRING

- a. All control and interlock wiring shall comply with the national and local electrical codes and Division 16 of these specifications. Where the requirements of this section differ with those in Division 16, the requirements of this section shall take precedence.
- b. Where Class 2 wires are in concealed and accessible locations including ceiling return air plenums, approved cables not in raceway may be used provided that:
- c. Circuits meet NEC Class 2 (current-limited) requirements. (Low-voltage power circuits shall be sub-fused when required to meet Class 2 current-limit.)
- d. All cables shall be UL listed for application, i.e., cables used in ceiling plenums shall be UL listed specifically for that purpose.
- e. Do not install Class 2 wiring in conduit containing Class 1 wiring. Boxes and panels containing high voltage may not be used for low voltage wiring except for the purpose of interfacing the two (e.g. relays and transformers).
- f. Where class 2 wiring is run exposed, wiring shall be run parallel along a surface or perpendicular to it, and bundled, using approved wire ties at no greater than 3 m [10 ft] intervals. Such bundled cable shall be fastened to the structure, using specified fasteners, at 1.5 m [5 ft] intervals or more often to achieve a neat and workmanlike result.
- g. All wire-to-device connections shall be made at a terminal blocks or terminal strip. All wire-to wire connections shall be at a terminal block, or with a crimped connector. All wiring within enclosures shall be neatly bundled and anchored to permit access and prevent restriction to devices and terminals.

- h. Maximum allowable voltage for control wiring shall be 120V. If only higher voltages are available, the Control System Contractor shall provide step down transformers.
- i. All wiring shall be installed as continuous lengths, where possible. Any required splices shall be made only within an approved junction box or other approved protective device.
- j. Install plenum wiring in sleeves where it passes through walls and floors. Maintain fire rating at all penetrations in accordance with other sections of this specification and local codes.
- k. Size of conduit and size and type of wire shall be the design responsibility of the Control System Contractor, in keeping with the manufacturer's recommendation and NEC.
- 1. Control and status relays are to be located in designated enclosures only. These relays may also be located within packaged equipment control panel enclosures. These relays shall not be located within Class 1 starter enclosures.
- m. Follow manufacturer's installation recommendations for all communication and network cabling. Network or communication cabling shall be run separately from other wiring.
- n. Adhere to Division 16 requirements for installation of raceway.
- o. This Contractor shall terminate all control and/or interlock wiring and shall maintain updated (as-built) wiring diagrams with terminations identified at the job site.
- p. Flexible metal conduits and liquid-tight, flexible metal conduits shall not exceed 3' in length and shall be supported at each end. Flexible metal conduit less than 1/2" electrical trade size shall not be used. In areas exposed to moisture, including chiller and boiler rooms, liquid-tight, flexible metal conduits shall be used.

4.6 FIBER OPTIC CABLE SYSTEM

- a. All cabling shall be installed in a neat and workmanlike manner. Minimum cable and unjacketed fibber bend radii as specified by cable manufacturer shall be maintained.
- b. Maximum pulling tensions as specified by the cable manufacturer shall not be exceeded during installation. Post installation residual cable tension shall be within cable manufacture's specifications.
- c. Fiber optic cabinets, hardware, and cable entering the cabinet shall be installed in accordance with manufacturers' instructions. Minimum cable and unjacketed fiber bend radii as specified by cable manufacturer shall be maintained.

4.7 INSTALLATION OF SENSORS

- a. Install sensors in accordance with the manufacturer's recommendations.
- b. Mount sensors rigidly and adequate for the environment within which the sensor operates.
- c. Room temperature sensors shall be installed on concealed junction boxes properly supported by the wall framing.
- d. All wires attached to sensors shall be air sealed in their conduits or in the wall to stop air transmitted from other areas affecting sensor readings.
- e. Install duct static pressure tap with tube end facing directly down-stream of air flow.
- f. Sensors used in mixing plenums, and hot and cold decks shall be of the averaging type. Averaging sensors shall be installed in a serpentine manner horizontally across duct. Each bend shall be supported with a capillary clip.
- g. All pipe mounted temperature sensors shall be installed in wells. Install all liquid temperature sensors with heat conducting fluid in thermal wells.

- h. Wiring for space sensors shall be concealed in building walls. EMT conduit is acceptable within mechanical and service rooms.
- i. Install outdoor air temperature sensors on north wall complete with sun shield at designated location.

4.8 FLOW SWITCH INSTALLATION

- a. Use correct paddle for pipe diameter.
- b. Install and adjust flow switch in accordance with manufacturers' instructions.
- c. Assure correct flow direction and alignment.
- d. Mount in horizontal piping flow switch on top of the pipe.

4.9 ACTUATORS

- a. Mount and link control damper actuators per manufacturer's instructions.
- i. To compress seals when spring return actuators are used on normally closed dampers, power actuator to approximately 5° open position, manually close the damper, and then tighten the linkage.
- ii. Check operation of damper/actuator combination to confirm that actuator modulates damper smoothly throughout stroke to both open and closed positions.
- iii. Valves Actuators shall be mounted on valves with adapters approved by the actuator manufacturer. Actuators and adapters shall be mounted following manufacturer's recommendations.

4.10 WARNING LABELS

a. Affix labels on each starter and equipment automatically controlled through the DDC System. Warning label shall indicate the following:

CAUTION

This equipment is operating under automatic control and may start or stop at any time without warning. Switch disconnect to "Off" position before servicing.

b. Affix labels to motor starters and control panels that are connected to multiple power sources utilizing separate disconnects. Labels shall indicate the following:

CAUTION

This equipment is fed from more than one power source with separate disconnects.

Disconnect all power sources before servicing.

4.11 IDENTIFICATION OF HARDWARE AND WIRING

- a. All wiring and cabling, including that within factory-fabricated panels, shall be labeled at each end within 2" of termination with a cable identifier and other descriptive information.
- b. Permanently label or code each point of field terminal strips to show the instrument or item served.
- c. Identify control panels with minimum 1-cm (1/2") letters on nameplates.
- d. Identify all other control components with permanent labels. Identifiers shall match record documents. All plug-in components shall be labeled such that removal of the component does not remove the label.

4.12 CONTROLLERS

- a. Provide a separate Controller for each major piece of HVAC equipment. A custom application controller may control more than one system provided that all points associated with that system are assigned to the same controller. Points used for control loop reset such as outside air or space temperature are exempt from this requirement.
- b. Building Controllers and Custom Application Controllers shall be selected to provide a minimum of 15% spare I/O point capacity for each point type found at each location. If input points are not universal, 15% of each type is required. If outputs are not universal, 15% of each type is required. A minimum of one spare is required for each type of point used.
- 1. Future use of spare capacity shall require providing the field device, field wiring, points database definition, and custom software. No additional Controller boards or point modules shall be required to implement use of these spare points.

4.13 PROGRAMMING

- a. Provide sufficient internal memory for the specified control sequences and trend logging. There shall be a minimum of 25% of available memory free for future use.
- b. Point Naming: System point names shall be modular in design, allowing easy operator interface without the use of a written point index.
- c. Software Programming
- iv. Provide programming for the system as written in the specifications and adhere to the sequence strategies provided. All other system programming necessary for the operation of the system but not specified in this document shall also be provided by the Control System Contractor. Imbed into any custom-written control programs sufficient comment statements or inherent flow diagrams to clearly describe each section of the program. The comment statements shall reflect the language used in the sequence of operations.
 - d. Operators' Interface
- v. Standard Graphics. Provide graphics for each major piece of equipment and floor plan in the building. This includes each Chiller, Air Handler, VAV Terminal, Fan Coil, Boiler, and Cooling Tower. These standard graphics shall show all points dynamically as specified in the points list.
- vi. The controls contractor shall provide all the labor necessary to install, initialize, start-up, and trouble-shoot all operator interface software and their functions as described in this section. This includes any operating system software, the operator interface database, and any third party software installation and integration required for successful operation of the operator interface.

- vii. As part of this execution phase, the controls contractor will perform a complete test of the operator interface. Test duration shall be a minimum of 16 hours on-site. Tests shall be made in the presence of the Owner or Owner's representative.
 - e. Demonstration: A complete demonstration and readout of the capabilities of the monitoring and control system shall be performed. The contractor shall dedicate a minimum of 16 hours on-site with the Owner and his representatives for a complete functional demonstration of all the system requirements. This demonstration constitutes a joint acceptance inspection, and permits acceptance of the delivered system for on-line operation.

4.14 CLEANING

- a. This contractor shall clean up all debris resulting from his or her activities daily. The contractor shall remove all cartons, containers, crates, etc. under his control as soon as their contents have been removed. Waste shall be collected and placed in a location designated by the Construction Manager or General Contractor.
- b. At the completion of work in any area, the Contractor shall clean all of his/her work, equipment, etc., making it free from dust, dirt and debris, etc.
- c. At the completion of work, all equipment furnished under this Section shall be checked for paint damage, and any factory finished paint that has been damaged shall be repaired to match the adjacent areas. Any metal cabinet or enclosure that has been deformed shall be replaced with new material and repainted to match the adjacent areas.

4.15 TRAINING

- a. Provide a minimum of 4 classroom training sessions, 4 hours each, throughout the contract period for personnel designated by the Owner. Computer-based audio-visual training may be substituted for up to 8 hours of hands on training.
- b. Train the designated staff of Owner's representative and Owner to enable them to proficiently operate the system; create, modify and delete programming; add, remove and modify physical points for the system, and perform routine diagnostic and troubleshooting procedures.
- c. Additional training shall be available in courses designed to meet objectives as divided into three logical groupings; participants may attend one or more of these, depending on the level of knowledge required:
- viii. Day-to-day Operators
- ix. Advanced Operators
- x. System Managers/Administrators
 - d. Provide course outline and materials as per Part 1 of this Section. The instructor(s) shall provide one copy of training material per student.
 - e. The instructor(s) shall be factory-trained instructors experienced in presenting this material.
 - f. Classroom training shall be done using a network of working controllers representative of the installed hardware or at the customer's site.
 - g. This training shall be made available in addition to the interactive audio-visual tutorial, provided with the system.

4.16 ACCEPTANCE

a. The control systems will not be accepted as meeting the requirements of Completion until all tests described in this specification have been performed to the satisfaction of both the Engineer and Owner. Any tests that cannot be performed due to circumstances beyond the control of the Contractor may be exempt from the Completion requirements if stated as such in writing by the Owner's representative. Such tests shall then be performed as part of the warranty.

4.17 CONTROL VALVE INSTALLATION

- A. Valve submittals shall be coordinated for type, quantity, size, and piping configuration to ensure compatibility with pipe design.
- B. All control valves shall be installed so that the stem position is not more than 60 degrees from the vertical up position.
- C. Valves shall be installed in accordance with the manufacturer's recommendations.
- D. Control valves shall be installed so that they are accessible and serviceable, and such that actuators may be serviced and removed without interference from structure or other pipes and/or equipment.
- E. Isolation valves shall be installed such that control valve body may be serviced without draining the supply/return side piping system. {Note to designer: this must also be shown.} Unions shall be installed at all connections to screwed type control valves.
- F. Provide tags for all control valves indicating service and number. Tags shall be brass, 1-1/2" in diameter, with 1/4" high letters. Securely fasten with chain and hook. Match identification numbers as shown on approved controls shop drawings.

4.18 CONTROL DAMPER INSTALLATION

- A. Damper submittals shall be coordinated for type, quantity, and size to ensure compatibility with sheet metal design.
- B. Duct openings shall be free of any obstruction or irregularities that might interfere with blade or linkage rotation or actuator mounting. Duct openings shall measure 1/4" larger than damper dimensions and shall be square, straight, and level.
- C. Individual damper sections, as well as entire multiple section assemblies, must be completely square and free from racking, twisting, or bending. Measure diagonally from upper corners to opposite lower corners of each damper section. Both dimensions must be equal $\pm 1/8$ ".

- D. Follow manufacturer's instructions for field installation of control dampers. Unless specifically designed for vertical blade application, dampers must be mounted with blade axis horizontal.
- E. Install extended shaft or jackshaft per manufacturer's instructions. (Typically, a sticker on the damper face shows recommended extended shaft location. Attach shaft on labeled side of damper to that blade.)
- F. Damper blades, axles, and linkage must operate without binding. Before system operation, cycle damper after installation to assure proper operation. On multiple section assemblies, all sections must open and close simultaneously.
- G. Provide a visible and accessible indication of damper position on the drive shaft end.
- H. Support duct-work in area of damper when required to prevent sagging due to damper weight.
- I. After installation of low-leakage dampers with seals, caulk between frame and duct or opening to prevent leakage around perimeter of damper.

4.19 DUCT SMOKE DETECTION

A. Provide complete submittal data to controls system contractor for coordination of duct smoke detector interface to HVAC systems. This contractor shall provide a dry-contact alarm output in the same room as the HVAC equipment to be controlled.

END OF SECTION 230923

SECTION 231123

FACILITY NATURAL-GAS PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

- 1. Pipes, tubes, and fittings.
- 2. Piping specialties.
- 3. Piping and tubing joining materials.
- 4. Valves.
- 5. Pressure regulators.
- 6. Service meters.
- 7. Concrete bases.

1.3 DEFINITIONS

- A. Finished Spaces: Spaces other than mechanical and electrical equipment rooms, furred spaces, pipe and duct shafts, unheated spaces immediately below roof, spaces above ceilings, unexcavated spaces, crawlspaces, and tunnels.
- B. Exposed, Interior Installations: Exposed to view indoors. Examples include finished occupied spaces and mechanical equipment rooms.
- C. Exposed, Exterior Installations: Exposed to view outdoors or subject to outdoor ambient temperatures and weather conditions. Examples include rooftop locations.

1.4 PERFORMANCE REQUIREMENTS

A. Minimum Operating-Pressure Ratings:

- 1. Piping and Valves: 100 psig minimum unless otherwise indicated.
- 2. Service Regulators: 100 psig minimum unless otherwise indicated.

- 3. Minimum Operating Pressure of Service Meter: 65 psig.
- B. Natural-Gas System Pressures within Buildings: Two pressure ranges. Primary pressure is more than 0.5 psig but not more than 2 psig, and is reduced to secondary pressure of 0.5 psig or less.
- C. Delegated Design: Design restraints and anchors for natural-gas piping and equipment, including comprehensive engineering analysis by a qualified professional engineer, using performance requirements and design criteria indicated.

1.5 SUBMITTALS

- A. Product Data: For each type of the following:
 - 1. Piping specialties.
 - 2. Corrugated, stainless-steel tubing with associated components.
 - 3. Valves. Include pressure rating, capacity, settings, and electrical connection data of selected models.
 - 4. Pressure regulators. Indicate pressure ratings and capacities.
 - 5. Service meters. Indicate pressure ratings and capacities. Include bypass fittings and meter bars
 - 6. Dielectric fittings.
- B. Shop Drawings: For facility natural-gas piping layout. Include plans, piping layout and elevations, sections, and details for fabrication of pipe anchors, hangers, supports for multiple pipes, alignment guides, expansion joints and loops, and attachments of the same to building structure. Detail location of anchors, alignment guides, and expansion joints and loops.
 - 1. Shop Drawing Scale: 1/4 inch per foot.
 - 2. Detail mounting, supports, and valve arrangements for service meter assembly and pressure regulator assembly.
- C. Delegated-Design Submittal: For natural-gas piping and equipment indicated to comply with performance requirements and design criteria, including analysis data signed and sealed by the qualified professional engineer responsible for their preparation.
 - 1. Detail fabrication and assembly of seismic restraints.
 - 2. Design Calculations: Calculate requirements for selecting seismic restraints.
- D. Coordination Drawings: Plans and details, drawn to scale, on which natural-gas piping is shown and coordinated with other installations, using input from installers of the items involved.

- E. Site Survey: Plans, drawn to scale, on which natural-gas piping is shown and coordinated with other services and utilities.
- F. Qualification Data: For qualified professional engineer.
- G. Welding certificates.
- H. Field quality-control reports.
- I. Operation and Maintenance Data: For motorized gas valves, pressure regulators and service meters to include in emergency, operation, and maintenance manuals.

1.6 QUALITY ASSURANCE

- A. Steel Support Welding Qualifications: Qualify procedures and personnel according to AWS D1.1/D1.1M, "Structural Welding Code Steel."
- B. Pipe Welding Qualifications: Qualify procedures and operators according to ASME Boiler and Pressure Vessel Code.
- C. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

1.7 DELIVERY, STORAGE, AND HANDLING

- A. Handling Flammable Liquids: Remove and dispose of liquids from existing natural-gas piping according to requirements of authorities having jurisdiction.
- B. Deliver pipes and tubes with factory-applied end caps. Maintain end caps through shipping, storage, and handling to prevent pipe end damage and to prevent entrance of dirt, debris, and moisture.
- C. Store and handle pipes and tubes having factory-applied protective coatings to avoid damaging coating, and protect from direct sunlight.
- D. Protect stored PE pipes and valves from direct sunlight.

1.8 PROJECT CONDITIONS

A. Perform site survey, research public utility records, and verify existing utility locations. Contact utility-locating service for area where Project is located.

- B. Interruption of Existing Natural-Gas Service: Do not interrupt natural-gas service to facilities occupied by Owner or others unless permitted under the following conditions and then only after arranging to provide purging and startup of natural-gas supply according to requirements indicated:
 - 1. Notify Architect, Construction Manager, Owner and Engineer no fewer than ten days in advance of proposed interruption of natural-gas service.
 - 2. Do not proceed with interruption of natural-gas service without Construction Manager's and Owner's written permission.

1.9 COORDINATION

- A. Coordinate sizes and locations of concrete bases with actual equipment provided.
- B. Coordinate requirements for access panels and doors for valves installed concealed behind finished surfaces. Comply with requirements in Division 08 Section "Access Doors and Frames."

PART 2 - PRODUCTS

2.1 PIPES, TUBES, AND FITTINGS

- A. Steel Pipe: ASTM A 53/A 53M, black steel, Schedule 40, Type E or S, Grade B.
 - 1. Malleable-Iron Threaded Fittings: ASME B16.3, Class 150, standard pattern.
 - 2. Wrought-Steel Welding Fittings: ASTM A 234/A 234M for butt welding and socket welding.
 - 3. Unions: ASME B16.39, Class 150, malleable iron with brass-to-iron seat, ground joint, and threaded ends.
 - 4. Forged-Steel Flanges and Flanged Fittings: ASME B16.5, minimum Class 150, including bolts, nuts, and gaskets of the following material group, end connections, and facings:
 - a. Material Group: 1.1.
 - b. End Connections: Threaded or butt welding to match pipe.
 - c. Lapped Face: Not permitted underground.
 - d. Gasket Materials: ASME B16.20, metallic, flat, asbestos free, aluminum o-rings, and spiral-wound metal gaskets.
 - e. Bolts and Nuts: ASME B18.2.1, carbon steel aboveground and stainless steel underground.
 - 5. Protective Coating for Underground Piping: Factory-applied, three-layer coating of epoxy, adhesive, and PE.

- a. Joint Cover Kits: Epoxy paint, adhesive, and heat-shrink PE sleeves.
- 6. Mechanical Couplings:
 - a. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1) Dresser Piping Specialties; Division of Dresser, Inc.
 - 2) Smith-Blair, Inc.
 - b. Stainless-steel flanges and tube with epoxy finish.
 - c. Buna-nitrile seals.
 - d. Stainless-steel bolts, washers, and nuts.
 - e. Coupling shall be capable of joining PE pipe to PE pipe, steel pipe to PE pipe, or steel pipe to steel pipe.
 - f. Steel body couplings installed underground on plastic pipe shall be factory equipped with anode.
- B. Corrugated, Stainless-Steel Tubing: Comply with ANSI/IAS LC 1.
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. OmegaFlex, Inc.
 - b. Parker Hannifin Corporation; Parflex Division.
 - c. Titeflex.
 - d. Tru-Flex Metal Hose Corp.
 - 2. Tubing: ASTM A 240/A 240M, corrugated, Series 300 stainless steel.
 - 3. Coating: PE with flame retardant.
 - a. Surface-Burning Characteristics: As determined by testing identical products according to ASTM E 84 by a qualified testing agency. Identify products with appropriate markings of applicable testing agency.
 - 1) Flame-Spread Index: 25 or less.
 - 2) Smoke-Developed Index: 50 or less.
 - 4. Fittings: Copper-alloy mechanical fittings with ends made to fit and listed for use with corrugated stainless-steel tubing and capable of metal-to-metal seal without gaskets. Include brazing socket or threaded ends complying with ASME B1.20.1.
 - 5. Striker Plates: Steel, designed to protect tubing from penetrations.
 - 6. Manifolds: Malleable iron or steel with factory-applied protective coating. Threaded connections shall comply with ASME B1.20.1 for pipe inlet and corrugated tubing outlets.
 - 7. Operating-Pressure Rating: 5 psig.

2.2 PIPING SPECIALTIES

A. Appliance Flexible Connectors:

- 1. Indoor, Fixed-Appliance Flexible Connectors: Comply with ANSI Z21.24.
- 2. Indoor, Movable-Appliance Flexible Connectors: Comply with ANSI Z21.69.
- 3. Outdoor, Appliance Flexible Connectors: Comply with ANSI Z21.75.
- 4. Corrugated stainless-steel tubing with polymer coating.
- 5. Operating-Pressure Rating: 0.5 psig.
- 6. End Fittings: Zinc-coated steel.
- 7. Threaded Ends: Comply with ASME B1.20.1.
- 8. Maximum Length: 72 inches.

B. Quick-Disconnect Devices: Comply with ANSI Z21.41.

- 1. Copper-alloy convenience outlet and matching plug connector.
- 2. Nitrile seals.
- 3. Hand operated with automatic shutoff when disconnected.
- 4. For indoor or outdoor applications.
- 5. Adjustable, retractable restraining cable.

C. Y-Pattern Strainers:

- 1. Body: ASTM A 126, Class B, cast iron with bolted cover and bottom drain connection.
- 2. End Connections: Threaded ends for NPS 2 and smaller; flanged ends for NPS 2-1/2 and larger.
- 3. Strainer Screen: 60 mesh startup strainer, and perforated stainless-steel basket with 50 percent free area.
- 4. CWP Rating: 125 psig.

D. Basket Strainers:

- 1. Body: ASTM A 126, Class B, high-tensile cast iron with bolted cover and bottom drain connection.
- 2. End Connections: Threaded ends for NPS 2 and smaller; flanged ends for NPS 2-1/2 and larger.
- 3. Strainer Screen: 60-mesh startup strainer, and perforated stainless-steel basket with 50 percent free area.
- 4. CWP Rating: 125 psig.

E. T-Pattern Strainers:

- 1. Body: Ductile or malleable iron with removable access coupling and end cap for strainer maintenance.
- 2. End Connections: Grooved ends.

- 3. Strainer Screen: 60-mesh startup strainer, and perforated stainless-steel basket with 57 percent free area.
- 4. CWP Rating: 750 psig.
- F. Weatherproof Vent Cap: Cast- or malleable-iron increaser fitting with corrosion-resistant wire screen, with free area at least equal to cross-sectional area of connecting pipe and threaded-end connection.

2.3 JOINING MATERIALS

- A. Joint Compound and Tape: Suitable for natural gas.
- B. Welding Filler Metals: Comply with AWS D10.12/D10.12M for welding materials appropriate for wall thickness and chemical analysis of steel pipe being welded.
- C. Brazing Filler Metals: Alloy with melting point greater than 1000 deg F complying with AWS A5.8/A5.8M. Brazing alloys containing more than 0.05 percent phosphorus are prohibited.

2.4 MANUAL GAS SHUTOFF VALVES

- A. See "Underground Manual Gas Shutoff Valve Schedule" and "Aboveground Manual Gas Shutoff Valve Schedule" Articles for where each valve type is applied in various services.
- B. General Requirements for Metallic Valves, NPS 2 and Smaller: Comply with ASME B16.33.
 - 1. CWP Rating: 125 psig.
 - 2. Threaded Ends: Comply with ASME B1.20.1.
 - 3. Dryseal Threads on Flare Ends: Comply with ASME B1.20.3.
 - 4. Tamperproof Feature: Locking feature for valves indicated in "Underground Manual Gas Shutoff Valve Schedule" and "Aboveground Manual Gas Shutoff Valve Schedule" Articles.
 - 5. Listing: Listed and labeled by an NRTL acceptable to authorities having jurisdiction for valves 1 inch and smaller.
 - 6. Service Mark: Valves 1-1/4 inches to NPS 2 shall have initials "WOG" permanently marked on valve body.
- C. General Requirements for Metallic Valves, NPS 2-1/2 and Larger: Comply with ASME B16.38.
 - 1. CWP Rating: 125 psig
 - 2. Flanged Ends: Comply with ASME B16.5 for steel flanges.

- 3. Tamperproof Feature: Locking feature for valves indicated in "Underground Manual Gas Shutoff Valve Schedule" and "Aboveground Manual Gas Shutoff Valve Schedule" Articles.
- 4. Service Mark: Initials "WOG" shall be permanently marked on valve body.
- D. One-Piece, Bronze Ball Valve with Bronze Trim: MSS SP-110.
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. BrassCraft Manufacturing Company; a Masco company.
 - b. Conbraco Industries, Inc.; Apollo Div.
 - c. Lyall, R. W. & Company, Inc.
 - d. McDonald, A. Y. Mfg. Co.
 - e. Perfection Corporation; a subsidiary of American Meter Company.
 - 2. Body: Bronze, complying with ASTM B 584.
 - 3. Ball: Chrome-plated brass.
 - 4. Stem: Bronze; blowout proof.
 - 5. Seats: Reinforced TFE; blowout proof.
 - 6. Packing: Separate packnut with adjustable-stem packing threaded ends.
 - 7. Ends: Threaded, flared, or socket as indicated in "Underground Manual Gas Shutoff Valve Schedule" and "Aboveground Manual Gas Shutoff Valve Schedule" Articles.
 - 8. CWP Rating: 600 psig.
 - 9. Listing: Valves NPS 1 and smaller shall be listed and labeled by an NRTL acceptable to authorities having jurisdiction.
 - 10. Service: Suitable for natural-gas service with "WOG" indicated on valve body.
- E. Two-Piece, Full-Port, Bronze Ball Valves with Bronze Trim: MSS SP-110.
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. BrassCraft Manufacturing Company; a Masco company.
 - b. Conbraco Industries, Inc.; Apollo Div.
 - c. Lyall, R. W. & Company, Inc.
 - d. McDonald, A. Y. Mfg. Co.
 - e. Perfection Corporation; a subsidiary of American Meter Company.
 - f.
 - 2. Body: Bronze, complying with ASTM B 584.
 - 3. Ball: Chrome-plated bronze.
 - 4. Stem: Bronze; blowout proof.
 - 5. Seats: Reinforced TFE; blowout proof.

- 6. Packing: Threaded-body packnut design with adjustable-stem packing.
- 7. Ends: Threaded, flared, or socket as indicated in "Underground Manual Gas Shutoff Valve Schedule" and "Aboveground Manual Gas Shutoff Valve Schedule" Articles.
- 8. CWP Rating: 600 psig (4140 kPa).
- 9. Listing: Valves NPS 1 (DN 25) and smaller shall be listed and labeled by an NRTL acceptable to authorities having jurisdiction.
- 10. Service: Suitable for natural-gas service with "WOG" indicated on valve body.
- F. Two-Piece, Regular-Port Bronze Ball Valves with Bronze Trim: MSS SP-110.
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. BrassCraft Manufacturing Company; a Masco company.
 - b. Conbraco Industries, Inc.; Apollo Div.
 - c. Lyall, R. W. & Company, Inc.
 - d. McDonald, A. Y. Mfg. Co.
 - e. Perfection Corporation; a subsidiary of American Meter Company.
 - 2. Body: Bronze, complying with ASTM B 584.
 - 3. Ball: Chrome-plated bronze.
 - 4. Stem: Bronze; blowout proof.
 - 5. Seats: Reinforced TFE.
 - 6. Packing: Threaded-body packnut design with adjustable-stem packing.
 - 7. Ends: Threaded, flared, or socket as indicated in "Underground Manual Gas Shutoff Valve Schedule" and "Aboveground Manual Gas Shutoff Valve Schedule" Articles.
 - 8. CWP Rating: 600 psig.
 - 9. Listing: Valves NPS 1 and smaller shall be listed and labeled by an NRTL acceptable to authorities having jurisdiction.
 - 10. Service: Suitable for natural-gas service with "WOG" indicated on valve body.
- G. Bronze Plug Valves: MSS SP-78.
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Lee Brass Company.
 - b. McDonald, A. Y. Mfg. Co.
 - 2. Body: Bronze, complying with ASTM B 584.
 - 3. Plug: Bronze.

- 4. Ends: Threaded, socket, or flanged as indicated in "Underground Manual Gas Shutoff Valve Schedule" and "Aboveground Manual Gas Shutoff Valve Schedule" Articles.
- 5. Operator: Square head or lug type with tamperproof feature where indicated.
- 6. Pressure Class: 125 psig.
- 7. Listing: Valves NPS 1 and smaller shall be listed and labeled by an NRTL acceptable to authorities having jurisdiction.
- 8. Service: Suitable for natural-gas service with "WOG" indicated on valve body.
- H. Cast-Iron, Nonlubricated Plug Valves: MSS SP-78.
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. McDonald, A. Y. Mfg. Co.
 - b. Mueller Co.; Gas Products Div.
 - c. Xomox Corporation; a Crane company.
 - 2. Body: Cast iron, complying with ASTM A 126, Class B.
 - 3. Plug: Bronze or nickel-plated cast iron.
 - 4. Seat: Coated with thermoplastic.
 - 5. Stem Seal: Compatible with natural gas.
 - 6. Ends: Threaded or flanged as indicated in "Underground Manual Gas Shutoff Valve Schedule" and "Aboveground Manual Gas Shutoff Valve Schedule" Articles.
 - 7. Operator: Square head or lug type with tamperproof feature where indicated.
 - 8. Pressure Class: 125 psig.
 - 9. Listing: Valves NPS 1 and smaller shall be listed and labeled by an NRTL acceptable to authorities having jurisdiction.
 - 10. Service: Suitable for natural-gas service with "WOG" indicated on valve body.
- I. Cast-Iron, Lubricated Plug Valves: MSS SP-78.
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Flowserve.
 - b. Homestead Valve; a division of Olson Technologies, Inc.
 - c. McDonald, A. Y. Mfg. Co.
 - d. Milliken Valve Company.
 - e. Mueller Co.; Gas Products Div.
 - f. R&M Energy Systems, A Unit of Robbins & Myers, Inc.
 - 2. Body: Cast iron, complying with ASTM A 126, Class B.
 - 3. Plug: Bronze or nickel-plated cast iron.

- 4. Seat: Coated with thermoplastic.
- 5. Stem Seal: Compatible with natural gas.
- 6. Ends: Threaded or flanged as indicated in "Underground Manual Gas Shutoff Valve Schedule" and "Aboveground Manual Gas Shutoff Valve Schedule" Articles.
- 7. Operator: Square head or lug type with tamperproof feature where indicated.
- 8. Pressure Class: 125 psig.
- 9. Listing: Valves NPS 1 and smaller shall be listed and labeled by an NRTL acceptable to authorities having jurisdiction.
- 10. Service: Suitable for natural-gas service with "WOG" indicated on valve body.
- J. PE Ball Valves: Comply with ASME B16.40.
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Kerotest Manufacturing Corp.
 - b. Lyall, R. W. & Company, Inc.
 - c. Perfection Corporation; a subsidiary of American Meter Company.
 - 2. Body: PE.
 - 3. Ball: PE.
 - 4. Stem: Acetal.
 - 5. Seats and Seals: Nitrile.
 - 6. Ends: Plain or fusible to match piping.
 - 7. CWP Rating: 80 psig
 - 8. Operating Temperature: Minus 20 to plus 140 deg F
 - 9. Operator: Nut or flat head for key operation.
 - 10. Include plastic valve extension.
 - 11. Include tamperproof locking feature for valves where indicated on Drawings.

K. Valve Boxes:

- 1. Cast-iron, two-section box.
- 2. Top section with cover with "GAS" lettering.
- 3. Bottom section with base to fit over valve and barrel a minimum of 5 inches (125 mm) in diameter.
- 4. Adjustable cast-iron extensions of length required for depth of bury.
- 5. Include tee-handle, steel operating wrench with socket end fitting valve nut or flat head, and with stem of length required to operate valve.

2.5 MOTORIZED GAS VALVES

A. Automatic Gas Valves: Comply with ANSI Z21.21.

- 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. ASCO Power Technologies, LP; Division of Emerson.
 - b. Dungs, Karl, Inc.
 - c. Eaton Corporation; Controls Div.
 - d. Eclipse Combustion, Inc.
 - e. Honeywell International Inc.
 - f. Johnson Controls.
- 2. Body: Brass or aluminum.
- 3. Seats and Disc: Nitrile rubber.
- 4. Springs and Valve Trim: Stainless steel.
- 5. Normally closed.
- 6. Visual position indicator.
- 7. Electrical operator for actuation by appliance automatic shutoff device.
- B. Electrically Operated Valves: Comply with UL 429.
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. ASCO Power Technologies, LP; Division of Emerson.
 - b. Dungs, Karl, Inc.
 - c. Eclipse Combustion, Inc.
 - d. Goyen Valve Corp.; Tyco Environmental Systems.
 - e. Magnatrol Valve Corporation.
 - f. Parker Hannifin Corporation; Climate & Industrial Controls Group; Skinner Valve Div.
 - g. Watts Regulator Co.; Division of Watts Water Technologies, Inc.
 - 2. Pilot operated.
 - 3. Body: Brass or aluminum.
 - 4. Seats and Disc: Nitrile rubber.
 - 5. Springs and Valve Trim: Stainless steel.
 - 6. 120-V ac, 60 Hz, Class B, continuous-duty molded coil, and replaceable.
 - 7. NEMA ICS 6, Type 4, coil enclosure.
 - 8. Normally closed.
 - 9. Visual position indicator.

2.6 EARTHQUAKE VALVES

A. Earthquake Valves: Comply with ASCE 25.

- 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Vanguard Valves, Inc.
- 2. Listing: Listed and labeled by an NRTL acceptable to authorities having jurisdiction.
- 3. Maximum Operating Pressure: 5 psig.
- 4. Cast-aluminum body with nickel-plated chrome steel internal parts.
- 5. Nitrile-rubber valve washer.
- 6. Sight windows for visual indication of valve position.
- 7. Threaded end connections complying with ASME B1.20.1.
- 8. Wall mounting bracket with bubble level indicator.
- B. Earthquake Valves: Comply with ASCE 25.
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Pacific Seismic Products, Inc.
 - 2. Listing: Listed and labeled by an NRTL acceptable to authorities having jurisdiction.
 - 3. Maximum Operating Pressure: 7 psig
 - 4. Cast-aluminum body with stainless-steel internal parts.
 - 5. Nitrile-rubber, reset-stem o-ring seal.
 - 6. Valve position, open or closed, indicator.
 - 7. Composition valve seat with clapper held by spring or magnet locking mechanism.
 - 8. Level indicator.
 - 9. End Connections: Threaded for valves NPS 2 and smaller; flanged for valves NPS 2-1/2 and larger.

2.7 PRESSURE REGULATORS

- A. General Requirements:
 - 1. Single stage and suitable for natural gas.
 - 2. Steel jacket and corrosion-resistant components.
 - 3. Elevation compensator.
 - 4. End Connections: Threaded for regulators NPS 2 and smaller; flanged for regulators NPS 2-1/2 and larger.
- B. Service Pressure Regulators: Comply with ANSI Z21.80.

- 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Actaris.
 - b. American Meter Company.
 - c. Fisher Control Valves and Regulators; Division of Emerson Process Management.
 - d. Invensys.
 - e. Richards Industries; Jordan Valve Div.

.

- 2. Body and Diaphragm Case: Cast iron or die-cast aluminum.
- 3. Springs: Zinc-plated steel; interchangeable.
- 4. Diaphragm Plate: Zinc-plated steel.
- 5. Seat Disc: Nitrile rubber resistant to gas impurities, abrasion, and deformation at the valve port.
- 6. Orifice: Aluminum; interchangeable.
- 7. Seal Plug: Ultraviolet-stabilized, mineral-filled nylon.
- 8. Single-port, self-contained regulator with orifice no larger than required at maximum pressure inlet, and no pressure sensing piping external to the regulator.
- 9. Pressure regulator shall maintain discharge pressure setting downstream, and not exceed 150 percent of design discharge pressure at shutoff.
- 10. Overpressure Protection Device: Factory mounted on pressure regulator.
- 11. Atmospheric Vent: Factory- or field-installed, stainless-steel screen in opening if not connected to vent piping.
- 12. Maximum Inlet Pressure: 100 psig (690 kPa).
- C. Line Pressure Regulators: Comply with ANSI Z21.80.
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Actaris.
 - b. American Meter Company.
 - c. Eclipse Combustion, Inc.
 - d. Fisher Control Valves and Regulators; Division of Emerson Process Management.
 - e. Invensys.
 - f. Maxitrol Company.
 - g. Richards Industries; Jordan Valve Div.
 - 2. Body and Diaphragm Case: Cast iron or die-cast aluminum.
 - 3. Springs: Zinc-plated steel; interchangeable.
 - 4. Diaphragm Plate: Zinc-plated steel.
 - 5. Seat Disc: Nitrile rubber resistant to gas impurities, abrasion, and deformation at the valve port.

- 6. Orifice: Aluminum; interchangeable.
- 7. Seal Plug: Ultraviolet-stabilized, mineral-filled nylon.
- 8. Single-port, self-contained regulator with orifice no larger than required at maximum pressure inlet, and no pressure sensing piping external to the regulator.
- 9. Pressure regulator shall maintain discharge pressure setting downstream, and not exceed 150 percent of design discharge pressure at shutoff.
- 10. Overpressure Protection Device: Factory mounted on pressure regulator.
- 11. Atmospheric Vent: Factory- or field-installed, stainless-steel screen in opening if not connected to vent piping.
- 12. Maximum Inlet Pressure: 5 psig (34.5 kPa).
- D. Appliance Pressure Regulators: Comply with ANSI Z21.18.
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Canadian Meter Company Inc.
 - b. Eaton Corporation; Controls Div.
 - c. Harper Wyman Co.
 - d. Maxitrol Company.
 - e. SCP, Inc.
 - 2. Body and Diaphragm Case: Die-cast aluminum.
 - 3. Springs: Zinc-plated steel; interchangeable.
 - 4. Diaphragm Plate: Zinc-plated steel.
 - 5. Seat Disc: Nitrile rubber.
 - 6. Seal Plug: Ultraviolet-stabilized, mineral-filled nylon.
 - 7. Factory-Applied Finish: Minimum three-layer polyester and polyurethane paint finish.
 - 8. Regulator may include vent limiting device, instead of vent connection, if approved by authorities having jurisdiction.
 - 9. Maximum Inlet Pressure: 2 psig

2.8 SERVICE METERS

- A. Diaphragm-Type Service Meters: Comply with ANSI B109.1 and ANSI B109.2.
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Actaris.
 - b. American Meter Company.
 - c. Invensys.

- 2. Case: Die-cast aluminum.
- 3. Connections: Steel threads.
- 4. Diaphragm: Synthetic fabric.
- 5. Diaphragm Support Bearings: Self-lubricating.
- 6. Compensation: Continuous temperature and pressure.
- 7. Meter Index: Cubic feet and liters.
- 8. Meter Case and Index: Tamper resistant.
- 9. Remote meter reader compatible.
- 10. Maximum Inlet Pressure: 100 psig.
- 11. Pressure Loss: Maximum 0.5-inch wg.
- 12. Accuracy: Maximum plus or minus 1.0 percent.
- B. Rotary-Type Service Meters: Comply with ANSI B109.3.
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. American Meter Company.
 - b. Invensys.
 - 2. Case: Extruded aluminum.
 - 3. Connection: Flange.
 - 4. Impellers: Polished aluminum.
 - 5. Rotor Bearings: Self-lubricating.
 - 6. Compensation: Continuous temperature and pressure.
 - 7. Meter Index: Cubic feet and liters.
 - 8. Tamper resistant.
 - 9. Remote meter reader compatible.
 - 10. Maximum Inlet Pressure: 100 psig.
 - 11. Accuracy: Maximum plus or minus 2.0 percent.
- C. Turbine Meters: Comply with ASME MFC-4M.
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. American Meter Company.
 - b. Invensys.
 - 2. Housing: Cast iron or welded steel.
 - 3. Connection Threads or Flanges: Steel.
 - 4. Turbine: Aluminum or plastic.
 - 5. Turbine Bearings: Self-lubricating.
 - 6. Compensation: Continuous temperature and pressure.

- 7. Meter Index: Cubic feet and liters.
- 8. Tamper resistant.
- 9. Remote meter reader compatible.
- 10. Maximum Inlet Pressure: 100 psig.
- 11. Accuracy: Maximum plus or minus 2.0 percent.

D. Service-Meter Bars:

- 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Actaris.
 - b. American Meter Company.
 - c. Lyall, R. W. & Company, Inc.
 - d. McDonald, A. Y. Mfg. Co.
 - e. Mueller Co.; Gas Products Div.
 - f. Perfection Corporation; a subsidiary of American Meter Company.
- 2. Malleable- or cast-iron frame for supporting service meter.
- 3. Include offset swivel pipes, meter nuts with o-ring seal, and factory- or field-installed dielectric unions.
- 4. Omit meter offset swivel pipes if service-meter bar dimensions match service-meter connections.

E. Service-Meter Bypass Fittings:

- 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Lyall, R. W. & Company, Inc.
 - b. Williamson, T. D., Inc.
- 2. Ferrous, tee, pipe fitting with capped side inlet for temporary natural-gas supply.
- 3. Integral ball-check bypass valve.

2.9 DIELECTRIC FITTINGS

A. Dielectric Unions:

- 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Capitol Manufacturing Company.
 - b. Central Plastics Company.

- c. Hart Industries International, Inc.
- d. McDonald, A. Y. Mfg. Co.
- e. Watts Regulator Co.; Division of Watts Water Technologies, Inc.
- f. Wilkins; Zurn Plumbing Products Group.
- 2. Minimum Operating-Pressure Rating: 150 psig.
- 3. Combination fitting of copper alloy and ferrous materials.
- 4. Insulating materials suitable for natural gas.
- 5. Combination fitting of copper alloy and ferrous materials with threaded, brazed-joint, plain, or welded end connections that match piping system materials.

B. Dielectric Flanges:

- 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Capitol Manufacturing Company.
 - b. Central Plastics Company.
 - c. Watts Regulator Co.; Division of Watts Water Technologies, Inc.
 - d. Wilkins; Zurn Plumbing Products Group.
- 2. Minimum Operating-Pressure Rating: 150 psig.
- 3. Combination fitting of copper alloy and ferrous materials.
- 4. Insulating materials suitable for natural gas.
- 5. Combination fitting of copper alloy and ferrous materials with threaded, brazed-joint, plain, or welded end connections that match piping system materials.

C. Dielectric-Flange Kits:

- 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Advance Products & Systems, Inc.
 - b. Calpico Inc.
 - c. Central Plastics Company.
 - d. Pipeline Seal and Insulator, Inc.
- 2. Minimum Operating-Pressure Rating: 150 psig.
- 3. Companion-flange assembly for field assembly.
- 4. Include flanges, full-face- or ring-type neoprene or phenolic gasket, phenolic or PE bolt sleeves, phenolic washers, and steel backing washers.
- 5. Insulating materials suitable for natural gas.
- 6. Combination fitting of copper alloy and ferrous materials with threaded, brazed-joint, plain, or welded end connections that match piping system materials.

2.10 LABELING AND IDENTIFYING

A. Detectable Warning Tape: Acid- and alkali-resistant, PE film warning tape manufactured for marking and identifying underground utilities, a minimum of 6 inches wide and 4 mils thick, continuously inscribed with a description of utility, with metallic core encased in a protective jacket for corrosion protection, detectable by metal detector when tape is buried up to 30 inches deep; colored yellow.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine roughing-in for natural-gas piping system to verify actual locations of piping connections before equipment installation.
- B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

- A. Close equipment shutoff valves before turning off natural gas to premises or piping section.
- B. Inspect natural-gas piping according to the International Fuel Gas Code to determine that natural-gas utilization devices are turned off in piping section affected.
- C. Comply with the International Fuel Gas Code requirements for prevention of accidental ignition.

3.3 OUTDOOR PIPING INSTALLATION

- A. Comply with the International Fuel Gas Code for installation and purging of natural-gas piping.
- B. Install underground, natural-gas piping buried at least 36 inches below finished grade. Comply with requirements in Division 31 Section "Earth Moving" for excavating, trenching, and backfilling.
 - 1. If natural-gas piping is installed less than 36 inches below finished grade, install it in containment conduit.
- C. Install underground, PE, natural-gas piping according to ASTM D 2774.
- D. Steel Piping with Protective Coating:

- 1. Apply joint cover kits to pipe after joining to cover, seal, and protect joints.
- 2. Repair damage to PE coating on pipe as recommended in writing by protective coating manufacturer.
- 3. Replace pipe having damaged PE coating with new pipe.
- E. Copper Tubing with Protective Coating:
 - 1. Apply joint cover kits over tubing to cover, seal, and protect joints.
 - 2. Repair damage to PE coating on pipe as recommended in writing by protective coating manufacturer.
- F. Install fittings for changes in direction and branch connections.
- G. Install pressure gage upstream and downstream from each service regulator. Pressure gages are specified in Division 23 Section "Meters and Gages for HVAC Piping."

3.4 INDOOR PIPING INSTALLATION

- A. Comply with the International Fuel Gas Code for installation and purging of natural-gas piping.
- B. Drawing plans, schematics, and diagrams indicate general location and arrangement of piping systems. Indicated locations and arrangements are used to size pipe and calculate friction loss, expansion, and other design considerations. Install piping as indicated unless deviations to layout are approved on Coordination Drawings.
- C. Arrange for pipe spaces, chases, slots, sleeves, and openings in building structure during progress of construction, to allow for mechanical installations.
- D. Install piping in concealed locations unless otherwise indicated and except in equipment rooms and service areas.
- E. Install piping indicated to be exposed and piping in equipment rooms and service areas at right angles or parallel to building walls. Diagonal runs are prohibited unless specifically indicated otherwise.
- F. Install piping above accessible ceilings to allow sufficient space for ceiling panel removal.
- G. Locate valves for easy access.
- H. Install natural-gas piping at uniform grade of 2 percent down toward drip and sediment traps.
- I. Install piping free of sags and bends.

- J. Install fittings for changes in direction and branch connections.
- K. Verify final equipment locations for roughing-in.
- L. Comply with requirements in Sections specifying gas-fired appliances and equipment for roughing-in requirements.
- M. Provide an additional seventy five feet of gas piping and accessories and installation labor for each size of pipe used on the project to accommodate any changes required to resolve interferences or as directed by the engineer.
- N. Drips and Sediment Traps: Install drips at points where condensate may collect, including service-meter outlets. Locate where accessible to permit cleaning and emptying. Do not install where condensate is subject to freezing.
 - 1. Construct drips and sediment traps using tee fitting with bottom outlet plugged or capped. Use nipple a minimum length of 3 pipe diameters, but not less than 3 inches long and same size as connected pipe. Install with space below bottom of drip to remove plug or cap.
- O. Extend relief vent connections for service regulators, line regulators, and overpressure protection devices to outdoors and terminate with weatherproof vent cap.
- P. Conceal pipe installations in walls, pipe spaces, utility spaces, above ceilings, below grade or floors, and in floor channels unless indicated to be exposed to view.
- Q. Concealed Location Installations: Except as specified below, install concealed natural-gas piping and piping installed under the building in containment conduit constructed of steel pipe with welded joints as described in Part 2. Install a vent pipe from containment conduit to outdoors and terminate with weatherproof vent cap.
 - 1. Above Accessible Ceilings: Natural-gas piping, fittings, valves, and regulators may be installed in accessible spaces without containment conduit.
 - 2. In Floors: Install natural-gas piping with welded or brazed joints and protective coating in cast-inplace concrete floors. Cover piping to be cast in concrete slabs with minimum of 1-1/2 inches of concrete. Piping may not be in physical contact with other metallic structures such as reinforcing rods or electrically neutral conductors. Do not embed piping in concrete slabs containing quick-set additives or cinder aggregate.
 - 3. In Floor Channels: Install natural-gas piping in floor channels. Channels must have cover and be open to space above cover for ventilation.
 - 4. In Walls or Partitions: Protect tubing installed inside partitions or hollow walls from physical damage using steel striker barriers at rigid supports.
 - a. Exception: Tubing passing through partitions or walls does not require striker barriers.

5. Prohibited Locations:

- a. Do not install natural-gas piping in or through circulating air ducts, clothes or trash chutes, chimneys or gas vents (flues), ventilating ducts, or dumbwaiter or elevator shafts.
- b. Do not install natural-gas piping in solid walls or partitions.
- R. Use eccentric reducer fittings to make reductions in pipe sizes. Install fittings with level side down.
- S. Connect branch piping from top or side of horizontal piping.
- T. Install unions in pipes NPS 2 and smaller, adjacent to each valve, at final connection to each piece of equipment. Unions are not required at flanged connections.
- U. Do not use natural-gas piping as grounding electrode.
- V. Install strainer on inlet of each line-pressure regulator and automatic or electrically operated valve.
- W. Install pressure gage upstream and downstream from each line regulator. Pressure gages are specified in Division 23 Section "Meters and Gages for HVAC Piping."
- X. Install sleeves for piping penetrations of walls, ceilings, and floors. Comply with requirements for sleeves specified in Division 23 Section "Sleeves and Sleeve Seals for HVAC Piping."
- Y. Install sleeve seals for piping penetrations of concrete walls and slabs. Comply with requirements for sleeve seals specified in Division 23 Section "Sleeves and Sleeve Seals for HVAC Piping."
- Z. Install escutcheons for piping penetrations of walls, ceilings, and floors. Comply with requirements for escutcheons specified in Division 23 Section "Escutcheons for HVAC Piping."

3.5 SERVICE-METER ASSEMBLY INSTALLATION

- A. Install service-meter assemblies aboveground, on concrete bases.
- B. Install metal shutoff valves upstream from service regulators. Shutoff valves are not required at second regulators if two regulators are installed in series.
- C. Install strainer on inlet of service-pressure regulator and meter set.

- D. Install service regulators mounted outside with vent outlet horizontal or facing down. Install screen in vent outlet if not integral with service regulator.
- E. Install metal shutoff valves upstream from service meters. Install dielectric fittings downstream from service meters.
- F. Install service meters downstream from pressure regulators.
- G. Install metal bollards to protect meter assemblies. Comply with requirements in Division 05 Section "Metal Fabrications" for pipe bollards.

3.6 VALVE INSTALLATION

- A. Install manual gas shutoff valve for each gas appliance ahead of corrugated stainless-steel tubing, aluminum, or copper connector.
- B. Install underground valves with valve boxes.
- C. Install regulators and overpressure protection devices with maintenance access space adequate for servicing and testing.
- D. Install earthquake valves aboveground outside buildings according to listing.
- E. Install anode for metallic valves in underground PE piping.

3.7 PIPING JOINT CONSTRUCTION

- A. Ream ends of pipes and tubes and remove burrs.
- B. Remove scale, slag, dirt, and debris from inside and outside of pipe and fittings before assembly.
- C. Threaded Joints:
 - 1. Thread pipe with tapered pipe threads complying with ASME B1.20.1.
 - 2. Cut threads full and clean using sharp dies.
 - 3. Ream threaded pipe ends to remove burrs and restore full inside diameter of pipe.
 - 4. Apply appropriate tape or thread compound to external pipe threads unless dryseal threading is specified.
 - 5. Damaged Threads: Do not use pipe or pipe fittings with threads that are corroded or damaged. Do not use pipe sections that have cracked or open welds.
- D. Welded Joints:

- 1. Construct joints according to AWS D10.12/D10.12M, using qualified processes and welding operators.
- 2. Bevel plain ends of steel pipe.
- 3. Patch factory-applied protective coating as recommended by manufacturer at field welds and where damage to coating occurs during construction.
- E. Brazed Joints: Construct joints according to AWS's "Brazing Handbook," "Pipe and Tube" Chapter.
- F. Flanged Joints: Install gasket material, size, type, and thickness appropriate for natural-gas service. Install gasket concentrically positioned.

3.8 HANGER AND SUPPORT INSTALLATION

- A. Install seismic restraints on piping. Comply with requirements for seismic-restraint devices specified in Division 23 Section "Vibration and Seismic Controls for HVAC Piping and Equipment."
- B. Comply with requirements for pipe hangers and supports specified in Division 23 Section "Hangers and Supports for HVAC Piping and Equipment."
- C. Install hangers for horizontal steel piping with the following maximum spacing and minimum rod sizes:
 - 1. NPS 1 and Smaller: Maximum span, 96 inches; minimum rod size, 3/8 inch.
 - 2. NPS 1-1/4: Maximum span, 108 inches; minimum rod size, 3/8 inch.
 - 3. NPS 1-1/2 and NPS 2: Maximum span, 108 inches; minimum rod size, 3/8 inch.
 - 4. NPS 2-1/2 to NPS 3-1/2: Maximum span, 10 feet; minimum rod size, 1/2 inch.
 - 5. NPS 4 and Larger: Maximum span, 10 feet; minimum rod size, 5/8 inch.

CONNECTIONS

- D. Connect to utility's gas main according to utility's procedures and requirements.
- E. Install natural-gas piping electrically continuous, and bonded to gas appliance equipment grounding conductor of the circuit powering the appliance according to NFPA 70.
- F. Install piping adjacent to appliances to allow service and maintenance of appliances.
- G. Connect piping to appliances using manual gas shutoff valves and unions. Install valve within 72 inches of each gas-fired appliance and equipment. Install union between valve and appliances or equipment.

H. Sediment Traps: Install tee fitting with capped nipple in bottom to form drip, as close as practical to inlet of each appliance.

3.9 LABELING AND IDENTIFYING

- A. Comply with requirements in Division 23 Section "Identification for HVAC Piping and Equipment" for piping and valve identification.
- B. Install detectable warning tape directly above gas piping, 12 inches below finished grade, except 6 inches below subgrade under pavements and slabs.

3.10 PAINTING

- A. Comply with requirements in Division 09 painting Sections for painting interior and exterior natural-gas piping.
- B. Paint exposed, exterior metal piping, valves, service regulators, service meters and meter bars, earthquake valves, and piping specialties, except components, with factory-applied paint or protective coating.
 - 1. Alkyd System: MPI EXT 5.1D.
 - a. Prime Coat: Alkyd anticorrosive metal primer.
 - b. Intermediate Coat: Exterior alkyd enamel matching topcoat.
 - c. Topcoat: Exterior alkyd enamel gloss.
 - d. Color: Yellow.
- C. Paint exposed, interior metal piping, valves, service regulators, service meters and meter bars, earthquake valves, and piping specialties, except components, with factory-applied paint or protective coating.
 - 1. Latex Over Alkyd Primer System: MPI INT 5.1Q.
 - a. Prime Coat: Alkyd anticorrosive metal primer.
 - b. Intermediate Coat: Interior latex matching topcoat.
 - c. Topcoat: Interior latex gloss.
 - d. Color: Yellow.
- D. Damage and Touchup: Repair marred and damaged factory-applied finishes with materials and by procedures to match original factory finish.

3.11 FIELD QUALITY CONTROL

A. Perform tests and inspections.

B. Tests and Inspections:

- 1. Test, inspect, and purge natural gas according to the International Fuel Gas Code and authorities having jurisdiction.
- C. Natural-gas piping will be considered defective if it does not pass tests and inspections.
- D. Prepare test and inspection reports.

3.12 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain earthquake valves.

3.13 OUTDOOR PIPING SCHEDULE

- A. Underground natural-gas piping shall be the following:
 - 1. Steel pipe with wrought-steel fittings and welded joints, or mechanical couplings. Coat pipe and fittings with protective coating for steel piping.
- B. Aboveground natural-gas piping shall be the following:
 - 1. Steel pipe with wrought-steel fittings and welded joints.
- C. Branch Piping in Cast-in-Place Concrete to Single Appliance: Annealed-temper copper tube with wrought-copper fittings and brazed joints. Install piping embedded in concrete with no joints in concrete.
- D. Containment Conduit: Steel pipe with wrought-steel fittings and welded joints. Coat pipe and fittings with protective coating for steel piping.

3.14 INDOOR PIPING SCHEDULE FOR SYSTEM PRESSURES LESS THAN 0.5 PSIG

- A. Aboveground, branch piping NPS 1 and smaller shall be the following:
 - 1. Steel pipe with malleable-iron fittings and threaded joints.
- B. Aboveground, distribution piping shall be the following:

- 1. Steel pipe with wrought-steel fittings and welded joints.
- C. Underground, below building, piping shall be the following:
 - 1. Steel pipe with wrought-steel fittings and welded joints.
- D. Containment Conduit: Steel pipe with wrought-steel fittings and welded joints. Coat pipe and fittings with protective coating for steel piping.
- E. Containment Conduit Vent Piping: Steel pipe with malleable-iron fittings and threaded or wrought-steel fittings with welded joints. Coat underground pipe and fittings with protective coating for steel piping.
- 3.15 INDOOR PIPING SCHEDULE FOR SYSTEM PRESSURES MORE THAN 0.5 PSIG AND LESS THAN 5 PSIG
 - A. Aboveground, branch piping NPS 1 and smaller shall be the following:
 - 1. Steel pipe with malleable-iron fittings and threaded joints.
 - B. Aboveground, distribution piping shall be the following:
 - 1. Steel pipe with steel welding fittings and welded joints.
 - C. Underground, below building, piping shall be the following:
 - 1. Steel pipe with wrought-steel fittings and welded joints.
 - D. Containment Conduit: Steel pipe with wrought-steel fittings and welded joints. Coat underground pipe and fittings with protective coating for steel piping.
 - E. Containment Conduit Vent Piping: Steel pipe with malleable-iron fittings and threaded or wrought-steel fittings with welded joints. Coat underground pipe and fittings with protective coating for steel piping.
- 3.16 INDOOR PIPING SCHEDULE FOR SYSTEM PRESSURES MORE THAN 5 PSIG
 - A. Aboveground Piping: Maximum operating pressure more than 5 psig.

- B. Aboveground, Branch Piping: Steel pipe with steel welding fittings and welded joints.
- C. Aboveground, distribution piping shall be the following:
 - 1. Steel pipe with steel welding fittings and welded joints.
- D. Underground, below building, piping shall be the following:
 - 1. Steel pipe with wrought-steel fittings and welded joints.
- E. Containment Conduit: Steel pipe with wrought-steel fittings and welded joints. Coat pipe and fittings with protective coating for steel piping.
- F. Containment Conduit Vent Piping: Steel pipe with malleable-iron fittings and threaded or wrought-steel fittings with welded joints. Coat underground pipe and fittings with protective coating for steel piping.

3.17 UNDERGROUND MANUAL GAS SHUTOFF VALVE SCHEDULE

- A. Connections to Existing Gas Piping: Use valve and fitting assemblies made for tapping utility's gas mains and listed by an NRTL.
- B. Underground:
 - 1. NPS 2-1/2 and Larger: Cast-iron, lubricated plug valves.

3.18 ABOVEGROUND MANUAL GAS SHUTOFF VALVE SCHEDULE

- A. Valves for pipe sizes NPS 2 and smaller at service meter shall be the following:
 - 1. Two-piece, full-port, bronze ball valves with bronze trim.
- B. Valves for pipe sizes NPS 2-1/2 and larger at service meter shall be the following:
 - 1. Two-piece, full-port, bronze ball valves with bronze trim.
- C. Distribution piping valves for pipe sizes NPS 2 and smaller shall be the following:
 - 1. Two-piece, full-port, bronze ball valves with bronze trim.
- D. Distribution piping valves for pipe sizes NPS 2-1/2 and larger shall be the following:
 - 1. Two-piece, full-port, bronze ball valves with bronze trim.

- E. Valves in branch piping for single appliance shall be the following:
 - 1. Two-piece, full-port, bronze ball valves with bronze trim.

END OF SECTION 231123

SECTION 232113

HYDRONIC PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. This Section includes pipe and fitting materials, joining methods, special-duty valves, and specialties for the following:
 - 1. Hot-water heating piping.
 - 2. Chilled-water piping.
 - 3. Condenser-water piping.
 - 4. Glycol cooling-water piping.
 - 5. Makeup-water piping.
 - 6. Condensate-drain piping.
 - 7. Blowdown-drain piping.
 - 8. Air-vent piping.
 - 9. Safety-valve-inlet and -outlet piping.
- B. Related Sections include the following:
 - 1. Division 23 Section "Hydronic Pumps" for pumps, motors, and accessories for hydronic piping.

1.3 DEFINITIONS

- A. PTFE: Polytetrafluoroethylene.
- B. RTRF: Reinforced thermosetting resin (fiberglass) fittings.
- C. RTRP: Reinforced thermosetting resin (fiberglass) pipe.

1.4 PERFORMANCE REQUIREMENTS

- A. Hydronic piping components and installation shall be capable of withstanding the following minimum working pressure and temperature:
 - 1. Hot-Water Heating Piping: 125 psig at 200 deg F.
 - 2. Chilled-Water Piping: 125 psig at 200 deg F.
 - 3. Condenser-Water Piping: 125 psig at 150 deg F.
 - 4. Glycol Cooling-Water Piping: <Insert psig> at [150 deg F] <Insert temperature>.
 - 5. Makeup-Water Piping: 100 psig at 150 deg F.
 - 6. Condensate-Drain Piping: 150 deg F.
 - 7. Blowdown-Drain Piping: 200 deg F.
 - 8. Air-Vent Piping: 200 deg F.
 - 9. Safety-Valve-Inlet and -Outlet Piping: Equal to the pressure of the piping system to which it is attached.

1.5 SUBMITTALS

- A. Product Data: For each type of the following:
 - 1. Plastic pipe and fittings with solvent cement.
 - 2. RTRP and RTRF with adhesive.
 - 3. Pressure-seal fittings.
 - 4. Valves. Include flow and pressure drop curves based on manufacturer's testing for calibrated-orifice balancing valves and automatic flow-control valves.
 - 5. Air control devices.
 - 6. Chemical treatment.
 - 7. Hydronic specialties.
- B. Shop Drawings: Detail, at 1/4 scale, the piping layout, fabrication of pipe anchors, hangers, supports for multiple pipes, alignment guides, expansion joints and loops, and attachments of the same to the building structure. Detail location of anchors, alignment guides, and expansion joints and loops.
- C. Welding certificates.
- D. Qualification Data: For Installer.
- E. Field quality-control test reports.
- F. Operation and Maintenance Data: For air control devices, hydronic specialties, and special-duty valves to include in emergency, operation, and maintenance manuals.
- G. Water Analysis: Submit a copy of the water analysis to illustrate water quality available at Project site.

1.6 QUALITY ASSURANCE

A. Installer Qualifications:

- 1. Installers of Pressure-Sealed Joints: Installers shall be certified by the pressure-seal joint manufacturer as having been trained and qualified to join piping with pressure-seal pipe couplings and fittings.
- 2. Fiberglass Pipe and Fitting Installers: Installers of RTRF and RTRP shall be certified by the manufacturer of pipes and fittings as having been trained and qualified to join fiberglass piping with manufacturer-recommended adhesive.
- B. Steel Support Welding: Qualify processes and operators according to AWS D1.1/D1.1M, "Structural Welding Code Steel."
- C. Welding: Qualify processes and operators according to ASME Boiler and Pressure Vessel Code: Section IX.
 - 1. Comply with provisions in ASME B31 Series, "Code for Pressure Piping."
 - 2. Certify that each welder has passed AWS qualification tests for welding processes involved and that certification is current.
- D. ASME Compliance: Comply with ASME B31.9, "Building Services Piping," for materials, products, and installation. Safety valves and pressure vessels shall bear the appropriate ASME label. Fabricate and stamp air separators and expansion tanks to comply with ASME Boiler and Pressure Vessel Code: Section VIII, Division 01.

1.7 EXTRA MATERIALS

- A. Water-Treatment Chemicals: Furnish enough chemicals for initial system startup and for preventive maintenance for one year from date of Substantial Completion.
- B. Differential Pressure Meter: For each type of balancing valve and automatic flow control valve, include flowmeter, probes, hoses, flow charts, and carrying case.

PART 2 - PRODUCTS

2.1 COPPER TUBE AND FITTINGS

- A. Drawn-Temper Copper Tubing: ASTM B 88, Type L.
- B. Annealed-Temper Copper Tubing: ASTM B 88, Type K.
- C. Wrought-Copper Fittings: ASME B16.22.

D. Wrought-Copper Unions: ASME B16.22.

2.2 STEEL PIPE AND FITTINGS

- A. Steel Pipe: ASTM A 53/A 53M, black steel with plain ends; type, grade, and wall thickness as indicated in Part 3 "Piping Applications" Article.
- B. Cast-Iron Threaded Fittings: ASME B16.4; Classes 125 and 250 as indicated in Part 3 "Piping Applications" Article.
- C. Malleable-Iron Threaded Fittings: ASME B16.3, Classes 150 and 300 as indicated in Part 3 "Piping Applications" Article.
- D. Malleable-Iron Unions: ASME B16.39; Classes 150, 250, and 300 as indicated in Part 3 "Piping Applications" Article.
- E. Cast-Iron Pipe Flanges and Flanged Fittings: ASME B16.1, Classes 25, 125, and 250; raised ground face, and bolt holes spot faced as indicated in Part 3 "Piping Applications" Article.
- F. Wrought-Steel Fittings: ASTM A 234/A 234M, wall thickness to match adjoining pipe.
- G. Wrought Cast- and Forged-Steel Flanges and Flanged Fittings: ASME B16.5, including bolts, nuts, and gaskets of the following material group, end connections, and facings:
 - 1. Material Group: 1.1.
 - 2. End Connections: Butt welding.
 - 3. Facings: Raised face.

2.3 PLASTIC PIPE AND FITTINGS

- A. CPVC Plastic Pipe: ASTM F 441/F 441M, Schedules 40 and 80, plain ends as indicated in Part 3 "Piping Applications" Article.
- B. CPVC Plastic Pipe Fittings: Socket-type pipe fittings, ASTM F 438 for Schedule 40 pipe; ASTM F 439 for Schedule 80 pipe.
- C. PVC Plastic Pipe: ASTM D 1785, Schedules 40 and 80, plain ends as indicated in Part 3 "Piping Applications" Article.
- D. PVC Plastic Pipe Fittings: Socket-type pipe fittings, ASTM D 2466 for Schedule 40 pipe; ASTM D 2467 for Schedule 80 pipe.

2.4 JOINING MATERIALS

- A. Pipe-Flange Gasket Materials: Suitable for chemical and thermal conditions of piping system contents.
 - 1. ASME B16.21, nonmetallic, flat, asbestos free, 1/8-inch maximum thickness unless thickness or specific material is indicated.
 - a. Full-Face Type: For flat-face, Class 125, cast-iron and cast-bronze flanges.
 - b. Narrow-Face Type: For raised-face, Class 250, cast-iron and steel flanges.
- B. Flange Bolts and Nuts: ASME B18.2.1, carbon steel, unless otherwise indicated.
- C. Plastic, Pipe-Flange Gasket, Bolts, and Nuts: Type and material recommended by piping system manufacturer, unless otherwise indicated.
- D. Solder Filler Metals: ASTM B 32, lead-free alloys. Include water-flushable flux according to ASTM B 813.
- E. Brazing Filler Metals: AWS A5.8, BCuP Series, copper-phosphorus alloys for joining copper with copper; or BAg-1, silver alloy for joining copper with bronze or steel.
- F. Welding Filler Metals: Comply with AWS D10.12/D10.12M for welding materials appropriate for wall thickness and chemical analysis of steel pipe being welded.
- G. Solvent Cements for Joining Plastic Piping:
 - 1. CPVC Piping: ASTM F 493.
 - a. Use CPVC solvent cement that has a VOC content of 490 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
 - b. Use adhesive primer that has a VOC content of 550 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
 - 2. PVC Piping: ASTM D 2564. Include primer according to ASTM F 656.
 - a. Use PVC solvent cement that has a VOC content of 510 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
 - b. Use adhesive primer that has a VOC content of 550 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
- H. Gasket Material: Thickness, material, and type suitable for fluid to be handled and working temperatures and pressures.

2.5 TRANSITION FITTINGS

- A. Plastic-to-Metal Transition Fittings:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Charlotte Pipe and Foundry Company.
 - b. IPEX Inc.
 - c. KBi.
 - 2. CPVC and PVC one-piece fitting with one threaded brass or copper insert and one Schedule 80 solvent-cement-joint end.
- B. Plastic-to-Metal Transition Unions:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Charlotte Pipe and Foundry Company.
 - b. IPEX Inc.
 - c. KBi.
 - d. NIBCO INC.
 - 2. MSS SP-107, CPVC and PVC union. Include brass or copper end, Schedule 80 solvent-cement-joint end, rubber gasket, and threaded union.

2.6 DIELECTRIC FITTINGS

- A. Description: Combination fitting of copper-alloy and ferrous materials with threaded, solder-joint, plain, or weld-neck end connections that match piping system materials.
- B. Insulating Material: Suitable for system fluid, pressure, and temperature.
- C. Dielectric Unions:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Capitol Manufacturing Company.
 - b. Central Plastics Company.
 - c. Hart Industries International, Inc.
 - d. Watts Regulator Co.; a division of Watts Water Technologies, Inc.
 - e. Zurn Plumbing Products Group; AquaSpec Commercial Products Division.

2. Factory-fabricated union assembly, for 250-psig minimum working pressure at 180 deg F.

D. Dielectric Flanges:

- 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Capitol Manufacturing Company.
 - b. Central Plastics Company.
 - c. Watts Regulator Co.; a division of Watts Water Technologies, Inc.
- 2. Factory-fabricated companion-flange assembly, for 150- or 300-psig minimum working pressure as required to suit system pressures.

E. Dielectric-Flange Kits:

- 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Advance Products & Systems, Inc.
 - b. Calpico, Inc.
 - c. Central Plastics Company.
 - d. Pipeline Seal and Insulator, Inc.
- 2. Companion-flange assembly for field assembly. Include flanges, full-face- or ring-type neoprene or phenolic gasket, phenolic or polyethylene bolt sleeves, phenolic washers, and steel backing washers.
- 3. Separate companion flanges and steel bolts and nuts shall have 150- or 300-psig minimum working pressure where required to suit system pressures.

F. Dielectric Couplings:

- 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Calpico, Inc.
 - b. Lochinvar Corporation.
- 2. Galvanized-steel coupling with inert and noncorrosive thermoplastic lining; threaded ends; and 300-psig minimum working pressure at 225 deg F.

G. Dielectric Nipples:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

- a. Perfection Corporation; a subsidiary of American Meter Company.
- b. Precision Plumbing Products, Inc.
- c. Sioux Chief Manufacturing Company, Inc.
- d. Victaulic Company of America.
- 2. Electroplated steel nipple with inert and noncorrosive, thermoplastic lining; plain, threaded, or grooved ends; and 300-psig minimum working pressure at 225 deg F.

2.7 VALVES

- A. Gate, Globe, Check, Ball, and Butterfly Valves: Comply with requirements specified in Division 23 Section "General-Duty Valves for HVAC Piping."
- B. Automatic Temperature-Control Valves, Actuators, and Sensors: Comply with requirements specified in Division 23 Section "Instrumentation and Control for HVAC."
- C. Bronze, Calibrated-Orifice, Balancing Valves:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Armstrong Pumps, Inc.
 - b. Bell & Gossett Domestic Pump; a division of ITT Industries.
 - c. Flow Design Inc.
 - d. Gerand Engineering Co.
 - e. Griswold Controls.
 - f. Taco.
 - 2. Body: Bronze, ball or plug type with calibrated orifice or venturi.
 - 3. Ball: Brass or stainless steel.
 - 4. Plug: Resin.
 - 5. Seat: PTFE.
 - 6. End Connections: Threaded or socket.
 - 7. Pressure Gage Connections: Integral seals for portable differential pressure meter.
 - 8. Handle Style: Lever, with memory stop to retain set position.
 - 9. CWP Rating: Minimum 125 psig.
 - 10. Maximum Operating Temperature: 250 deg F.
- D. Cast-Iron or Steel, Calibrated-Orifice, Balancing Valves:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

- a. Armstrong Pumps, Inc.
- b. Bell & Gossett Domestic Pump; a division of ITT Industries.
- c. Flow Design Inc.
- d. Gerand Engineering Co.
- e. Griswold Controls.
- f. Taco.
- g. Tour & Andersson; available through Victaulic Company of America.
- 2. Body: Cast-iron or steel body, ball, plug, or globe pattern with calibrated orifice or venturi.
- 3. Ball: Brass or stainless steel.
- 4. Stem Seals: EPDM O-rings.
- 5. Disc: Glass and carbon-filled PTFE.
- 6. Seat: PTFE.
- 7. End Connections: Flanged or grooved.
- 8. Pressure Gage Connections: Integral seals for portable differential pressure meter.
- 9. Handle Style: Lever, with memory stop to retain set position.
- 10. CWP Rating: Minimum 125 psig.
- 11. Maximum Operating Temperature: 250 deg F.

E. Diaphragm-Operated, Pressure-Reducing Valves:

- 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Amtrol, Inc.
 - b. Armstrong Pumps, Inc.
 - c. Bell & Gossett Domestic Pump; a division of ITT Industries.
 - d. Conbraco Industries, Inc.
 - e. Spence Engineering Company, Inc.
 - f. Watts Regulator Co.; a division of Watts Water Technologies, Inc.
- 2. Body: Bronze or brass.
- 3. Disc: Glass and carbon-filled PTFE.
- 4. Seat: Brass.
- 5. Stem Seals: EPDM O-rings.
- 6. Diaphragm: EPT.
- 7. Low inlet-pressure check valve.
- 8. Inlet Strainer: stainless steel, removable without system shutdown.
- 9. Valve Seat and Stem: Noncorrosive.
- 10. Valve Size, Capacity, and Operating Pressure: Selected to suit system in which installed, with operating pressure and capacity factory set and field adjustable.

F. Diaphragm-Operated Safety Valves:

- 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Amtrol, Inc.
 - b. Armstrong Pumps, Inc.
 - c. Bell & Gossett Domestic Pump; a division of ITT Industries.
 - d. Conbraco Industries, Inc.
 - e. Spence Engineering Company, Inc.
 - f. Watts Regulator Co.; a division of Watts Water Technologies, Inc.
- 2. Body: Bronze or brass.
- 3. Disc: Glass and carbon-filled PTFE.
- 4. Seat: Brass.
- 5. Stem Seals: EPDM O-rings.
- 6. Diaphragm: EPT.
- 7. Wetted, Internal Work Parts: Brass and rubber.
- 8. Inlet Strainer: stainless steel, removable without system shutdown.
- 9. Valve Seat and Stem: Noncorrosive.
- 10. Valve Size, Capacity, and Operating Pressure: Comply with ASME Boiler and Pressure Vessel Code: Section IV, and selected to suit system in which installed, with operating pressure and capacity factory set and field adjustable.

G. Automatic Flow-Control Valves:

- 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Flow Design Inc.
 - b. Griswold Controls.
- 2. Body: Brass or ferrous metal.
- 3. Piston and Spring Assembly: Stainless steel, tamper proof, self cleaning, and removable.
- 4. Combination Assemblies: Include bonze or brass-alloy ball valve.
- 5. Identification Tag: Marked with zone identification, valve number, and flow rate.
- 6. Size: Same as pipe in which installed.
- 7. Performance: Maintain constant flow, plus or minus 5 percent over system pressure fluctuations.
- 8. Minimum CWP Rating: 175 psig.
- 9. Maximum Operating Temperature: 200 deg F.

2.8 AIR CONTROL DEVICES

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

- 1. Amtrol, Inc.
- 2. Armstrong Pumps, Inc.
- 3. Bell & Gossett Domestic Pump; a division of ITT Industries.
- 4. Taco.

B. Manual Air Vents:

- 1. Body: Bronze.
- 2. Internal Parts: Nonferrous.
- 3. Operator: Screwdriver or thumbscrew.
- 4. Inlet Connection: NPS 1/2.
- 5. Discharge Connection: NPS 1/8.
- 6. CWP Rating: 150 psig.
- 7. Maximum Operating Temperature: 225 deg F.

C. Automatic Air Vents:

- 1. Body: Bronze or cast iron.
- 2. Internal Parts: Nonferrous.
- 3. Operator: Noncorrosive metal float.
- 4. Inlet Connection: NPS 1/2.
- 5. Discharge Connection: NPS 1/4.
- 6. CWP Rating: 150 psig.
- 7. Maximum Operating Temperature: 240 deg F.

D. Expansion Tanks:

- 1. Tank: Welded steel, rated for 125-psig working pressure and 375 deg F maximum operating temperature, with taps in bottom of tank for tank fitting and taps in end of tank for gage glass. Tanks shall be factory tested with taps fabricated and labeled according to ASME Boiler and Pressure Vessel Code: Section VIII, Division 1.
- 2. Air-Control Tank Fitting: Cast-iron body, copper-plated tube, brass vent tube plug, and stainless-steel ball check, 100-gal. unit only; sized for compression-tank diameter. Provide tank fittings for 125-psig working pressure and 250 deg F maximum operating temperature.
- 3. Tank Drain Fitting: Brass body, nonferrous internal parts; 125-psig working pressure and 240 deg F maximum operating temperature; constructed to admit air to compression tank, drain water, and close off system.
- 4. Gage Glass: Full height with dual manual shutoff valves, 3/4-inch diameter gage glass, and slotted-metal glass guard.

E. Diaphragm or Bladder-Type Expansion Tanks:

1. Tank: Welded steel, rated for 125-psig working pressure and 375 deg F maximum operating temperature. Factory test with taps fabricated and supports

- installed and labeled according to ASME Boiler and Pressure Vessel Code: Section VIII, Division 1.
- 2. Diaphragm/Bladder: Securely sealed into tank to separate air charge from system water to maintain required expansion capacity.
- 3. Air-Charge Fittings: Schrader valve, stainless steel with EPDM seats.

F. Tangential-Type Air Separators:

- 1. Tank: Welded steel; ASME constructed and labeled for 125-psig minimum working pressure and 375 deg F maximum operating temperature.
- 2. Air Collector Tube: Perforated stainless steel, constructed to direct released air into expansion tank.
- 3. Tangential Inlet and Outlet Connections: Threaded for NPS 2 and smaller; flanged connections for NPS 2-1/2 and larger.
- 4. Blowdown Connection: Threaded.
- 5. Size: Match system flow capacity.

G. In-Line Air Separators:

- 1. Tank: One-piece cast iron with an integral weir constructed to decelerate system flow to maximize air separation.
- 2. Maximum Working Pressure: Up to 175 psig.
- 3. Maximum Operating Temperature: Up to 300 deg F.

H. Air Purgers:

- 1. Body: Cast iron with internal baffles that slow the water velocity to separate the air from solution and divert it to the vent for quick removal.
- 2. Maximum Working Pressure: 150 psig.
- 3. Maximum Operating Temperature: 250 deg F.

2.9 CHEMICAL TREATMENT

- A. Bypass Chemical Feeder: Welded steel construction; 125-psig working pressure; 5-gal. capacity; with fill funnel and inlet, outlet, and drain valves.
 - 1. Chemicals: Specially formulated, based on analysis of makeup water, to prevent accumulation of scale and corrosion in piping and connected equipment.
- B. Ethylene and Propylene Glycol: Industrial grade with corrosion inhibitors and environmental-stabilizer additives for mixing with water in systems indicated to contain antifreeze or glycol solutions.

2.10 HYDRONIC PIPING SPECIALTIES

A. Y-Pattern Strainers:

- 1. Body: ASTM A 126, Class B, cast iron with bolted cover and bottom drain connection.
- 2. End Connections: Threaded ends for NPS 2 and smaller; flanged ends for NPS 2-1/2 and larger.
- 3. Strainer Screen: 40-mesh startup strainer, and perforated stainless-steel basket with 50 percent free area.
- 4. CWP Rating: 125 psig.

B. Basket Strainers:

- 1. Body: ASTM A 126, Class B, high-tensile cast iron with bolted cover and bottom drain connection.
- 2. End Connections: Threaded ends for NPS 2 and smaller; flanged ends for NPS 2-1/2 and larger.
- 3. Strainer Screen: 60-mesh startup strainer, and perforated stainless-steel basket with 50 percent free area.
- 4. CWP Rating: 125 psig.

C. T-Pattern Strainers:

- 1. Body: Ductile or malleable iron with removable access coupling and end cap for strainer maintenance.
- 2. End Connections: Grooved ends.
- 3. Strainer Screen: 60-mesh startup strainer, and perforated stainless-steel basket with 57 percent free area.
- 4. CWP Rating: 750 psig.

D. Stainless-Steel Bellow, Flexible Connectors:

- 1. Body: Stainless-steel bellows with woven, flexible, bronze, wire-reinforcing protective jacket.
- 2. End Connections: Threaded or flanged to match equipment connected.
- 3. Performance: Capable of 3/4-inch misalignment.
- 4. CWP Rating: 150 psig.
- 5. Maximum Operating Temperature: 250 deg F.

E. Spherical, Rubber, Flexible Connectors:

- 1. Body: Fiber-reinforced rubber body.
- 2. End Connections: Steel flanges drilled to align with Classes 150 and 300 steel flanges.

3. Performance: Capable of misalignment.

- 4. CWP Rating: 150 psig.
- 5. Maximum Operating Temperature: 250 deg F.
- F. Expansion fittings are specified in Division 23 Section "Expansion Fittings and Loops for HVAC Piping."

PART 3 - EXECUTION

3.1 PIPING APPLICATIONS

- A. Hot-water heating piping, aboveground, NPS 2 and smaller, shall be the following:
 - 1. Type L, drawn-temper copper tubing, wrought-copper fittings, and soldered joints.
- B. Hot-water heating piping, aboveground, NPS 2-1/2 and larger, shall be the following:
 - 1. Schedule 40 steel pipe, wrought-steel fittings and wrought-cast or forged-steel flanges and flange fittings, and welded and flanged joints.
- C. Hot-water heating piping, NPS 2 and smaller, installed belowground and within slabs shall be the following:
 - 1. Type K, annealed-temper copper tubing, wrought-copper fittings, and soldered joints. Use the fewest possible joints.
- D. Hot-water heating piping, NPS 2-1/2 and larger, installed belowground and within slabs shall be the following:
 - 1. Schedule 40 steel pipe, wrought-steel fittings and wrought-cast or forged-steel flanges and flange fittings, and welded and flanged joints.
- E. Chilled-water piping, aboveground, NPS 2 and smaller, shall be the following:
 - 1. Type L, drawn-temper copper tubing, wrought-copper fittings, and soldered joints.
- F. Chilled-water piping, aboveground, NPS 2-1/2 and larger, shall be the following:
 - 1. Schedule 40 steel pipe, wrought-steel fittings and wrought-cast or forged-steel flanges and flange fittings, and welded and flanged joints.
- G. Chilled-water piping, NPS 2 and smaller, installed belowground and within slabs shall be the following:

- 1. Type K, annealed-temper copper tubing, wrought-copper fittings, and soldered joints. Use the fewest possible joints.
- H. Chilled-water piping, NPS 2-1/2 and larger, installed belowground and within slabs shall be the following:
 - 1. Schedule 40 steel pipe, wrought-steel fittings and wrought-cast or forged-steel flanges and flange fittings, and welded and flanged joints.
- I. Condenser-water piping, aboveground, NPS 2 and smaller, shall be the following:
 - 1. Type L, drawn-temper copper tubing, wrought-copper fittings, and soldered joints.
- J. Condenser-water piping, aboveground, NPS 2-1/2 and larger, shall be the following:
 - 1. Schedule 40 steel pipe, wrought-steel fittings and wrought-cast or forged-steel flanges and flange fittings, and welded and flanged joints.
- K. Makeup-water piping installed aboveground shall be the following:
 - 1. Type L, drawn-temper copper tubing, wrought-copper fittings, and soldered joints.
- L. Makeup-Water Piping Installed Belowground and within Slabs: Type K, annealed-temper copper tubing, wrought-copper fittings, and soldered joints. Use the fewest possible joints.
- M. Condensate-Drain Piping: Type L, drawn-temper copper tubing, wrought-copper fittings, and soldered joints.
- N. Blowdown-Drain Piping: Same materials and joining methods as for piping specified for the service in which blowdown drain is installed.
- O. Air-Vent Piping:
 - 1. Inlet: Same as service where installed with metal-to-plastic transition fittings for plastic piping systems according to the piping manufacturer's written instructions.
 - 2. Outlet: Type K, annealed-temper copper tubing with soldered or flared joints.
- P. Safety-Valve-Inlet and -Outlet Piping for Hot-Water Piping: Same materials and joining methods as for piping specified for the service in which safety valve is installed with metal-to-plastic transition fittings for plastic piping systems according to the piping manufacturer's written instructions.

3.2 VALVE APPLICATIONS

- A. Install shutoff-duty valves at each branch connection to supply mains, and at supply connection to each piece of equipment.
- B. Install calibrated-orifice, balancing valves at each branch connection to return main.
- C. Install calibrated-orifice, balancing valves in the return pipe of each heating or cooling terminal.
- D. Install check valves at each pump discharge and elsewhere as required to control flow direction.
- E. Install safety valves at hot-water generators and elsewhere as required by ASME Boiler and Pressure Vessel Code. Install drip-pan elbow on safety-valve outlet and pipe without valves to the outdoors; and pipe drain to nearest floor drain or as indicated on Drawings. Comply with ASME Boiler and Pressure Vessel Code: Section VIII, Division 1, for installation requirements.
- F. Install pressure-reducing valves at makeup-water connection to regulate system fill pressure.

3.3 PIPING INSTALLATIONS

- A. Drawing plans, schematics, and diagrams indicate general location and arrangement of piping systems. Indicate piping locations and arrangements if such were used to size pipe and calculate friction loss, expansion, pump sizing, and other design considerations. Install piping as indicated unless deviations to layout are approved on Coordination Drawings.
- B. Install piping in concealed locations, unless otherwise indicated and except in equipment rooms and service areas.
- C. Install piping indicated to be exposed and piping in equipment rooms and service areas at right angles or parallel to building walls. Diagonal runs are prohibited unless specifically indicated otherwise.
- D. Install piping above accessible ceilings to allow sufficient space for ceiling panel removal.
- E. Install piping to permit valve servicing.
- F. Install piping at indicated slopes.
- G. Install piping free of sags and bends.

- H. Install fittings for changes in direction and branch connections.
- I. Install piping to allow application of insulation.
- J. Select system components with pressure rating equal to or greater than system operating pressure.
- K. Install groups of pipes parallel to each other, spaced to permit applying insulation and servicing of valves.
- L. Install drains, consisting of a tee fitting, NPS 3/4 ball valve, and short NPS 3/4 threaded nipple with cap, at low points in piping system mains and elsewhere as required for system drainage.
- M. Install piping at a uniform grade of 0.2 percent upward in direction of flow.
- N. Reduce pipe sizes using eccentric reducer fitting installed with level side up.
- O. Provide an additional one hundred feet of piping and accessories and installation labor for each size of pipe used on the project to accommodate any changes required to resolve interferences or as directed by the engineer.
- P. Install branch connections to mains using [mechanically formed] tee fittings in main pipe, with the branch connected to the bottom of the main pipe. For up-feed risers, connect the branch to the top of the main pipe.
- Q. Install valves according to Division 23 Section "General-Duty Valves for HVAC Piping."
- R. Install unions in piping, NPS 2 and smaller, adjacent to valves, at final connections of equipment, and elsewhere as indicated.
- S. Install flanges in piping, NPS 2-1/2 and larger, at final connections of equipment and elsewhere as indicated.
- T. Install strainers on inlet side of each control valve, pressure-reducing valve, solenoid valve, in-line pump, and elsewhere as indicated. Install NPS 3/4 nipple and ball valve in blowdown connection of strainers NPS 2 and larger. Match size of strainer blowoff connection for strainers smaller than NPS 2.
- U. Install expansion loops, expansion joints, anchors, and pipe alignment guides as specified in Division 23 Section "Expansion Fittings and Loops for HVAC Piping."
- V. Identify piping as specified in Division 23 Section "Identification for HVAC Piping and Equipment."

- W. Install sleeves for piping penetrations of walls, ceilings, and floors. Comply with requirements for sleeves specified in Division 23 Section "Sleeves and Sleeve Seals for HVAC Piping."
- X. Install sleeve seals for piping penetrations of concrete walls and slabs. Comply with requirements for sleeve seals specified in Division 23 Section "Sleeves and Sleeve Seals for HVAC Piping."
- Y. Install escutcheons for piping penetrations of walls, ceilings, and floors. Comply with requirements for escutcheons specified in Division 23 Section "Escutcheons for HVAC Piping."

3.4 HANGERS AND SUPPORTS

- A. Hanger, support, and anchor devices are specified in Division 23 Section "Hangers and Supports for HVAC Piping and Equipment." Comply with the following requirements for maximum spacing of supports.
- B. Seismic restraints are specified in Division 23 Section "Vibration and Seismic Controls for HVAC Piping and Equipment."
- C. Install the following pipe attachments:
 - 1. Adjustable steel clevis hangers for individual horizontal piping less than 20 feet long.
 - 2. Adjustable roller hangers and spring hangers for individual horizontal piping 20 feet or longer.
 - 3. Pipe Roller: MSS SP-58, Type 44 for multiple horizontal piping 20 feet or longer, supported on a trapeze.
 - 4. Spring hangers to support vertical runs.
 - 5. Provide copper-clad hangers and supports for hangers and supports in direct contact with copper pipe.
 - 6. On plastic pipe, install pads or cushions on bearing surfaces to prevent hanger from scratching pipe.
- D. Install hangers for steel piping with the following maximum spacing and minimum rod sizes:
 - 1. NPS 3/4: Maximum span, 7 feet; minimum rod size, 1/4 inch.
 - 2. NPS 1: Maximum span, 7 feet; minimum rod size, 1/4 inch.
 - 3. NPS 1-1/2: Maximum span, 9 feet; minimum rod size, 3/8 inch.
 - 4. NPS 2: Maximum span, 10 feet; minimum rod size, 3/8 inch.
 - 5. NPS 2-1/2: Maximum span, 11 feet; minimum rod size, 3/8 inch.
 - 6. NPS 3: Maximum span, 12 feet; minimum rod size, 3/8 inch.
 - 7. NPS 4: Maximum span, 14 feet; minimum rod size, 1/2 inch.

- 8. NPS 6: Maximum span, 17 feet; minimum rod size, 1/2 inch.
- 9. NPS 8: Maximum span, 19 feet; minimum rod size, 5/8 inch.
- 10. NPS 10: Maximum span, 20 feet; minimum rod size, 3/4 inch.
- 11. NPS 12: Maximum span, 23 feet; minimum rod size, 7/8 inch.
- 12. NPS 14: Maximum span, 25 feet; minimum rod size, 1 inch.
- 13. NPS 16: Maximum span, 27 feet; minimum rod size, 1 inch.
- 14. NPS 18: Maximum span, 28 feet; minimum rod size, 1-1/4 inches.
- 15. NPS 20: Maximum span, 30 feet; minimum rod size, 1-1/4 inches.
- E. Install hangers for drawn-temper copper piping with the following maximum spacing and minimum rod sizes:
 - 1. NPS 3/4: Maximum span, 5 feet; minimum rod size, 1/4 inch.
 - 2. NPS 1: Maximum span, 6 feet; minimum rod size, 1/4 inch.
 - 3. NPS 1-1/2: Maximum span, 8 feet; minimum rod size, 3/8 inch.
 - 4. NPS 2: Maximum span, 8 feet; minimum rod size, 3/8 inch.
 - 5. NPS 2-1/2: Maximum span, 9 feet; minimum rod size, 3/8 inch.
 - 6. NPS 3: Maximum span, 10 feet; minimum rod size, 3/8 inch.
- F. Plastic Piping Hanger Spacing: Space hangers according to pipe manufacturer's written instructions for service conditions. Avoid point loading. Space and install hangers with the fewest practical rigid anchor points.
- G. Fiberglass Piping Hanger Spacing: Space hangers according to pipe manufacturer's written instructions for service conditions. Avoid point loading. Space and install hangers with the fewest practical rigid anchor points.
- H. Support vertical runs at roof, at each floor, and at 10-foot intervals between floors.

3.5 PIPE JOINT CONSTRUCTION

- A. Join pipe and fittings according to the following requirements and Division 23 Sections specifying piping systems.
- B. Ream ends of pipes and tubes and remove burrs. Bevel plain ends of steel pipe.
- C. Remove scale, slag, dirt, and debris from inside and outside of pipe and fittings before assembly.
- D. Soldered Joints: Apply ASTM B 813, water-flushable flux, unless otherwise indicated, to tube end. Construct joints according to ASTM B 828 or CDA's "Copper Tube Handbook," using lead-free solder alloy complying with ASTM B 32.

- E. Brazed Joints: Construct joints according to AWS's "Brazing Handbook," "Pipe and Tube" Chapter, using copper-phosphorus brazing filler metal complying with AWS A5.8.
- F. Threaded Joints: Thread pipe with tapered pipe threads according to ASME B1.20.1. Cut threads full and clean using sharp dies. Ream threaded pipe ends to remove burrs and restore full ID. Join pipe fittings and valves as follows:
 - 1. Apply appropriate tape or thread compound to external pipe threads unless dry seal threading is specified.
 - 2. Damaged Threads: Do not use pipe or pipe fittings with threads that are corroded or damaged. Do not use pipe sections that have cracked or open welds.
- G. Welded Joints: Construct joints according to AWS D10.12/D10.12M, using qualified processes and welding operators according to Part 1 "Quality Assurance" Article.
- H. Flanged Joints: Select appropriate gasket material, size, type, and thickness for service application. Install gasket concentrically positioned. Use suitable lubricants on bolt threads.
- I. Plastic Piping Solvent-Cemented Joints: Clean and dry joining surfaces. Join pipe and fittings according to the following:
 - 1. Comply with ASTM F 402 for safe-handling practice of cleaners, primers, and solvent cements.
 - 2. CPVC Piping: Join according to ASTM D 2846/D 2846M Appendix.
 - 3. PVC Pressure Piping: Join ASTM D 1785 schedule number, PVC pipe and PVC socket fittings according to ASTM D 2672. Join other-than-schedule number PVC pipe and socket fittings according to ASTM D 2855.
 - 4. PVC Nonpressure Piping: Join according to ASTM D 2855.

3.6 HYDRONIC SPECIALTIES INSTALLATION

- A. Install manual air vents at high points in piping, at heat-transfer coils, and elsewhere as required for system air venting.
- B. Install automatic air vents at high points of system piping in mechanical equipment rooms only. Manual vents at heat-transfer coils and elsewhere as required for air venting.
- C. Install piping from boiler air outlet, air separator, or air purger to expansion tank with a 2 percent upward slope toward tank.
- D. Install in-line air separators in pump suction. Install drain valve on air separators NPS 2 and larger.

- E. Install tangential air separator in pump suction. Install blowdown piping with gate or full-port ball valve; extend full size to nearest floor drain.
- F. Install bypass chemical feeders in each hydronic system where indicated, in upright position with top of funnel not more than 48 inches above the floor. Install feeder in minimum NPS 3/4 bypass line, from main with full-size, full-port, ball valve in the main between bypass connections. Install NPS 3/4 pipe from chemical feeder drain, to nearest equipment drain and include a full-size, full-port, ball valve.
- G. Install expansion tanks above the air separator. Install tank fitting in tank bottom and charge tank. Use manual vent for initial fill to establish proper water level in tank.
 - 1. Install tank fittings that are shipped loose.
 - 2. Support tank from floor or structure above with sufficient strength to carry weight of tank, piping connections, fittings, plus tank full of water. Do not overload building components and structural members.
- H. Install expansion tanks on the floor. Vent and purge air from hydronic system, and ensure tank is properly charged with air to suit system Project requirements.

3.7 TERMINAL EQUIPMENT CONNECTIONS

- A. Sizes for supply and return piping connections shall be the same as or larger than equipment connections.
- B. Install control valves in accessible locations close to connected equipment.
- C. Install bypass piping with globe valve around control valve. If parallel control valves are installed, only one bypass is required.
- D. Install ports for pressure gages and thermometers at coil inlet and outlet connections according to Division 23 Section "Meters and Gages for HVAC Piping."

3.8 CHEMICAL TREATMENT

- A. Perform an analysis of makeup water to determine type and quantities of chemical treatment needed to keep system free of scale, corrosion, and fouling, and to sustain the following water characteristics:
 - 1. pH: 9.0 to 10.5.
 - 2. "P" Alkalinity: 100 to 500 ppm.
 - 3. Boron: 100 to 200 ppm.
 - 4. Chemical Oxygen Demand: Maximum 100 ppm. Modify this value if closed system contains glycol.

- 5. Corrosion Inhibitor:
 - a. Sodium Nitrate: 1000 to 1500 ppm.
 - b. Molybdate: 200 to 300 ppm.c. Chromate: 200 to 300 ppm.
 - d. Sodium Nitrate Plus Molybdate: 100 to 200 ppm each.
 - e. Chromate Plus Molybdate: 50 to 100 ppm each.
- 6. Soluble Copper: Maximum 0.20 ppm.
- 7. Tolyiriazole Copper and Yellow Metal Corrosion Inhibitor: Minimum 10 ppm.
- 8. Total Suspended Solids: Maximum 10 ppm.
- 9. Ammonia: Maximum 20 ppm.
- 10. Free Caustic Alkalinity: Maximum 20 ppm.
- 11. Microbiological Limits:
 - a. Total Aerobic Plate Count: Maximum 1000 organisms/ml.
 - b. Total Anaerobic Plate Count: Maximum 100 organisms/ml.
 - c. Nitrate Reducers: 100 organisms/ml.
 - d. Sulfate Reducers: Maximum 0 organisms/ml.
 - e. Iron Bacteria: Maximum 0 organisms/ml.
- B. Fill system with fresh water and add liquid alkaline compound with emulsifying agents and detergents to remove grease and petroleum products from piping. Circulate solution for a minimum of 24 hours, drain, clean strainer screens, and refill with fresh water.
- C. Add initial chemical treatment and maintain water quality in ranges noted above for the first year of operation.
- D. Fill systems indicated to have antifreeze or glycol solutions with the following concentrations:
 - 1. Hot-Water Heating Piping: Minimum 25 percent propylene.
 - 2. Chilled-Water Piping: Minimum 40 percent propylene glycol.

3.9 FIELD QUALITY CONTROL

- A. Prepare hydronic piping according to ASME B31.9 and as follows:
 - 1. Leave joints, including welds, uninsulated and exposed for examination during test.
 - 2. Provide temporary restraints for expansion joints that cannot sustain reactions due to test pressure. If temporary restraints are impractical, isolate expansion joints from testing.

- 3. Flush hydronic piping systems with clean water; then remove and clean or replace strainer screens.
- 4. Isolate equipment from piping. If a valve is used to isolate equipment, its closure shall be capable of sealing against test pressure without damage to valve. Install blinds in flanged joints to isolate equipment.
- 5. Install safety valve, set at a pressure no more than one-third higher than test pressure, to protect against damage by expanding liquid or other source of overpressure during test.

B. Perform the following tests on hydronic piping:

- 1. Use ambient temperature water as a testing medium unless there is risk of damage due to freezing. Another liquid that is safe for workers and compatible with piping may be used.
- 2. While filling system, use vents installed at high points of system to release air. Use drains installed at low points for complete draining of test liquid.
- 3. Isolate expansion tanks and determine that hydronic system is full of water.
- 4. Subject piping system to hydrostatic test pressure that is not less than 1.5 times the system's working pressure. Test pressure shall not exceed maximum pressure for any vessel, pump, valve, or other component in system under test. Verify that stress due to pressure at bottom of vertical runs does not exceed 90 percent of specified minimum yield strength or 1.7 times "SE" value in Appendix A in ASME B31.9, "Building Services Piping."
- 5. After hydrostatic test pressure has been applied for at least 10 minutes, examine piping, joints, and connections for leakage. Eliminate leaks by tightening, repairing, or replacing components, and repeat hydrostatic test until there are no leaks.
- 6. Prepare written report of testing.

C. Perform the following before operating the system:

- 1. Open manual valves fully.
- 2. Inspect pumps for proper rotation.
- 3. Set makeup pressure-reducing valves for required system pressure.
- 4. Inspect air vents at high points of system and determine if all are installed and operating freely (automatic type), or bleed air completely (manual type).
- 5. Set temperature controls so all coils are calling for full flow.
- 6. Inspect and set operating temperatures of hydronic equipment, such as boilers, chillers, cooling towers, to specified values.
- 7. Verify lubrication of motors and bearings.

END OF SECTION 232113

SECTION 232300

REFRIGERANT PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General, Special and Supplementary Conditions and Division 1 Thru Division 32 Specification Sections, apply to this Section.

1.2 SUMMARY

A. This Section includes refrigerant piping used for air-conditioning applications.

1.3 PERFORMANCE REQUIREMENTS

- A. Line Test Pressure for Refrigerant R-410A:
 - 1. Suction Lines for Air-Conditioning Applications: 300 psig
 - 2. Suction Lines for Heat-Pump Applications: 535 psig
 - 3. Hot-Gas and Liquid Lines: 535 psig

1.4 SUBMITTALS

- A. Product Data: For each type of valve and refrigerant piping specialty indicated. Include pressure drop, based on manufacturer's test data, for the following:
 - 1. Thermostatic expansion valves.
 - 2. Solenoid valves.
 - 3. Hot-gas bypass valves.
 - 4. Filter dryers.
 - 5. Strainers.
 - 6. Pressure-regulating valves.
- B. Shop Drawings: Show layout of refrigerant piping and specialties, including pipe, tube, and fitting sizes, flow capacities, valve arrangements and locations, slopes of horizontal runs, oil traps, double risers, wall and floor penetrations, and equipment connection details. Show interface and spatial relationships between piping and equipment.

- 1. Shop Drawing Scale: 1/4 inch equals 1 foot.
- 2. Refrigerant piping indicated on Drawings is schematic only. Size piping and design actual piping layout, including oil traps, double risers, specialties, and pipe and tube sizes to accommodate, as a minimum, equipment provided, elevation difference between compressor and evaporator, and length of piping to ensure proper operation and compliance with warranties of connected equipment.
- C. Welding certificates.
- D. Field quality-control test reports.
- E. Operation and Maintenance Data: For refrigerant valves and piping specialties to include in maintenance manuals.

1.5 QUALITY ASSURANCE

- A. Welding: Qualify procedures and personnel according to ASME Boiler and Pressure Vessel Code: Section IX, "Welding and Brazing Qualifications."
- B. Comply with ASHRAE 15, "Safety Code for Refrigeration Systems."
- C. Comply with ASME B31.5, "Refrigeration Piping and Heat Transfer Components."

1.6 PRODUCT STORAGE AND HANDLING

A. Store piping in a clean and protected area with end caps in place to ensure that piping interior and exterior are clean when installed.

1.7 COORDINATION

A. Coordinate size and location of roof curbs, equipment supports, and roof penetrations. These items are specified in Division 07 Section "Roof Accessories."

PART 2 - PRODUCTS

2.1 COPPER TUBE AND FITTINGS

- A. Copper Tube: ASTM B 280, Type ACR.
- B. Wrought-Copper Fittings: ASME B16.22.
- C. Wrought-Copper Unions: ASME B16.22.

- D. Solder Filler Metals: ASTM B 32. Use 95-5 tin antimony or alloy HB solder to join copper socket fittings on copper pipe.
- E. Brazing Filler Metals: AWS A5.8.

F. Flexible Connectors:

- 1. Body: Tin-bronze bellows with woven, flexible, tinned-bronze-wire-reinforced protective jacket.
- 2. End Connections: Socket ends.
- 3. Offset Performance: Capable of minimum 3/4-inch misalignment in minimum 7-inch- long assembly.
- 4. Pressure Rating: Factory test at minimum 500 psig.
- 5. Maximum Operating Temperature: 250 deg F.

2.2 VALVES AND SPECIALTIES

A. Diaphragm Packless Valves:

- 1. Body and Bonnet: Forged brass or cast bronze; globe design with straight-through or angle pattern.
- 2. Diaphragm: Phosphor bronze and stainless steel with stainless-steel spring.
- 3. Operator: Rising stem and hand wheel.
- 4. Seat: Nylon.
- 5. End Connections: Socket, union, or flanged.
- 6. Working Pressure Rating: 500 psig.
- 7. Maximum Operating Temperature: 275 deg F.

B. Packed-Angle Valves:

- 1. Body and Bonnet: Forged brass or cast bronze.
- 2. Packing: Molded stem, back seating, and replaceable under pressure.
- 3. Operator: Rising stem.
- 4. Seat: Nonrotating, self-aligning polytetrafluoroethylene.
- 5. Seal Cap: Forged-brass or valox hex cap.
- 6. End Connections: Socket, union, threaded, or flanged.
- 7. Working Pressure Rating: 500 psig.
- 8. Maximum Operating Temperature: 275 deg F.

C. Check Valves:

- 1. Body: Ductile iron, forged brass, or cast bronze; globe pattern.
- 2. Bonnet: Bolted ductile iron, forged brass, or cast bronze; or brass hex plug.
- 3. Piston: Removable polytetrafluoroethylene seat.
- 4. Closing Spring: Stainless steel.

- 5. Manual Opening Stem: Seal cap, plated-steel stem, and graphite seal.
- 6. End Connections: Socket, union, threaded, or flanged.
- 7. Maximum Opening Pressure: 0.50 psig.
- 8. Working Pressure Rating: 500 psig.
- 9. Maximum Operating Temperature: 275 deg F.

D. Service Valves:

- 1. Body: Forged brass with brass cap including key end to remove core.
- 2. Core: Removable ball-type check valve with stainless-steel spring.
- 3. Seat: Polytetrafluoroethylene.
- 4. End Connections: Copper spring.
- 5. Working Pressure Rating: 500 psig.
- E. Solenoid Valves: Comply with ARI 760 and UL 429; listed and labeled by an NRTL.
 - 1. Body and Bonnet: Plated steel.
 - 2. Solenoid Tube, Plunger, Closing Spring, and Seat Orifice: Stainless steel.
 - 3. Seat: Polytetrafluoroethylene.
 - 4. End Connections: Threaded.
 - 5. Electrical: Molded, watertight coil in NEMA 250 enclosure of type required by location with 1/2-inch conduit adapter, and [24] [115] [208]-V ac coil.
 - 6. Working Pressure Rating: 400 psig.
 - 7. Maximum Operating Temperature: 240 deg F.
 - 8. Manual operator.
- F. Safety Relief Valves: Comply with ASME Boiler and Pressure Vessel Code; listed and labeled by an NRTL.
 - 1. Body and Bonnet: Ductile iron and steel, with neoprene O-ring seal.
 - 2. Piston, Closing Spring, and Seat Insert: Stainless steel.
 - 3. Seat Disc: Polytetrafluoroethylene.
 - 4. End Connections: Threaded.
 - 5. Working Pressure Rating: 400 psig.
 - 6. Maximum Operating Temperature: 240 deg F.
- G. Thermostatic Expansion Valves: Comply with ARI 750.
 - 1. Body, Bonnet, and Seal Cap: Forged brass or steel.
 - 2. Diaphragm, Piston, Closing Spring, and Seat Insert: Stainless steel.
 - 3. Packing and Gaskets: Non-asbestos.
 - 4. Capillary and Bulb: Copper tubing filled with refrigerant charge.
 - 5. Suction Temperature: 40 deg F.
 - 6. Superheat: Adjustable.
 - 7. Reverse-flow option (for heat-pump applications).
 - 8. End Connections: Socket, flare, or threaded union.

- 9. Working Pressure Rating: 450 psig.
- H. Hot-Gas Bypass Valves: Comply with UL 429; listed and labeled by an NRTL.
 - 1. Body, Bonnet, and Seal Cap: Ductile iron or steel.
 - 2. Diaphragm, Piston, Closing Spring, and Seat Insert: Stainless steel.
 - 3. Packing and Gaskets: Non-asbestos.
 - 4. Solenoid Tube, Plunger, Closing Spring, and Seat Orifice: Stainless steel.
 - 5. Seat: Polytetrafluoroethylene.
 - 6. Equalizer: External.
 - 7. Electrical: Molded, watertight coil in NEMA 250 enclosure of type required by location with 1/2-inch conduit adapter, and 24-V ac coil.
 - 8. End Connections: Socket.
 - 9. Throttling Range: Maximum 5 psig.
 - 10. Working Pressure Rating: 500 psig.
 - 11. Maximum Operating Temperature: 240 deg F.

I. Straight-Type Strainers:

- 1. Body: Welded steel with corrosion-resistant coating.
- 2. Screen: 100-mesh stainless steel.
- 3. End Connections: Socket or flare.
- 4. Working Pressure Rating: 500 psig.
- 5. Maximum Operating Temperature: 275 deg F.

J. Angle-Type Strainers:

- 1. Body: Forged brass or cast bronze.
- 2. Drain Plug: Brass hex plug.
- 3. Screen: 100-mesh monel.
- 4. End Connections: Socket or flare.
- 5. Working Pressure Rating: 500 psig.
- 6. Maximum Operating Temperature: 275 deg F.

K. Moisture/Liquid Indicators:

- 1. Body: Forged brass.
- 2. Window: Replaceable, clear, fused glass window with indicating element protected by filter screen.
- 3. Indicator: Color coded to show moisture content in ppm.
- 4. Minimum Moisture Indicator Sensitivity: Indicate moisture above 60 ppm.
- 5. End Connections: Socket or flare.
- 6. Working Pressure Rating: 500 psig.
- 7. Maximum Operating Temperature: 240 deg F.
- L. Replaceable-Core Filter Dryers: Comply with ARI 730.

- 1. Body and Cover: Painted-steel shell with ductile-iron cover, stainless-steel screws, and neoprene gaskets.
- 2. Filter Media: 10 micron, pleated with integral end rings; stainless-steel support.
- 3. Desiccant Media: Activated alumina or charcoal.
- 4. Designed for reverse flow (for heat-pump applications).
- 5. End Connections: Socket.
- 6. Access Ports: NPS 1/4 connections at entering and leaving sides for pressure differential measurement.
- 7. Maximum Pressure Loss: 2 psig.
- 8. Working Pressure Rating: 500 psig.
- 9. Maximum Operating Temperature: 240 deg F.

M. Permanent Filter Dryers: Comply with ARI 730.

- 1. Body and Cover: Painted-steel shell.
- 2. Filter Media: 10 micron, pleated with integral end rings; stainless-steel support.
- 3. Desiccant Media: Activated [alumina] [charcoal].
- 4. Designed for reverse flow (for heat-pump applications).
- 5. End Connections: Socket.
- 6. Access Ports: NPS 1/4 connections at entering and leaving sides for pressure differential measurement.
- 7. Maximum Pressure Loss: 2 psig.
- 8. Working Pressure Rating: 500 psig.
- 9. Maximum Operating Temperature: 240 deg F.

N. Mufflers:

- 1. Body: Welded steel with corrosion-resistant coating.
- 2. End Connections: Socket or flare.
- 3. Working Pressure Rating: 500 psig.
- 4. Maximum Operating Temperature: 275 deg F.

O. Receivers: Comply with ARI 495.

- 1. Comply with ASME Boiler and Pressure Vessel Code; listed and labeled by an NRTL.
- 2. Comply with UL 207; listed and labeled by an NRTL.
- 3. Body: Welded steel with corrosion-resistant coating.
- 4. Tappings: Inlet, outlet, liquid level indicator, and safety relief valve.
- 5. End Connections: Socket or threaded.
- 6. Working Pressure Rating: 500 psig.
- 7. Maximum Operating Temperature: 275 deg F.

P. Liquid Accumulators: Comply with ARI 495.

1. Body: Welded steel with corrosion-resistant coating.

- 2. End Connections: Socket or threaded.
- 3. Working Pressure Rating: 500 psig.
- 4. Maximum Operating Temperature: 275 deg F.

2.3 REFRIGERANTS

- A. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
- B. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Atofina Chemicals, Inc.
 - 2. DuPont Company; Fluorochemicals Div.
 - 3. Honeywell, Inc.; Genetron Refrigerants.
 - 4. INEOS Fluor Americas LLC.
- C. ASHRAE 34, R-410A: Pentafluoroethane/Difluoromethane.

PART 3 - EXECUTION

3.1 PIPING APPLICATIONS FOR REFRIGERANT R-410A

- A. Suction Lines NPS 1-1/2 and Smaller for Conventional Air-Conditioning Applications: Copper, Type ACR, annealed-temper tubing and wrought-copper fittings with brazed or soldered joints.
- B. Suction Lines NPS 2 to NPS 3-1/2 for Conventional Air-Conditioning Applications: Copper, Type ACR, drawn-temper tubing and wrought-copper fittings with brazed or soldered joints.
- C. Suction Lines NPS 4 for Conventional Air-Conditioning Applications: Copper, Type ACR, drawn-temper tubing and wrought-copper fittings with soldered joints.
- D. Hot-Gas and Liquid Lines[, and Suction Lines for Heat-Pump Applications: Copper, Type ACR, annealed- or drawn-temper tubing and wrought-copper fittings with brazed or soldered joints.
- E. Safety-Relief-Valve Discharge Piping: Copper, Type ACR, annealed- or drawn-temper tubing and wrought-copper fittings with brazed or soldered joints.

3.2 VALVE AND SPECIALTY APPLICATIONS

- A. Install packed-angle valves in suction and discharge lines of compressor.
- B. Install service valves for gage taps at inlet and outlet of hot-gas bypass valves and strainers if they are not an integral part of valves and strainers.
- C. Install a check valve at the compressor discharge and a liquid accumulator at the compressor suction connection.
- D. Except as otherwise indicated, install diaphragm packless valves on inlet and outlet side of filter dryers.
- E. Install a full-sized, three-valve bypass around filter dryers.
- F. Install solenoid valves upstream from each expansion valve and hot-gas bypass valve. Install solenoid valves in horizontal lines with coil at top.
- G. Install thermostatic expansion valves as close as possible to distributors on evaporators.
 - 1. Install valve so diaphragm case is warmer than bulb.
 - 2. Secure bulb to clean, straight, horizontal section of suction line using two bulb straps. Do not mount bulb in a trap or at bottom of the line.
 - 3. If external equalizer lines are required, make connection where it will reflect suction-line pressure at bulb location.
- H. Install safety relief valves where required by ASME Boiler and Pressure Vessel Code. Pipe safety-relief-valve discharge line to outside according to ASHRAE 15.
- I. Install moisture/liquid indicators in liquid line at the inlet of the thermostatic expansion valve or at the inlet of the evaporator coil capillary tube.
- J. Install strainers upstream from and adjacent to the following unless they are furnished as an integral assembly for device being protected:
 - 1. Solenoid valves.
 - 2. Thermostatic expansion valves.
 - 3. Hot-gas bypass valves.
 - 4. Compressor.
- K. Install filter dryers in liquid line between compressor and thermostatic expansion valve[, and in the suction line at the compressor].
- L. Install receivers sized to accommodate pump-down charge.
- M. Install flexible connectors at compressors.

3.3 PIPING INSTALLATION

- A. Drawing plans, schematics, and diagrams indicate general location and arrangement of piping systems; indicated locations and arrangements were used to size pipe and calculate friction loss, expansion, pump sizing, and other design considerations. Install piping as indicated unless deviations to layout are approved on Shop Drawings.
- B. Install refrigerant piping according to ASHRAE 15.
- C. Install piping in concealed locations unless otherwise indicated and except in equipment rooms and service areas.
- D. Install piping indicated to be exposed and piping in equipment rooms and service areas at right angles or parallel to building walls. Diagonal runs are prohibited unless specifically indicated otherwise.
- E. Install piping above accessible ceilings to allow sufficient space for ceiling panel removal.
- F. Install piping adjacent to machines to allow service and maintenance.
- G. Install piping free of sags and bends.
- H. Install fittings for changes in direction and branch connections.
- I. Select system components with pressure rating equal to or greater than system operating pressure.
- J. Refer to Division 23 Sections "Instrumentation and Control for HVAC" and "Sequence of Operation" for solenoid valve controllers, control wiring, and sequence of operation.
- K. Install piping as short and direct as possible, with a minimum number of joints, elbows, and fittings.
- L. Arrange piping to allow inspection and service of refrigeration equipment. Install valves and specialties in accessible locations to allow for service and inspection. Install access doors or panels as specified in Division 08 Section "Access Doors and Frames" if valves or equipment requiring maintenance is concealed behind finished surfaces.
- M. Install refrigerant piping in protective conduit where installed belowground.
- N. Install refrigerant piping in rigid or flexible conduit in locations where exposed to mechanical injury.
- O. Slope refrigerant piping as follows:

- 1. Install horizontal hot-gas discharge piping with a uniform slope downward away from compressor.
- 2. Install horizontal suction lines with a uniform slope downward to compressor.
- 3. Install traps and double risers to entrain oil in vertical runs.
- 4. Liquid lines may be installed level.
- P. When brazing or soldering, remove solenoid-valve coils and sight glasses; also remove valve stems, seats, and packing, and accessible internal parts of refrigerant specialties. Do not apply heat near expansion-valve bulb.
- Q. Before installation of steel refrigerant piping, clean pipe and fittings using the following procedures:
 - 1. Shot blast the interior of piping.
 - 2. Remove coarse particles of dirt and dust by drawing a clean, lintless cloth through tubing by means of a wire or electrician's tape.
 - 3. Draw a clean, lintless cloth saturated with trichloroethylene through the tube or pipe. Continue this procedure until cloth is not discolored by dirt.
 - 4. Draw a clean, lintless cloth, saturated with compressor oil, squeezed dry, through the tube or pipe to remove remaining lint. Inspect tube or pipe visually for remaining dirt and lint.
 - 5. Finally, draw a clean, dry, lintless cloth through the tube or pipe.
 - 6. Safety-relief-valve discharge piping is not required to be cleaned but is required to be open to allow unrestricted flow.
- R. Install pipe sleeves at penetrations in exterior walls and floor assemblies.
- S. Seal penetrations through fire and smoke barriers according to Division 07 Section "Penetration Firestopping."
- T. Install piping with adequate clearance between pipe and adjacent walls and hangers or between pipes for insulation installation.
- U. Install sleeves through floors, walls, or ceilings, sized to permit installation of full-thickness insulation.
- V. Seal pipe penetrations through exterior walls according to Division 07 Section "Joint Sealants" for materials and methods.
- W. Identify refrigerant piping and valves according to Division 23 Section "Identification for HVAC Piping and Equipment."

3.4 PIPE JOINT CONSTRUCTION

A. Ream ends of pipes and tubes and remove burrs. Bevel plain ends of steel pipe.

- B. Remove scale, slag, dirt, and debris from inside and outside of pipe and fittings before assembly.
- C. Fill pipe and fittings with an inert gas (nitrogen or carbon dioxide), during brazing or welding, to prevent scale formation.
- D. Soldered Joints: Construct joints according to ASTM B 828 or CDA's "Copper Tube Handbook."
- E. Brazed Joints: Construct joints according to AWS's "Brazing Handbook," Chapter "Pipe and Tube."
 - 1. Use Type BcuP, copper-phosphorus alloy for joining copper socket fittings with copper pipe.
 - 2. Use Type BAg, cadmium-free silver alloy for joining copper with bronze or steel.
- F. Threaded Joints: Thread steel pipe with tapered pipe threads according to ASME B1.20.1. Cut threads full and clean using sharp dies. Ream threaded pipe ends to remove burrs and restore full ID. Join pipe fittings and valves as follows:
 - 1. Apply appropriate tape or thread compound to external pipe threads unless dry-seal threading is specified.
 - 2. Damaged Threads: Do not use pipe or pipe fittings with threads that are corroded or damaged. Do not use pipe sections that have cracked or open welds.
- G. Steel pipe can be threaded, but threaded joints must be seal brazed or seal welded.
- H. Welded Joints: Construct joints according to AWS D10.12/D10.12M.
- I. Flanged Joints: Select appropriate gasket material, size, type, and thickness for service application. Install gasket concentrically positioned. Use suitable lubricants on bolt threads.

3.5 HANGERS AND SUPPORTS

- A. Hanger, support, and anchor products are specified in Division 23 Section "Hangers and Supports for HVAC Piping and Equipment."
- B. Install the following pipe attachments:
 - 1. Adjustable steel clevis hangers for individual horizontal runs less than 20 feet long.
 - 2. Roller hangers and spring hangers for individual horizontal runs 20 feet or longer.
 - 3. Pipe Roller: MSS SP-58, Type 44 for multiple horizontal piping 20 feet or longer, supported on a trapeze.
 - 4. Spring hangers to support vertical runs.

- 5. Copper-clad hangers and supports for hangers and supports in direct contact with copper pipe.
- C. Install hangers for copper tubing with the following maximum spacing and minimum rod sizes:
 - 1. NPS ½: Maximum span, 60 inches; minimum rod size, 1/4 inch.
 - 2. NPS 5/8: Maximum span, 60 inches; minimum rod size, 1/4 inch.
 - 3. NPS 1: Maximum span, 72 inches; minimum rod size, 1/4 inch.
 - 4. NPS 1-1/4: Maximum span, 96 inches; minimum rod size, 3/8 inch.
 - 5. NPS 1-1/2: Maximum span, 96 inches; minimum rod size, 3/8 inch.
 - 6. NPS 2: Maximum span, 96 inches; minimum rod size, 3/8 inch.
 - 7. NPS 2-1/2: Maximum span, 108 inches; minimum rod size, 3/8 inch.
 - 8. NPS 3: Maximum span, 10 feet; minimum rod size, 3/8 inch.
 - 9. NPS 4: Maximum span, 12 feet; minimum rod size, 1/2 inch.
- D. Support multifloor vertical runs at least at each floor.

3.6 FIELD QUALITY CONTROL

- A. Perform tests and inspections and prepare test reports.
- B. Tests and Inspections:
 - 1. Comply with ASME B31.5, Chapter VI.
 - 2. Test refrigerant piping, specialties, and receivers. Isolate compressor, condenser, evaporator, and safety devices from test pressure if they are not rated above the test pressure.
 - 3. Test high- and low-pressure side piping of each system separately at not less than the pressures indicated in Part 1 "Performance Requirements" Article.
 - a. Fill system with nitrogen to the required test pressure.
 - b. System shall maintain test pressure at the manifold gage throughout duration of test.
 - c. Test joints and fittings with electronic leak detector or by brushing a small amount of soap and glycerin solution over joints.
 - d. Remake leaking joints using new materials, and retest until satisfactory results are achieved.

3.7 SYSTEM CHARGING

- A. Charge system using the following procedures:
 - 1. Install core in filter dryers after leak test but before evacuation.

- 2. Evacuate entire refrigerant system with a vacuum pump to 500 micrometers. If vacuum holds for 12 hours, system is ready for charging.
- 3. Break vacuum with refrigerant gas, allowing pressure to build up to 2 psig.
- 4. Charge system with a new filter-dryer core in charging line.

3.8 ADJUSTING

- A. Adjust thermostatic expansion valve to obtain proper evaporator superheat.
- B. Adjust high- and low-pressure switch settings to avoid short cycling in response to fluctuating suction pressure.
- C. Adjust set-point temperature of air-conditioning or chilled-water controllers to the system design temperature.
- D. Perform the following adjustments before operating the refrigeration system, according to manufacturer's written instructions:
 - 1. Open shutoff valves in condenser water circuit.
 - 2. Verify that compressor oil level is correct.
 - 3. Open compressor suction and discharge valves.
 - 4. Open refrigerant valves except bypass valves that are used for other purposes.
 - 5. Check open compressor-motor alignment and verify lubrication for motors and bearings.
- E. Replace core of replaceable filter dryer after system has been adjusted and after design flow rates and pressures are established.

END OF SECTION 232300

SECTION 233113

METAL DUCTS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

1. This Section includes rectangular, round, and flat-oval metal ducts and plenums for heating, ventilating, and air-conditioning systems in pressure classes from minus 2- to plus 10-inch wg.

B. Related Sections:

- 1. Division 23 Section "Testing, Adjusting, and Balancing for HVAC" for testing, adjusting, and balancing requirements for metal ducts.
- 2. Division 23 Section "Air Duct Accessories" for dampers, sound-control devices, duct-mounting access doors and panels, turning vanes, and flexible ducts.
- 3. Division 23 Section "Duct Insulation" for insulation for metal ducts.

1.3 PERFORMANCE REQUIREMENTS

- A. Delegated Duct Design: Duct construction, including sheet metal thicknesses, seam and joint construction, reinforcements, and hangers and supports, shall comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible" and performance requirements and design criteria indicated in "Duct Schedule" Article.
- B. Structural Performance: Duct hangers and supports and seismic restraints shall withstand the effects of gravity and seismic loads and stresses within limits and under conditions described in SMACNA's "HVAC Duct Construction Standards Metal and Flexible" and ASCE/SEI 7, SMACNA's "Seismic Restraint Manual: Guidelines for Mechanical Systems.
 - 1. Seismic Hazard Level A: Seismic force to weight ratio, 0.48.
 - 2. Seismic Hazard Level B: Seismic force to weight ratio, 0.30.
 - 3. Seismic Hazard Level C: Seismic force to weight ratio, 0.15.

C. Airstream Surfaces: Surfaces in contact with the airstream shall comply with requirements in ASHRAE 62.1-2004.

1.4 SUBMITTALS

- A. Product Data: For each type of the following products:
 - 1. Liners and adhesives.
 - 2. Sealants and gaskets.
 - 3. Seismic-restraint devices.

B. Shop Drawings:

- 1. Fabrication, assembly, and installation, including plans, elevations, sections, components, and attachments to other work.
- 2. Factory- and shop-fabricated ducts and fittings.
- 3. Duct layout indicating sizes, configuration, liner material, and static-pressure classes.
- 4. Elevation of top of ducts.
- 5. Dimensions of main duct runs from building grid lines.
- 6. Fittings.
- 7. Reinforcement and spacing.
- 8. Seam and joint construction.
- 9. Penetrations through fire-rated and other partitions.
- 10. Equipment installation based on equipment being used on Project.
- 11. Locations for duct accessories, including dampers, turning vanes, and access doors and panels.
- 12. Hangers and supports, including methods for duct and building attachment, seismic restraints, and vibration isolation.

C. Delegated-Design Submittal:

- 1. Sheet metal thicknesses.
- 2. Joint and seam construction and sealing.
- 3. Reinforcement details and spacing.
- 4. Materials, fabrication, assembly, and spacing of hangers and supports.
- 5. Design Calculations: Calculations, including analysis data signed and sealed by the qualified professional engineer responsible for their preparation for selecting hangers and supports and seismic restraints.
- D. Coordination Drawings: Plans, drawn to scale, on which the following items are shown and coordinated with each other, using input from installers of the items involved:
 - 1. Duct installation in congested spaces, indicating coordination with general construction, building components, and other building services. Indicate proposed changes to duct layout.
 - 2. Suspended ceiling components.
 - 3. Structural members to which duct will be attached.

- 4. Size and location of initial access modules for acoustical tile.
- 5. Penetrations of smoke barriers and fire-rated construction.
- 6. Items penetrating finished ceiling including the following:
 - a. Lighting fixtures.
 - b. Air outlets and inlets.
 - c. Speakers.
 - d. Sprinklers.
 - e. Access panels.
- E. Welding certificates.
- F. Field quality-control reports.

1.5 QUALITY ASSURANCE

- A. Welding Qualifications: Qualify procedures and personnel according to AWS D1.1/D1.1M, "Structural Welding Code Steel," for hangers and supports. AWS D1.2/D1.2M, "Structural Welding Code Aluminum," for aluminum supports. AWS D9.1M/D9.1, "Sheet Metal Welding Code," for duct joint and seam welding.
- B. ASHRAE Compliance: Applicable requirements in ASHRAE 62.1-2004, Section 5 "Systems and Equipment" and Section 7 "Construction and System Start-Up."
- C. ASHRAE/IESNA Compliance: Applicable requirements in ASHRAE/IESNA 90.1-2004, Section 6.4.4 "HVAC System Construction and Insulation."
- D. Comply with NFPA 90A, "Installation of Air Conditioning and Ventilating Systems," unless otherwise indicated.
- E. Comply with NFPA 90B, "Installation of Warm Air Heating and Air Conditioning Systems," unless otherwise indicated.
- F. Comply with NFPA 96, "Ventilation Control and Fire Protection of Commercial Cooking Operations," Chapter 3, "Duct System," for range hood ducts, unless otherwise indicated.

PART 2 - PRODUCTS

2.1 SINGLE-WALL RECTANGULAR DUCTS AND FITTINGS

A. General Fabrication Requirements: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible" based on indicated static-pressure class unless otherwise indicated.

- B. Transverse Joints: Select joint types and fabricate according to SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Figure 1-4, "Transverse (Girth) Joints," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards Metal and Flexible."
- C. Longitudinal Seams: Select seam types and fabricate according to SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Figure 1-5, "Longitudinal Seams Rectangular Ducts," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards Metal and Flexible."
- D. Elbows, Transitions, Offsets, Branch Connections, and Other Duct Construction: Select types and fabricate according to SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Chapter 2, "Fittings and Other Construction," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards Metal and Flexible."

2.2 DOUBLE-WALL RECTANGULAR DUCTS AND FITTINGS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - 1. McGill AirFlow LLC.
 - 2. Sheet Metal Connectors, Inc.
 - 3. Or Approved Equal.
- B. Rectangular Ducts: Fabricate ducts with indicated dimensions for the inner duct.
- C. Outer Duct: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible" based on indicated static-pressure class unless otherwise indicated.
- D. Transverse Joints: Select joint types and fabricate according to SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Figure 1-4, "Transverse (Girth) Joints," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards Metal and Flexible."
- E. Longitudinal Seams: Select seam types and fabricate according to SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Figure 1-5, "Longitudinal Seams Rectangular Ducts," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards Metal and Flexible."

- F. Interstitial Insulation: Fibrous-glass liner complying with ASTM C 1071, NFPA 90A, or NFPA 90B; and with NAIMA AH124, "Fibrous Glass Duct Liner Standard."
 - 1. Maximum Thermal Conductivity: 0.27 Btu x in./h x sq. ft. x deg F at 75 deg F mean temperature.
 - 2. Install spacers that position the inner duct at uniform distance from outer duct without compressing insulation.
 - 3. Coat insulation with antimicrobial coating.
 - 4. Cover insulation with polyester film complying with UL 181, Class 1.
- G. Inner Duct: Minimum 0.028-inch solid steel galvanized sheet steel.
- H. Formed-on Transverse Joints (Flanges): Select joint types and fabricate according to SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Figure 1-4, "Traverse (Girth) Joints," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards Metal and Flexible."
- I. Longitudinal Seams: Select seam types and fabricate according to SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Figure 1-5, "Longitudinal Seams Rectangular Ducts," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards Metal and Flexible."

2.3 SINGLE-WALL ROUND DUCTS AND FITTINGS

- A. General Fabrication Requirements: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Chapter 3, "Round, Oval, and Flexible Duct," based on indicated static-pressure class unless otherwise indicated.
 - 1. Manufacturers: Subject to compliance with requirements provide products by one of the following:
 - a. Lindab Inc.
 - b. McGill AirFlow LLC.
 - c. SEMCO Incorporated.
 - d. Sheet Metal Connectors, Inc.
 - e. Spiral Manufacturing Co., Inc.
 - f. Or Approved Equal.
- B. Transverse Joints: Select joint types and fabricate according to SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Figure 3-2, "Transverse Joints Round Duct," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards Metal and Flexible."
 - 1. Transverse Joints in Ducts Larger Than 60 Inches in Diameter: Flanged.

- C. Longitudinal Seams: Select seam types and fabricate according to SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Figure 3-1, "Seams Round Duct and Fittings," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards Metal and Flexible."
 - 1. Fabricate round ducts larger than 90 inches in diameter with butt-welded longitudinal seams.
 - 2. Fabricate flat-oval ducts larger than 72 inches in width (major dimension) with butt-welded longitudinal seams.
- D. Tees and Laterals: Select types and fabricate according to SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Figure 3-4, "90 Degree Tees and Laterals," and Figure 3-5, "Conical Tees," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards Metal and Flexible."

2.4 DOUBLE-WALL ROUND DUCTS AND FITTINGS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - 1. Lindab Inc.
 - 2. McGill AirFlow LLC.
 - 3. SEMCO Incorporated.
 - 4. Sheet Metal Connectors, Inc.
 - 5. Or Approved Equal.
- B. Outer Duct: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Chapter 3, "Round, Oval, and Flexible Duct," based on static-pressure class unless otherwise indicated.
 - 1. Transverse Joints: Select joint types and fabricate according to SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Figure 3-2, "Transverse Joints Round Duct," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards Metal and Flexible."
 - a. Transverse Joints in Ducts Larger Than 60 Inches in Diameter: Flanged.
 - Longitudinal Seams: Select seam types and fabricate according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 3-1, "Seams - Round Duct and Fittings," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."
 - a. Fabricate round ducts larger than 90 inch in diameter with butt-welded longitudinal seams.
 - b. Fabricate flat-oval ducts larger than 72 inches in width (major dimension) with butt-welded longitudinal seams.

- 3. Tees and Laterals: Select types and fabricate according to SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Figure 3-4, "90 Degree Tees and Laterals," and Figure 3-5, "Conical Tees," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards Metal and Flexible."
- C. Inner Duct: Minimum 0.028-inch solid galvanized sheet steel.
- D. Interstitial Insulation: Fibrous-glass liner complying with ASTM C 1071, NFPA 90A, or NFPA 90B; and with NAIMA AH124, "Fibrous Glass Duct Liner Standard."
 - 1. Maximum Thermal Conductivity: 0.27 Btu x in./h x sq. ft. x deg F at 75 deg F mean temperature.
 - 2. Install spacers that position the inner duct at uniform distance from outer duct without compressing insulation.
 - 3. Coat insulation with antimicrobial coating.
 - 4. Cover insulation with polyester film complying with UL 181, Class 1.

2.5 SHEET METAL MATERIALS

- A. General Material Requirements: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible" for acceptable materials, material thicknesses, and duct construction methods unless otherwise indicated. Sheet metal materials shall be free of pitting, seam marks, roller marks, stains, discolorations, and other imperfections.
- B. Galvanized Sheet Steel: Comply with ASTM A 653/A 653M.
 - 1. Galvanized Coating Designation: G90.
 - 2. Finishes for Surfaces Exposed to View: Mill phosphatized.
- C. PVC-Coated, Galvanized Sheet Steel: Comply with ASTM A 653/A 653M.
 - 1. Galvanized Coating Designation: G90.
 - 2. Minimum Thickness for Factory-Applied PVC Coating: 4 mils thick on sheet metal surface of ducts and fittings exposed to corrosive conditions, and minimum 1 mil thick on opposite surface.
 - 3. Coating Materials: Acceptable to authorities having jurisdiction for use on ducts listed and labeled by an NRTL for compliance with UL 181, Class 1.
- D. Carbon-Steel Sheets: Comply with ASTM A 1008/A 1008M, with oiled, matte finish for exposed ducts.
- E. Stainless-Steel Sheets: Comply with ASTM A 480/A 480M, Type 304 or 316, as indicated in the "Duct Schedule" Article; cold rolled, annealed, sheet. Exposed surface finish shall be No. 2B, No. 2D, No. 3, or No. 4 as indicated in the "Duct Schedule" Article.

- F. Aluminum Sheets: Comply with ASTM B 209 Alloy 3003, H14 temper; with mill finish for concealed ducts, and standard, one-side bright finish for duct surfaces exposed to view.
- G. Factory- or Shop-Applied Antimicrobial Coating:
 - 1. Apply to the surface of sheet metal that will form the interior surface of the duct. An untreated clear coating shall be applied to the exterior surface.
 - 2. Antimicrobial compound shall be tested for efficacy by an NRTL and registered by the EPA for use in HVAC systems.
 - 3. Coating containing the antimicrobial compound shall have a hardness of 2H, minimum, when tested according to ASTM D 3363.
 - 4. Surface-Burning Characteristics: Maximum flame-spread index of 25 and maximum smokedeveloped index of 50 when tested according to UL 723; certified by an NRTL.
 - 5. Shop-Applied Coating Color: Black.
 - 6. Antimicrobial coating on sheet metal is not required for duct containing liner treated with antimicrobial coating.
- H. Reinforcement Shapes and Plates: ASTM A 36/A 36M, steel plates, shapes, and bars; black and galvanized.
 - 1. Where black- and galvanized-steel shapes and plates are used to reinforce aluminum ducts, isolate the different metals with butyl rubber, neoprene, or EPDM gasket materials.
- I. Tie Rods: Galvanized steel, 1/4-inch minimum diameter for lengths 36 inches or less; 3/8-inch minimum diameter for lengths longer than 36 inches.

2.6 SEALANT AND GASKETS

- A. General Sealant and Gasket Requirements: Surface-burning characteristics for sealants and gaskets shall be a maximum flame-spread index of 25 and a maximum smoke-developed index of 50 when tested according to UL 723; certified by an NRTL.
- B. Two-Part Tape Sealing System:
 - 1. Tape: Woven cotton fiber impregnated with mineral gypsum and modified acrylic/silicone activator to react exothermically with tape to form hard, durable, airtight seal.
 - 2. Tape Width: 4 inches.
 - 3. Sealant: Modified styrene acrylic.
 - 4. Water resistant.
 - 5. Mold and mildew resistant.
 - 6. Maximum Static-Pressure Class: 10-inch wg, positive and negative.
 - 7. Service: Indoor and outdoor.
 - 8. Service Temperature: Minus 40 to plus 200 deg F.

- 9. Substrate: Compatible with galvanized sheet steel (both PVC coated and bare), stainless steel, or aluminum.
- 10. For indoor applications, use sealant that has a VOC content of 250 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
- C. Water-Based Joint and Seam Sealant:
 - 1. Application Method: Brush on.
 - 2. Solids Content: Minimum 65 percent.
 - 3. Shore A Hardness: Minimum 20.
 - 4. Water resistant.
 - 5. Mold and mildew resistant.
 - 6. VOC: Maximum 75 g/L (less water).
 - 7. Maximum Static-Pressure Class: 10-inch wg, positive and negative.
 - 8. Service: Indoor or outdoor.
 - 9. Substrate: Compatible with galvanized sheet steel (both PVC coated and bare), stainless steel, or aluminum sheets.
- D. Flanged Joint Sealant: Comply with ASTM C 920.
 - 1. General: Single-component, acid-curing, silicone, elastomeric.
 - 2. Type: S.
 - 3. Grade: NS.
 - 4. Class: 25.
 - 5. Use: O.
 - 6. For indoor applications, use sealant that has a VOC content of 250 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
- E. Flange Gaskets: Butyl rubber, neoprene, or EPDM polymer with polyisobutylene plasticizer.
- F. Round Duct Joint O-Ring Seals:
 - 1. Seal shall provide maximum leakage class of 3 cfm/100 sq. ft. at 1-inch wg and shall be rated for 10-inch wg static-pressure class, positive or negative.
 - 2. EPDM O-ring to seal in concave bead in coupling or fitting spigot.
 - 3. Double-lipped, EPDM O-ring seal, mechanically fastened to factory-fabricated couplings and fitting spigots.

2.7 HANGERS AND SUPPORTS

- A. Hanger Rods for Noncorrosive Environments: Cadmium-plated steel rods and nuts.
- B. Hanger Rods for Corrosive Environments: Electrogalvanized, all-thread rods or galvanized rods with threads painted with zinc-chromate primer after installation.

- C. Strap and Rod Sizes: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Table 4-1, "Rectangular Duct Hangers Minimum Size," and Table 4-2, "Minimum Hanger Sizes for Round Duct."
- D. Steel Cables for Galvanized-Steel Ducts: Galvanized steel complying with ASTM A 603.
- E. Steel Cables for Stainless-Steel Ducts: Stainless steel complying with ASTM A 492.
- F. Steel Cable End Connections: Cadmium-plated steel assemblies with brackets, swivel, and bolts designed for duct hanger service; with an automatic-locking and clamping device.
- G. Duct Attachments: Sheet metal screws, blind rivets, or self-tapping metal screws; compatible with duct materials.
- H. Trapeze and Riser Supports:
 - 1. Supports for Galvanized-Steel Ducts: Galvanized-steel shapes and plates.
 - 2. Supports for Stainless-Steel Ducts: Stainless-steel shapes and plates.
 - 3. Supports for Aluminum Ducts: Aluminum or galvanized steel coated with zinc chromate.

2.8 SEISMIC-RESTRAINT DEVICES

- A. Manufacturers: Subject to compliance with requirements provide products by one of the following:
 - 1. Cooper B-Line, Inc.; a division of Cooper Industries.
 - 2. Ductmate Industries, Inc.
 - 3. Hilti Corp.
 - 4. Kinetics Noise Control.
 - 5. Loos & Co.; Cableware Division.
 - 6. Mason Industries.
 - 7. TOLCO; a brand of NIBCO INC.
 - 8. Unistrut Corporation; Tyco International, Ltd.
 - 9. Or Approved Equal.
- B. General Requirements for Restraint Components: Rated strengths, features, and applications shall be as defined in reports by an evaluation service member of the ICC Evaluation Service.
 - 1. Structural Safety Factor: Allowable strength in tension, shear, and pullout force of components shall be at least four times the maximum seismic forces to which they will be subjected.
- C. Channel Support System: Shop- or field-fabricated support assembly made of slotted steel channels rated in tension, compression, and torsion forces and with accessories for

- attachment to braced component at one end and to building structure at the other end. Include matching components and corrosion-resistant coating.
- D. Restraint Cables: ASTM A 492, stainless-steel cables with end connections made of cadmium-plated steel assemblies with brackets, swivel, and bolts designed for restraining cable service; and with an automatic-locking and clamping device or double-cable clips.
- E. Hanger Rod Stiffener: Steel tube or steel slotted-support-system sleeve with internally bolted connections to hanger rod.
- F. Mechanical Anchor Bolts: Drilled-in and stud-wedge or female-wedge type. Select anchor bolts with strength required for anchor and as tested according to ASTM E 488.

PART 3 - EXECUTION

3.1 DUCT INSTALLATION

- A. Drawing plans, schematics, and diagrams indicate general location and arrangement of duct system. Indicated duct locations, configurations, and arrangements were used to size ducts and calculate friction loss for air-handling equipment sizing and for other design considerations. Install duct systems as indicated unless deviations to layout are approved on Shop Drawings and Coordination Drawings.
- B. Install ducts according to SMACNA's "HVAC Duct Construction Standards Metal and Flexible" unless otherwise indicated.
- C. Install round ducts in maximum practical lengths.
- D. Install ducts with fewest possible joints.
- E. Install factory- or shop-fabricated fittings for changes in direction, size, and shape and for branch connections.
- F. Unless otherwise indicated, install ducts vertically and horizontally, and parallel and perpendicular to building lines.
- G. Provide an extra 100 lbs of ductwork to accommodate ductwork revisions required to resolve interferences or as directed by the Engineer.
- H. Install ducts close to walls, overhead construction, columns, and other structural and permanent enclosure elements of building.
- I. Install ducts with a clearance of 1 inch, plus allowance for insulation thickness.

- J. Route ducts to avoid passing through transformer vaults and electrical equipment rooms and enclosures.
- K. Where ducts pass through non-fire-rated interior partitions and exterior walls and are exposed to view, cover the opening between the partition and duct or duct insulation with sheet metal flanges of same metal thickness as the duct. Overlap openings on four sides by at least 1-1/2 inches.
- L. Where ducts pass through fire-rated interior partitions and exterior walls, install fire dampers. Comply with requirements in Division 23 Section "Air Duct Accessories" for fire and smoke dampers.
- M. Protect duct interiors from moisture, construction debris and dust, and other foreign materials. Comply with SMACNA's "Duct Cleanliness for New Construction Guidelines."

3.2 INSTALLATION OF EXPOSED DUCTWORK

- A. Protect ducts exposed in finished spaces from being dented, scratched, or damaged.
- B. Trim duct sealants flush with metal. Create a smooth and uniform exposed bead. Do not use two-part tape sealing system.
- C. Grind welds to provide smooth surface free of burrs, sharp edges, and weld splatter. When welding stainless steel with a No. 3 or 4 finish, grind the welds flush, polish the exposed welds, and treat the welds to remove discoloration caused by welding.
- D. Maintain consistency, symmetry, and uniformity in the arrangement and fabrication of fittings, hangers and supports, duct accessories, and air outlets.
- E. Repair or replace damaged sections and finished work that does not comply with these requirements.

3.3 DUCT SEALING

- A. Seal ducts for duct static-pressure, seal classes, and leakage classes specified in "Duct Schedule" Article according to SMACNA's "HVAC Duct Construction Standards Metal and Flexible."
- B. Seal ducts to the following seal classes according to SMACNA's "HVAC Duct Construction Standards Metal and Flexible":
 - 1. Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible."
 - 2. Outdoor, Supply-Air Ducts: Seal Class A.

- 3. Outdoor, Exhaust Ducts: Seal Class C.
- 4. Outdoor, Return-Air Ducts: Seal Class C.
- 5. Unconditioned Space, Supply-Air Ducts in Pressure Classes 2-Inch wg and Lower: Seal Class B.
- 6. Unconditioned Space, Supply-Air Ducts in Pressure Classes Higher Than 2-Inch wg: Seal Class A.
- 7. Unconditioned Space, Exhaust Ducts: Seal Class C.
- 8. Unconditioned Space, Return-Air Ducts: Seal Class B.
- 9. Conditioned Space, Supply-Air Ducts in Pressure Classes 2-Inch wg and Lower: Seal Class C.
- 10. Conditioned Space, Supply-Air Ducts in Pressure Classes Higher Than 2-Inch wg: Seal Class B.
- 11. Conditioned Space, Exhaust Ducts: Seal Class B.
- 12. Conditioned Space, Return-Air Ducts: Seal Class C.

3.4 HANGER AND SUPPORT INSTALLATION

- A. Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Chapter 4, "Hangers and Supports."
- B. Building Attachments: Concrete inserts, powder-actuated fasteners, or structural-steel fasteners appropriate for construction materials to which hangers are being attached.
 - 1. Where practical, install concrete inserts before placing concrete.
 - 2. Install powder-actuated concrete fasteners after concrete is placed and completely cured.
 - 3. Use powder-actuated concrete fasteners for standard-weight aggregate concretes or for slabs more than 4 inches thick.
 - 4. Do not use powder-actuated concrete fasteners for lightweight-aggregate concretes or for slabs less than 4 inches thick.
 - 5. Do not use powder-actuated concrete fasteners for seismic restraints.
- C. Hanger Spacing: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Table 4-1, "Rectangular Duct Hangers Minimum Size," and Table 4-2, "Minimum Hanger Sizes for Round Duct," for maximum hanger spacing; install hangers and supports within 24 inches of each elbow and within 48 inches of each branch intersection.
- D. Hangers Exposed to View: Threaded rod and angle or channel supports.
- E. Support vertical ducts with steel angles or channel secured to the sides of the duct with welds, bolts, sheet metal screws, or blind rivets; support at each floor and at a maximum interval of 16 feet.

F. Install upper attachments to structures. Select and size upper attachments with pull-out, tension, and shear capacities appropriate for supported loads and building materials where used.

3.5 SEISMIC-RESTRAINT-DEVICE INSTALLATION

- A. Install ducts with hangers and braces designed to support the duct and to restrain against seismic forces required by applicable building codes. Comply with SMACNA's "Seismic Restraint Manual: Guidelines for Mechanical Systems." ASCE/SEI 7.
 - 1. Space lateral supports a maximum of 40 feet o.c., and longitudinal supports a maximum of 80 feet o.c.
 - 2. Brace a change of direction longer than 12 feet.
- B. Select seismic-restraint devices with capacities adequate to carry present and future static and seismic loads.
- C. Install cables so they do not bend across edges of adjacent equipment or building structure.
- D. Install cable restraints on ducts that are suspended with vibration isolators.
- E. Install seismic-restraint devices using methods approved by an agency acceptable to authorities having jurisdiction.
- F. Attachment to Structure: If specific attachment is not indicated, anchor bracing and restraints to structure, to flanges of beams, to upper truss chords of bar joists, or to concrete members.
- G. Drilling for and Setting Anchors:
 - 1. Identify position of reinforcing steel and other embedded items prior to drilling holes for anchors. Do not damage existing reinforcement or embedded items during drilling. Notify the Architect if reinforcing steel or other embedded items are encountered during drilling. Locate and avoid prestressed tendons, electrical and telecommunications conduit, and gas lines.
 - 2. Do not drill holes in concrete or masonry until concrete, mortar, or grout has achieved full design strength.
 - 3. Wedge Anchors: Protect threads from damage during anchor installation. Heavy-duty sleeve anchors shall be installed with sleeve fully engaged in the structural element to which anchor is to be fastened.
 - 4. Set anchors to manufacturer's recommended torque, using a torque wrench.
 - 5. Install zinc-coated steel anchors for interior applications and stainless-steel anchors for applications exposed to weather.

3.6 CONNECTIONS

- A. Make connections to equipment with flexible connectors complying with Division 23 Section "Air Duct Accessories."
- B. Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible" for branch, outlet and inlet, and terminal unit connections.

3.7 PAINTING

A. Paint exterior of exposed ductwork with color as selected by the architect. Paint interior of metal ducts that are visible through registers and grilles. Apply one coat of flat, black, latex paint over a compatible galvanized-steel primer. Paint materials and application requirements are specified in Division 09 painting Sections.

3.8 FIELD QUALITY CONTROL

- A. Perform tests and inspections.
- B. Leakage Tests:
 - 1. Comply with SMACNA's "HVAC Air Duct Leakage Test Manual." Submit a test report for each test.
 - 2. Test the following systems:
 - a. Supply Ducts with a Pressure Class of 2-Inch wg or Higher: Test duct sections totaling no less than 100 percent of total installed duct area for each designated pressure class.
 - b. Return Ducts with a Pressure Class of 2-Inch wg or Higher: Test duct sections totaling no less than 100 percent of total installed duct area for each designated pressure class.
 - c. Exhaust Ducts with a Pressure Class of 2-Inch wg or Higher: Test duct sections totaling no less than 100 percent of total installed duct area for each designated pressure class.
 - d. Outdoor Air Ducts with a Pressure Class of 2-Inch wg or Higher: Test duct sections totaling no less than 100 percent of total installed duct area for each designated pressure class
 - 3. Disassemble, reassemble, and seal segments of systems to accommodate leakage testing and for compliance with test requirements.
 - 4. Test for leaks before applying external insulation.
 - 5. Conduct tests at static pressures equal to maximum design pressure of system or section being tested. If static-pressure classes are not indicated, test system at maximum system design pressure. Do not pressurize systems above maximum design operating pressure.
 - 6. Give seven days' advance notice for testing.

- C. Duct System Cleanliness Tests:
 - 1. Visually inspect duct system to ensure that no visible contaminants are present.
 - 2. Test sections of metal duct system, chosen randomly by Owner, for cleanliness according to "Vacuum Test" in NADCA ACR, "Assessment, Cleaning and Restoration of HVAC Systems."
 - a. Acceptable Cleanliness Level: Net weight of debris collected on the filter media shall not exceed 0.75 mg/100 sq. cm.
- D. Duct system will be considered defective if it does not pass tests and inspections.
- E. Prepare test and inspection reports.

3.9 DUCT CLEANING

- A. Clean new and existing duct system(s) before testing, adjusting, and balancing.
- B. Use service openings for entry and inspection.
 - 1. Create new openings and install access panels appropriate for duct static-pressure class if required for cleaning access. Provide insulated panels for insulated or lined duct. Patch insulation and liner as recommended by duct liner manufacturer. Comply with Division 23 Section "Air Duct Accessories" for access panels and doors.
 - 2. Disconnect and reconnect flexible ducts as needed for cleaning and inspection.
 - 3. Remove and reinstall ceiling to gain access during the cleaning process.
- C. Particulate Collection and Odor Control:
 - 1. When venting vacuuming system inside the building, use HEPA filtration with 99.97 percent collection efficiency for 0.3-micron-size (or larger) particles.
 - 2. When venting vacuuming system to outdoors, use filter to collect debris removed from HVAC system, and locate exhaust downwind and away from air intakes and other points of entry into building.
- D. Clean the following components by removing surface contaminants and deposits:
 - 1. Air outlets and inlets (registers, grilles, and diffusers).
 - 2. Supply, return, and exhaust fans including fan housings, plenums (except ceiling supply and return plenums), scrolls, blades or vanes, shafts, baffles, dampers, and drive assemblies.
 - 3. Air-handling unit internal surfaces and components including mixing box, coil section, air wash systems, spray eliminators, condensate drain pans, humidifiers and dehumidifiers, filters and filter sections, and condensate collectors and drains.
 - 4. Coils and related components.
 - 5. Return-air ducts, dampers, actuators, and turning vanes except in ceiling plenums and mechanical equipment rooms.
 - 6. Supply-air ducts, dampers, actuators, and turning vanes.
 - 7. Dedicated exhaust and ventilation components and makeup air systems.

E. Mechanical Cleaning Methodology:

- 1. Clean metal duct systems using mechanical cleaning methods that extract contaminants from within duct systems and remove contaminants from building.
- 2. Use vacuum-collection devices that are operated continuously during cleaning. Connect vacuum device to downstream end of duct sections so areas being cleaned are under negative pressure.
- 3. Use mechanical agitation to dislodge debris adhered to interior duct surfaces without damaging integrity of metal ducts, duct liner, or duct accessories.
- 4. Clean fibrous-glass duct liner with HEPA vacuuming equipment; do not permit duct liner to get wet. Replace fibrous-glass duct liner that is damaged, deteriorated, or delaminated or that has friable material, mold, or fungus growth.
- 5. Clean coils and coil drain pans according to NADCA 1992. Keep drain pan operational. Rinse coils with clean water to remove latent residues and cleaning materials; comb and straighten fins.
- 6. Provide drainage and cleanup for wash-down procedures.
- 7. Antimicrobial Agents and Coatings: Apply EPA-registered antimicrobial agents if fungus is present. Apply antimicrobial agents according to manufacturer's written instructions after removal of surface deposits and debris.

3.10 START UP

A. Air Balance: Comply with requirements in Division 23 Section "Testing, Adjusting, and Balancing for HVAC."

3.11 DUCT SCHEDULE

- A. Fabricate ducts with galvanized sheet steel except as otherwise indicated.
- B. All exposed round ductwork as shown on the contract drawings shall be double wall insulated spiral type. Coordinate finish color with Architect.
- C. Supply Ducts:
 - 1. Ducts Connected to Fan Coil Units, Furnaces, Heat Pumps, and Terminal Units:
 - a. Pressure Class: Positive 3-inch wg.
 - b. Minimum SMACNA Seal Class: C.
 - c. SMACNA Leakage Class for Rectangular: 6.
 - d. SMACNA Leakage Class for Round and Flat Oval: 3.
 - 2. Ducts Connected to Constant-Volume Air-Handling Units:
 - a. Pressure Class: Positive 3-inch wg.
 - b. Minimum SMACNA Seal Class: C.
 - c. SMACNA Leakage Class for Rectangular: 6.
 - d. SMACNA Leakage Class for Round and Flat Oval: 3.

D. Return Ducts:

- 1. Ducts Connected to Fan Coil Units, Furnaces, Heat Pumps, and Terminal Units:
 - a. Pressure Class: Positive or negative 2-inch wg.
 - b. Minimum SMACNA Seal Class: C.
 - c. SMACNA Leakage Class for Rectangular: 6.
 - d. SMACNA Leakage Class for Round and Flat Oval: 3.
- 2. Ducts Connected to Air-Handling Units:
 - a. Pressure Class: Positive or negative 2-inch wg.
 - b. Minimum SMACNA Seal Class: C.
 - c. SMACNA Leakage Class for Rectangular: 6.
 - d. SMACNA Leakage Class for Round and Flat Oval: 3.

E. Exhaust Ducts:

- 1. Ducts Connected to Fans Exhausting (ASHRAE 62.1, Class 1 and 2) Air:
 - a. Pressure Class: Negative 2-inch wg.
 - b. Minimum SMACNA Seal Class: C if negative pressure, and A if positive pressure.
 - c. SMACNA Leakage Class for Rectangular: 6.
 - d. SMACNA Leakage Class for Round and Flat Oval: 3.
- 2. Ducts Connected to Air-Handling Units:
 - a. Pressure Class: Positive or negative 2-inch wg.
 - b. Minimum SMACNA Seal Class: C if negative pressure, and A if positive pressure.
 - c. SMACNA Leakage Class for Rectangular: 6.
 - d. SMACNA Leakage Class for Round and Flat Oval: 3.
- F. Outdoor-Air (Not Filtered, Heated, or Cooled) Ducts:
 - 1. Ducts Connected to Fan Coil Units, Furnaces, Heat Pumps, and Terminal Units:
 - a. Pressure Class: Positive or negative 2-inch wg.
 - b. Minimum SMACNA Seal Class: A.
 - c. SMACNA Leakage Class for Rectangular: 12.
 - d. SMACNA Leakage Class for Round and Flat Oval: 12.
 - 2. Ducts Connected to Air-Handling Units:
 - a. Pressure Class: Positive or negative 2-inch wg.
 - b. Minimum SMACNA Seal Class: A.
 - c. SMACNA Leakage Class for Rectangular: 12.
 - d. SMACNA Leakage Class for Round and Flat Oval: 12.
 - 3. Ducts Connected to Equipment Not Listed Above:
 - a. Pressure Class: Positive or negative 2-inch wg.
 - b. Minimum SMACNA Seal Class: A.
 - c. SMACNA Leakage Class for Rectangular: 12.
 - d. SMACNA Leakage Class for Round and Flat Oval: 12.
- G. Intermediate Reinforcement:
 - 1. Galvanized-Steel Ducts: Galvanized steel.
 - 2. PVC-Coated Ducts:

- a. Exposed to Airstream: Match duct material.
- b. Not Exposed to Airstream: Galvanized.
- 3. Stainless-Steel Ducts:
 - a. Exposed to Airstream: Match duct material.
 - b. Not Exposed to Airstream: Match duct material.
- 4. Aluminum Ducts: Aluminum.
- H. Double-Wall Duct Interstitial Insulation:
 - 1. Supply Air Ducts: 1 inch thick.
 - 2. Return Air Ducts: 1 inch thick.
 - 3. Exhaust Air Ducts: 1 inch thick.
- I. Elbow Configuration:
 - 1. Rectangular Duct: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Figure 2-2, "Rectangular Elbows."
 - a. Velocity 1000 fpm or Lower:
 - 1) Radius Type RE 1 with minimum 0.5 radius-to-diameter ratio.
 - 2) Mitered Type RE 4 without vanes.
 - b. Velocity 1000 to 1500 fpm:
 - 1) Radius Type RE 1 with minimum 1.0 radius-to-diameter ratio.
 - 2) Radius Type RE 3 with minimum 0.5 radius-to-diameter ratio and two vanes.
 - 3) Mitered Type RE 2 with vanes complying with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Figure 2-3, "Vanes and Vane Runners," and Figure 2-4, "Vane Support in Elbows."
 - c. Velocity 1500 fpm or Higher:
 - 1) Radius Type RE 1 with minimum 1.5 radius-to-diameter ratio.
 - 2) Radius Type RE 3 with minimum 1.0 radius-to-diameter ratio and two vanes.
 - 3) Mitered Type RE 2 with vanes complying with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Figure 2-3, "Vanes and Vane Runners," and Figure 2-4, "Vane Support in Elbows."
 - 2. Rectangular Duct: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Figure 2-2, "Rectangular Elbows."
 - a. Radius Type RE 1 with minimum 1.5 radius-to-diameter ratio.
 - b. Radius Type RE 3 with minimum 1.0 radius-to-diameter ratio and two vanes.
 - c. Mitered Type RE 2 with vanes complying with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Figure 2-3, "Vanes and Vane Runners," and Figure 2-4, "Vane Support in Elbows."
 - 3. Round Duct: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Figure 3-3, "Round Duct Elbows."

- a. Minimum Radius-to-Diameter Ratio and Elbow Segments: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Table 3-1, "Mitered Elbows." Elbows with less than 90-degree change of direction have proportionately fewer segments.
 - 1) Velocity 1000 fpm or Lower: 0.5 radius-to-diameter ratio and three segments for 90-degree elbow.
 - 2) Velocity 1000 to 1500 fpm: 1.0 radius-to-diameter ratio and four segments for 90-degree elbow.
 - 3) Velocity 1500 fpm or Higher: 1.5 radius-to-diameter ratio and five segments for 90-degree elbow.
 - 4) Radius-to Diameter Ratio: 1.5.
- b. Round Elbows, 12 Inches and Smaller in Diameter: Stamped or pleated.
- c. Round Elbows, 14 Inches and Larger in Diameter: Welded.

J. Branch Configuration:

- 1. Rectangular Duct: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Figure 2-6, "Branch Connections."
 - a. Rectangular Main to Rectangular Branch: 45-degree entry.
 - b. Rectangular Main to Round Branch: Spin in.
- 2. Round and Flat Oval: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Figure 3-4, "90 Degree Tees and Laterals," and Figure 3-5, "Conical Tees." Saddle taps are permitted in existing duct.
 - a. Velocity 1000 fpm or Lower: 90-degree tap.
 - b. Velocity 1000 to 1500 fpm: Conical tap.
 - c. Velocity 1500 fpm or Higher: 45-degree lateral.

END OF SECTION 233113

SECTION 233300

AIR DUCT ACCESSORIES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

- 1. Backdraft and pressure relief dampers.
- 2. Barometric relief dampers.
- 3. Manual volume dampers.
- 4. Control dampers.
- 5. Fire dampers.
- 6. Ceiling dampers.
- 7. Smoke dampers.
- 8. Combination fire and smoke dampers.
- 9. Corridor dampers.
- 10. Flange connectors.
- 11. Duct silencers.
- 12. Turning vanes.
- 13. Remote damper operators.
- 14. Duct-mounted access doors.
- 15. Flexible connectors.
- 16. Flexible ducts.
- 17. Duct security bars.
- 18. Duct accessory hardware.

B. Related Sections:

- 1. Division 23 Section "HVAC Power Ventilators" for roof-mounted ventilator caps.
- 2. Division 28 Section "Fire Detection and Alarm" for duct-mounted fire and smoke detectors.

1.3 SUBMITTALS

A. Product Data: For each type of product indicated.

- 1. For duct silencers, include pressure drop and dynamic insertion loss data. Include breakout noise calculations for high transmission loss casings.
- B. Shop Drawings: For duct accessories. Include plans, elevations, sections, details, and attachments to other work.
 - 1. Detail duct accessories fabrication and installation in ducts and other construction. Include dimensions, weights, loads, and required clearances, and method of field assembly into duct systems and other construction. Include the following:
 - a. Special fittings.
 - b. Manual volume damper installations.
 - c. Control damper installations.
 - d. Fire-damper, smoke-damper, combination fire- and smoke-damper, ceiling, and corridor damper installations, including sleeves; and duct-mounted access doors and remote damper operators.
 - e. Duct security bars.
 - f. Wiring Diagrams: For power, signal, and control wiring.
- C. Coordination Drawings: Reflected ceiling plans, drawn to scale, on which ceiling-mounted access panels and access doors required for access to duct accessories are shown and coordinated with each other, using input from Installers of the items involved.
- D. Source quality-control reports.
- E. Operation and Maintenance Data: For air duct accessories to include in operation and maintenance manuals.

1.4 QUALITY ASSURANCE

- A. Comply with NFPA 90A, "Installation of Air Conditioning and Ventilating Systems," and with NFPA 90B, "Installation of Warm Air Heating and Air Conditioning Systems."
- B. Comply with AMCA 500-D testing for damper rating.

1.5 EXTRA MATERIALS

- A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 - 1. Fusible Links: Furnish quantity equal to 10 percent of amount installed.

PART 2 - PRODUCTS

2.1 MATERIALS

- A. Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible" for acceptable materials, material thicknesses, and duct construction methods unless otherwise indicated. Sheet metal materials shall be free of pitting, seam marks, roller marks, stains, discolorations, and other imperfections.
- B. Galvanized Sheet Steel: Comply with ASTM A 653/A 653M.
 - 1. Galvanized Coating Designation: G90.
 - 2. Exposed-Surface Finish: Mill phosphatized.
- C. Stainless-Steel Sheets: Comply with ASTM A 480/A 480M, Type 304, and having a No. 2 finish for concealed ducts and a polished finish for exposed ducts.
- D. Aluminum Sheets: Comply with ASTM B 209, Alloy 3003, Temper H14; with mill finish for concealed ducts and standard, 1-side bright finish for exposed ducts.
- E. Extruded Aluminum: Comply with ASTM B 221, Alloy 6063, Temper T6.
- F. Reinforcement Shapes and Plates: Galvanized-steel reinforcement where installed on galvanized sheet metal ducts; compatible materials for aluminum and stainless-steel ducts.
- G. Tie Rods: Galvanized steel, 1/4-inch minimum diameter for lengths 36 inches or less; 3/8-inch minimum diameter for lengths longer than 36 inches.

2.2 BACKDRAFT AND PRESSURE RELIEF DAMPERS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following manufacturers:
 - 1. Air Balance Inc.; a division of Mestek, Inc.
 - 2. American Warming and Ventilating; a division of Mestek, Inc.
 - 3. Cesco Products; a division of Mestek, Inc.
 - 4. Duro Dyne Inc.
 - 5. Greenheck Fan Corporation.
 - 6. Lloyd Industries, Inc.
 - 7. Nailor Industries Inc.
 - 8. NCA Manufacturing, Inc.
 - 9. Pottorff; a division of PCI Industries, Inc.
 - 10. Ruskin Company.
 - 11. SEMCO Incorporated.
 - 12. Vent Products Company, Inc.

- 13. Or Approved Equal.
- B. Description: Gravity balanced.
- C. Maximum Air Velocity: 2200 fpm.
- D. Maximum System Pressure: 2-inch wg.
- E. Frame: 0.052-inch- thick, galvanized sheet steel with welded corners and mounting flange.
- F. Blades: Multiple single-piece blades, center-pivoted, maximum 6-inch width, 0.025-inch- thick, roll-formed aluminum with sealed edges.
- G. Blade Action: Parallel.
- H. Blade Seals: Neoprene, mechanically locked.
- I. Blade Axles:
 - 1. Material: Plated steel.
 - 2. Diameter: 0.20 inch.
- J. Tie Bars and Brackets: Galvanized steel.
- K. Return Spring: Adjustable tension.
- L. Bearings: Steel ball or synthetic pivot bushings.
- M. Accessories:
 - 1. Adjustment device to permit setting for varying differential static pressure.
 - 2. Counterweights and spring-assist kits for vertical airflow installations.
 - 3. Electric actuators.
 - 4. Chain pulls.
 - 5. Screen Mounting: Front mounted in sleeve.
 - a. Sleeve Thickness: 20-gage minimum.
 - b. Sleeve Length: 6 inches minimum.
 - 6. Screen Material: Galvanized steel or Aluminum.
 - 7. Screen Type: Insect.
 - 8. 90-degree stops.

2.3 BAROMETRIC RELIEF DAMPERS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following manufacturers:
 - 1. Air Balance Inc.; a division of Mestek, Inc.
 - 2. American Warming and Ventilating; a division of Mestek, Inc.
 - 3. Cesco Products; a division of Mestek, Inc.
 - 4. Duro Dyne Inc.
 - 5. Greenheck Fan Corporation.
 - 6. Lloyd Industries, Inc.
 - 7. Nailor Industries Inc.
 - 8. NCA Manufacturing, Inc.
 - 9. Pottorff; a division of PCI Industries, Inc.
 - 10. Ruskin Company.
 - 11. SEMCO Incorporated.
 - 12. Vent Products Company, Inc.
 - 13. Or Approved Equal.
- B. Suitable for horizontal or vertical mounting.
- C. Maximum Air Velocity: 2200 fpm.
- D. Maximum System Pressure: 2-inch wg.
- E. Frame: 0.064-inch- thick, galvanized sheet steel, with welded corners and mounting flange.
- F. Blades:
 - 1. Multiple, 0.025-inch- thick, roll-formed aluminum.
 - 2. Maximum Width: 6 inches.
 - 3. Action: Parallel.
 - 4. Balance: Gravity.
 - 5. Eccentrically pivoted.
- G. Blade Seals: Neoprene.
- H. Blade Axles: Galvanized steel.
- I. Tie Bars and Brackets:
 - 1. Material: Galvanized steel.
 - 2. Rattle free with 90-degree stop.
- J. Return Spring: Adjustable tension.
- K. Bearings: Synthetic or Stainless steel.

L. Accessories:

- 1. Flange on intake.
- 2. Adjustment device to permit setting for varying differential static pressures.

2.4 MANUAL VOLUME DAMPERS

- A. Low-Leakage, Steel, Manual Volume Dampers:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following manufacturers:
 - a. Air Balance Inc.; a division of Mestek, Inc.
 - b. American Warming and Ventilating; a division of Mestek, Inc.
 - c. Flexmaster U.S.A., Inc.
 - d. McGill AirFlow LLC.
 - e. METALAIRE, Inc.
 - f. Nailor Industries Inc.
 - g. Pottorff; a division of PCI Industries, Inc.
 - h. Ruskin Company.
 - i. Trox USA Inc.
 - j. Vent Products Company, Inc.
 - k. Or Approved Equal.
 - 2. Low-leakage rating, with linkage outside airstream, and bearing AMCA's Certified Ratings Seal for both air performance and air leakage.
 - 3. Suitable for horizontal or vertical applications.
 - 4. Frames:
 - a. Hat, U, Angle shaped.
 - b. Galvanized-steel channels, 0.064 inch thick.
 - c. Mitered and welded corners.
 - d. Flanges for attaching to walls and flangeless frames for installing in ducts.
 - 5. Blades:
 - a. Multiple or single blade.
 - b. Parallel- or opposed-blade design.
 - c. Stiffen damper blades for stability.
 - d. Galvanized, roll-formed steel, 0.064 inch thick.
 - 6. Blade Axles: Galvanized steel.
 - 7. Bearings:
 - a. Oil-impregnated bronze, Molded synthetic, Stainless-steel sleeve.
 - b. Dampers in ducts with pressure classes of 3-inch wg or less shall have axles full length of damper blades and bearings at both ends of operating shaft.
 - 8. Blade Seals: Vinyl or Neoprene.
 - 9. Jamb Seals: Cambered aluminum.
 - 10. Tie Bars and Brackets: Galvanized steel.
 - 11. Accessories:

- a. Include locking device to hold single-blade dampers in a fixed position without vibration.
- B. Low-Leakage, Aluminum, Manual Volume Dampers:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following manufacturers:
 - a. Air Balance Inc.; a division of Mestek, Inc.
 - b. American Warming and Ventilating; a division of Mestek, Inc.
 - c. Flexmaster U.S.A., Inc.
 - d. McGill AirFlow LLC.
 - e. METALAIRE, Inc.
 - f. Nailor Industries Inc.
 - g. Pottorff; a division of PCI Industries, Inc.
 - h. Ruskin Company.
 - i. Trox USA Inc.
 - j. Vent Products Company, Inc.
 - k. Or Approved Equal.
 - 2. Low-leakage rating, with linkage outside airstream, and bearing AMCA's Certified Ratings Seal for both air performance and air leakage.
 - 3. Suitable for horizontal or vertical applications.
 - 4. Frames: Hat, U, Angle-shaped, 0.10-inch- thick, aluminum sheet channels; frames with flanges for attaching to walls and flangeless frames for installing in ducts.
 - 5. Blades:
 - a. Multiple or single blade.
 - b. Parallel- or opposed-blade design.
 - c. Roll-Formed Aluminum Blades: 0.10-inch- thick aluminum sheet.
 - d. Extruded-Aluminum Blades: 0.050-inch- thick extruded aluminum.
 - 6. Blade Axles: Stainless steel.
 - 7. Bearings:
 - a. Oil-impregnated bronze, Molded synthetic, Stainless-steel sleeve.
 - b. Dampers in ducts with pressure classes of 3-inch wg or less shall have axles full length of damper blades and bearings at both ends of operating shaft.
 - 8. Blade Seals: Vinyl or Neoprene.
 - 9. Jamb Seals: Cambered aluminum.
 - 10. Tie Bars and Brackets: Aluminum.
 - 11. Accessories:
 - a. Include locking device to hold single-blade dampers in a fixed position without vibration.

C. Jackshaft:

- 1. Size: 1-inch diameter.
- 2. Material: Galvanized-steel pipe rotating within pipe-bearing assembly mounted on supports at each mullion and at each end of multiple-damper assemblies.

3. Length and Number of Mountings: As required to connect linkage of each damper in multiple-damper assembly.

D. Damper Hardware:

- 1. Zinc-plated, die-cast core with dial and handle made of 3/32-inch- thick zinc-plated steel, and a 3/4-inch hexagon locking nut.
- 2. Include center hole to suit damper operating-rod size.
- 3. Include elevated platform for insulated duct mounting.

2.5 CONTROL DAMPERS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following manufacturers:
 - 1. American Warming and Ventilating; a division of Mestek, Inc.
 - 2. Arrow United Industries; a division of Mestek, Inc.
 - 3. Cesco Products; a division of Mestek, Inc.
 - 4. Duro Dyne Inc.
 - 5. Flexmaster U.S.A., Inc.
 - 6. Greenheck Fan Corporation.
 - 7. Lloyd Industries, Inc.
 - 8. M&I Air Systems Engineering; Division of M&I Heat Transfer Products Ltd.
 - 9. McGill AirFlow LLC.
 - 10. METALAIRE, Inc.
 - 11. Metal Form Manufacturing, Inc.
 - 12. Nailor Industries Inc.
 - 13. NCA Manufacturing, Inc.
 - 14. Ruskin Company.
 - 15. Vent Products Company, Inc.
 - 16. Young Regulator Company.
 - 17. Or Approved Equal.
- B. Low-leakage rating, with linkage outside airstream, and bearing AMCA's Certified Ratings Seal for both air performance and air leakage.

C. Frames:

- 1. Hat, U, Angle] shaped.
- 2. Galvanized-steel channels, 0.064 inch thick.
- 3. Mitered and welded corners.

D. Blades:

- 1. Multiple blade with maximum blade width of 8 inches.
- 2. Parallel- and opposed-blade design.
- 3. Galvanized steel.
- 4. 0.064 inch thick.

- 5. Blade Edging: Closed-cell neoprene edging.
- E. Blade Axles: 1/2-inch- diameter; galvanized steel; blade-linkage hardware of zincplated steel and brass; ends sealed against blade bearings.
 - 1. Operating Temperature Range: From minus 40 to plus 200 deg F.

F. Bearings:

- 1. Oil-impregnated bronze, Molded synthetic or Stainless-steel sleeve.
- 2. Dampers in ducts with pressure classes of 3-inch wg or less shall have axles full length of damper blades and bearings at both ends of operating shaft.
- 3. Thrust bearings at each end of every blade.

2.6 FIRE DAMPERS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following manufacturers:
 - 1. Air Balance Inc.; a division of Mestek, Inc.
 - 2. Arrow United Industries; a division of Mestek, Inc.
 - 3. Cesco Products; a division of Mestek, Inc.
 - 4. Greenheck Fan Corporation.
 - 5. McGill AirFlow LLC.
 - 6. METALAIRE, Inc.
 - 7. Nailor Industries Inc.
 - 8. NCA Manufacturing, Inc.
 - 9. PHL, Inc.
 - 10. Pottorff; a division of PCI Industries, Inc.
 - 11. Prefco; Perfect Air Control, Inc.
 - 12. Ruskin Company.
 - 13. Vent Products Company, Inc.
 - 14. Ward Industries, Inc.; a division of Hart & Cooley, Inc.
 - 15. Or Approved Equal.
- B. Type: Static; rated and labeled according to UL 555 by an NRTL.
- C. Fire Rating: 1-1/2 and 3 hours.
- D. Frame: Curtain type with blades outside airstream; fabricated with roll-formed, 0.034-inch-thick galvanized steel; with mitered and interlocking corners.
- E. Mounting Sleeve: Factory- or field-installed, galvanized sheet steel.
 - 1. Minimum Thickness: 0.052 or 0.138 inch thick, as indicated, and of length to suit application.

- 2. Exception: Omit sleeve where damper-frame width permits direct attachment of perimeter mounting angles on each side of wall or floor; thickness of damper frame must comply with sleeve requirements.
- F. Mounting Orientation: Vertical or horizontal as indicated.
- G. Blades: Roll-formed, interlocking, 0.034-inch- thick, galvanized sheet steel. In place of interlocking blades, use full-length, 0.034-inch- thick, galvanized-steel blade connectors.
- H. Horizontal Dampers: Include blade lock and stainless-steel closure spring.
- I. Heat-Responsive Device: Replaceable, 165 deg F rated, fusible links.

2.7 SMOKE DAMPERS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following manufacturers:
 - 1. Air Balance Inc.; a division of Mestek, Inc.
 - 2. Cesco Products; a division of Mestek, Inc.
 - 3. Greenheck Fan Corporation.
 - 4. Nailor Industries Inc.
 - 5. PHL, Inc.
 - 6. Ruskin Company.
 - 7. Or Approved Equal.
- B. General Requirements: Label according to UL 555S by an NRTL.
- C. Smoke Detector: Integral, factory wired for single-point connection.
- D. Frame: Curtain type with blades outside airstream; fabricated with roll-formed, 0.034-inch-thick galvanized steel; with mitered and interlocking corners.
- E. Blades: Roll-formed, horizontal, interlocking, 0.034-inch- thick, galvanized sheet steel. In place of interlocking blades, use full-length, 0.034-inch- thick, galvanized-steel blade connectors.
- F. Leakage: Class I.
- G. Rated pressure and velocity to exceed design airflow conditions.
- H. Mounting Sleeve: Factory-installed, 0.052-inch- thick, galvanized sheet steel; length to suit wall or floor application with factory-furnished silicone calking.
- I. Damper Motors: Modulating or two-position action.

- J. Comply with NEMA designation, temperature rating, service factor, enclosure type, and efficiency requirements for motors specified in Division 23 Section "Common Motor Requirements for HVAC Equipment."
 - 1. Motor Sizes: Minimum size as indicated. If not indicated, large enough so driven load will not require motor to operate in service factor range above 1.0.
 - 2. Controllers, Electrical Devices, and Wiring: Comply with requirements for electrical devices and connections specified in Division 23 Section "Instrumentation and Control for HVAC." Division 26 Sections.
 - 3. Permanent-Split-Capacitor or Shaded-Pole Motors: With oil-immersed and sealed gear trains.
 - 4. Spring-Return Motors: Equip with an integral spiral-spring mechanism where indicated. Enclose entire spring mechanism in a removable housing designed for service or adjustments. Size for running torque rating of 150 in. x lbf and breakaway torque rating of 150 in. x lbf.
 - 5. Outdoor Motors and Motors in Outdoor-Air Intakes: Equip with O-ring gaskets designed to make motors weatherproof. Equip motors with internal heaters to permit normal operation at minus 40 deg F.
 - 6. Non-spring-Return Motors: For dampers larger than 25 sq. ft., size motor for running torque rating of 150 in. x lbf and breakaway torque rating of 300 in. x lbf.
 - 7. Electrical Connection: 115 V, single phase, 60 Hz.

K. Accessories:

- 1. Auxiliary switches for signaling fan control or position indication.
- 2. Momentary test switch, remote mounted.

2.8 FLANGE CONNECTORS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following manufacturers:
 - 1. Ductmate Industries, Inc.
 - 2. Nexus PDQ; Division of Shilco Holdings Inc.
 - 3. Ward Industries, Inc.; a division of Hart & Cooley, Inc.
 - 4. Or Approved Equal.
- B. Description: Add-on or roll-formed, factory-fabricated, slide-on transverse flange connectors, gaskets, and components.
- C. Material: Galvanized steel.
- D. Gage and Shape: Match connecting ductwork.

2.9 DUCT SILENCERS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following manufacturers:
 - 1. Dynasonics.
 - 2. Industrial Noise Control, Inc
 - 3. McGill AirFlow LLC.
 - 4. Ruskin Company.
 - 5. Vibro-Acoustics.
 - 6. Or Approved Equal.

B. General Requirements:

- 1. Factory fabricated.
- 2. Fire-Performance Characteristics: Adhesives, sealants, packing materials, and accessory materials shall have flame-spread index not exceeding 25 and smokedeveloped index not exceeding 50 when tested according to ASTM E 84.
- 3. Airstream Surfaces: Surfaces in contact with the airstream shall comply with requirements in ASHRAE 62.1-2004.

C. Shape:

- 1. Rectangular straight with splitters or baffles.
- 2. Round straight with center bodies or pods.
- 3. Rectangular elbow with splitters or baffles.
- 4. Round elbow with center bodies or pods.
- 5. Rectangular transitional with splitters or baffles.
- D. Rectangular Silencer Outer Casing: ASTM A 653/A 653M, G90, galvanized sheet steel, 0.040 inch thick.
- E. Round Silencer Outer Casing: ASTM A 653/A 653M, G90, galvanized sheet steel.
 - 1. Sheet Metal Thickness for Units up to 24 Inches in Diameter: 0.034 inch thick.
 - 2. Sheet Metal Thickness for Units 26 through 40 Inches in Diameter: 0.040 inch thick.
 - 3. Sheet Metal Thickness for Units 42 through 52 Inches in Diameter: 0.052 inch
 - 4. Sheet Metal Thickness for Units 54 through 60 Inches in Diameter: 0.064 inch thick.
- F. Inner Casing and Baffles: ASTM A 653/A 653M, G90 galvanized sheet metal, 0.034 inch thick, and with 1/8-inch- diameter perforations.
- G. Special Construction:
 - 1. Suitable for outdoor use.
 - 2. High transmission loss to achieve STC 45.

- H. Connection Sizes: Match connecting ductwork unless otherwise indicated.
- I. Principal Sound-Absorbing Mechanism:
 - 1. Controlled impedance membranes and broadly tuned resonators without absorptive media.
 - 2. Dissipative type with fill material.
 - a. Fill Material: Moisture-proof nonfibrous material.
 - b. Erosion Barrier: Polymer bag enclosing fill, and heat sealed before assembly.
 - 3. Lining: Mylar.
- J. Fabricate silencers to form rigid units that will not pulsate, vibrate, rattle, or otherwise react to system pressure variations. Do not use mechanical fasteners for unit assemblies.
 - 1. Flange connections.
 - 2. Suspended Units: Factory-installed suspension hooks or lugs attached to frame in quantities and spaced to prevent deflection or distortion.
 - 3. Reinforcement: Cross or trapeze angles for rigid suspension.

K. Accessories:

- 1. Factory-installed end caps to prevent contamination during shipping.
- 2. Removable splitters.
- 3. Airflow measuring devices.
- L. Source Quality Control: Test according to ASTM E 477.
 - 1. Record acoustic ratings, including dynamic insertion loss and generated-noise power levels with an airflow of at least 2000-fpm face velocity.
 - 2. Leak Test: Test units for airtightness at 200 percent of associated fan static pressure or 6-inch wg static pressure, whichever is greater.

2.10 TURNING VANES

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following manufacturers:
 - 1. Ductmate Industries, Inc.
 - 2. Duro Dyne Inc.
 - 3. METALAIRE, Inc.
 - 4. SEMCO Incorporated.
 - 5. Ward Industries, Inc.; a division of Hart & Cooley, Inc.
 - 6. Or Approved Equal.
- B. Manufactured Turning Vanes for Metal Ducts: Curved blades of galvanized sheet steel; support with bars perpendicular to blades set; set into vane runners suitable for duct mounting.

- 1. Acoustic Turning Vanes: Fabricate airfoil-shaped aluminum extrusions with perforated faces and fibrous-glass fill.
- C. Manufactured Turning Vanes for Nonmetal Ducts: Fabricate curved blades of resinbonded fiberglass with acrylic polymer coating; support with bars perpendicular to blades set; set into vane runners suitable for duct mounting.
- D. General Requirements: Comply with SMACNA's "HVAC Duct Construction Standards

 Metal and Flexible"; Figures 2-3, "Vanes and Vane Runners," and 2-4, "Vane Support in Elbows."
- E. Vane Construction: Single wall for ducts up to 8 inches wide and double wall for larger dimensions.

2.11 DUCT-MOUNTED ACCESS DOORS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following manufacturers:
 - 1. American Warming and Ventilating; a division of Mestek, Inc.
 - 2. Cesco Products; a division of Mestek, Inc.
 - 3. Ductmate Industries, Inc.
 - 4. Flexmaster U.S.A., Inc.
 - 5. Greenheck Fan Corporation.
 - 6. McGill AirFlow LLC.
 - 7. Nailor Industries Inc.
 - 8. Pottorff; a division of PCI Industries, Inc.
 - 9. Ventfabrics, Inc.
 - 10. Ward Industries, Inc.; a division of Hart & Cooley, Inc.
 - 11. Or Approved Equal.
- B. Duct-Mounted Access Doors: Fabricate access panels according to SMACNA's "HVAC Duct Construction Standards Metal and Flexible"; Figures 2-10, "Duct Access Doors and Panels," and 2-11, "Access Panels Round Duct."
 - 1. Door:
 - a. Double wall, rectangular.
 - b. Galvanized sheet metal with insulation fill and thickness as indicated for duct pressure class.
 - c. Vision panel.
 - d. Hinges and Latches: 1-by-1-inch butt or piano hinge and cam latches.
 - e. Fabricate doors airtight and suitable for duct pressure class.
 - 2. Frame: Galvanized sheet steel, with bend-over tabs and foam gaskets.
 - 3. Number of Hinges and Locks:
 - a. Access Doors Less Than 12 Inches Square: No hinges and two sash locks.
 - b. Access Doors up to 18 Inches Square: Two hinges and two sash locks.

- c. Access Doors up to 24 by 48 Inches: Three hinges and two compression latches with outside and inside handles.
- d. Access Doors Larger Than 24 by 48 Inches: Four hinges and two compression latches with outside and inside handles.

C. Pressure Relief Access Door:

- 1. Door and Frame Material: Galvanized sheet steel.
- 2. Door: Double wall with insulation fill with metal thickness applicable for duct pressure class.
- 3. Operation: Open outward for positive-pressure ducts and inward for negative-pressure ducts.
- 4. Factory set at 10-inch wg.
- 5. Doors close when pressures are within set-point range.
- 6. Hinge: Continuous piano.
- 7. Latches: Cam.
- 8. Seal: Neoprene or foam rubber.
- 9. Insulation Fill: 1-inch- thick, fibrous-glass or polystyrene-foam board.

2.12 DUCT ACCESS PANEL ASSEMBLIES

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following manufacturers:
 - 1. Ductmate Industries, Inc.
 - 2. Flame Gard, Inc.
 - 3. 3M.
 - 4. Or Approved Equal.
- B. Labeled according to UL 1978 by an NRTL.
- C. Panel and Frame: Minimum thickness 0.0528-inch carbon steel.
- D. Fasteners: Stainless steel. Panel fasteners shall not penetrate duct wall.
- E. Gasket: Comply with NFPA 96; grease-tight, high-temperature ceramic fiber, rated for minimum 2000 deg F.
- F. Minimum Pressure Rating: 10-inch wg, positive or negative.

2.13 FLEXIBLE CONNECTORS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following manufacturers:
 - 1. Ductmate Industries, Inc.

- 2. Duro Dyne Inc.
- 3. Ventfabrics, Inc.
- 4. Ward Industries, Inc.; a division of Hart & Cooley, Inc.
- 5. Or Approved Equal.
- B. Materials: Flame-retardant or noncombustible fabrics.
- C. Coatings and Adhesives: Comply with UL 181, Class 1.
- D. Metal-Edged Connectors: Factory fabricated with a fabric strip 5-3/4 inches wide attached to 2 strips of 2-3/4-inch- wide, 0.028-inch- thick, galvanized sheet steel or 0.032-inch- thick aluminum sheets. Provide metal compatible with connected ducts.
- E. Indoor System, Flexible Connector Fabric: Glass fabric double coated with neoprene.
 - 1. Minimum Weight: 26 oz./sq. yd.
 - 2. Tensile Strength: 480 lbf/inch in the warp and 360 lbf/inch in the filling.
 - 3. Service Temperature: Minus 40 to plus 200 deg F.
- F. Outdoor System, Flexible Connector Fabric: Glass fabric double coated with weatherproof, synthetic rubber resistant to UV rays and ozone.
 - 1. Minimum Weight: 24 oz./sq. yd.
 - 2. Minimum Tensile Strength: 500 lbf/inch in the warp and 440 lbf/inch in the filling.
 - 3. Service Temperature: Minus 50 to plus 250 deg F.
- G. High-Temperature System, Flexible Connectors: Glass fabric coated with silicone rubber.
 - 1. Minimum Weight: 16 oz./sq. yd.
 - 2. Tensile Strength: 285 lbf/inch in the warp and 185 lbf/inch in the filling.
 - 3. Service Temperature: Minus 67 to plus 500 deg F.
- H. High-Corrosive-Environment System, Flexible Connectors: Glass fabric with chemical-resistant coating.
 - 1. Minimum Weight: 14 oz./sq. yd.
 - 2. Tensile Strength: 450 lbf/inch in the warp and 340 lbf/inch in the filling.
 - 3. Service Temperature: Minus 67 to plus 500 deg F.
- I. Thrust Limits: Combination coil spring and elastomeric insert with spring and insert in compression, and with a load stop. Include rod and angle-iron brackets for attaching to fan discharge and duct.
 - 1. Frame: Steel, fabricated for connection to threaded rods and to allow for a maximum of 30 degrees of angular rod misalignment without binding or reducing isolation efficiency.

- 2. Outdoor Spring Diameter: Not less than 80 percent of the compressed height of the spring at rated load.
- 3. Minimum Additional Travel: 50 percent of the required deflection at rated load.
- 4. Lateral Stiffness: More than 80 percent of rated vertical stiffness.
- 5. Overload Capacity: Support 200 percent of rated load, fully compressed, without deformation or failure.
- 6. Elastomeric Element: Molded, oil-resistant rubber or neoprene.
- 7. Coil Spring: Factory set and field adjustable for a maximum of 1/4-inch movement at start and stop.

2.14 FLEXIBLE DUCTS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following manufacturers:
 - 1. Flexmaster U.S.A., Inc.
 - 2. McGill AirFlow LLC.
 - 3. Ward Industries, Inc.; a division of Hart & Cooley, Inc.
 - 4. Or Approved Equal.
- B. Insulated, Flexible Duct: UL 181, Class 1, 2-ply vinyl film supported by helically wound, spring-steel wire; fibrous-glass insulation; polyethylene vapor-barrier film.
 - 1. Pressure Rating: 10-inch wg positive and 1.0-inch wg negative.
 - 2. Maximum Air Velocity: 4000 fpm.
 - 3. Temperature Range: Minus 10 to plus 160 deg F.
 - 4. Insulation R-value: Comply with ASHRAE/IESNA 90.1-2004.

C. Flexible Duct Connectors:

1. Clamps: Stainless-steel band with cadmium-plated hex screw to tighten band with a worm-gear action in sizes 3 through 18 inches, to suit duct size.

2.15 DUCT SECURITY BARS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following manufacturers:
 - 1. Carnes.
 - 2. KEES, Inc.
 - 3. Lloyd Industries, Inc.
 - 4. Metal Form Manufacturing, Inc.
 - 5. Price Industries.
 - 6. Or Approved Equal.
- B. Description: Field- or factory-fabricated and field-installed duct security bars.
- C. Configuration:

- 1. Frame: 10 gage by 2 inches.
- 2. Sleeve: 3/16-inch, continuously welded steel frames with 1-by-1-by-3/16-inch angle frame factory welded to 1 end and furnished loose for field welding on other end. To be poured in place or set with concrete block or welded or bolted to wall, one side only. Duct connections on both sides.
- 3. Horizontal Bars: 1/2 inch.
- 4. Vertical Bars: 3/4 inch.
- 5. Bar Spacing: 6 inches.
- 6. Mounting: Ductwork or other framing.

2.16 DUCT ACCESSORY HARDWARE

- A. Instrument Test Holes: Cast iron or cast aluminum to suit duct material, including screw cap and gasket. Size to allow insertion of pitot tube and other testing instruments and of length to suit duct-insulation thickness.
- B. Adhesives: High strength, quick setting, neoprene based, waterproof, and resistant to gasoline and grease.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Install duct accessories according to applicable details in SMACNA's "HVAC Duct Construction Standards Metal and Flexible" for metal ducts and in NAIMA AH116, "Fibrous Glass Duct Construction Standards," for fibrous-glass ducts.
- B. Install duct accessories of materials suited to duct materials; use galvanized-steel accessories in galvanized-steel and fibrous-glass ducts, stainless-steel accessories in stainless-steel ducts, and aluminum accessories in aluminum ducts.
- C. Install backdraft dampers at inlet of exhaust fans or exhaust ducts as close as possible to exhaust fan unless otherwise indicated.
- D. Install volume dampers at points on supply, return, and exhaust systems where branches extend from larger ducts. Where dampers are installed in ducts having duct liner, install dampers with hat channels of same depth as liner, and terminate liner with nosing at hat channel.
 - 1. Install steel volume dampers in steel ducts.
 - 2. Install aluminum volume dampers in aluminum ducts.
- E. Set dampers to fully open position before testing, adjusting, and balancing.

- F. Install test holes at fan inlets and outlets and elsewhere as indicated.
- G. Install fire dampers according to UL listing.
- H. Install duct security bars. Construct duct security bars from 0.164-inch steel sleeve, continuously welded at all joints and 1/2-inch- diameter steel bars, 6 inches o.c. in each direction in center of sleeve. Weld each bar to steel sleeve and each crossing bar. Weld 2-1/2-by-2-1/2-by-1/4-inch steel angle to 4 sides and both ends of sleeve. Connect duct security bars to ducts with flexible connections. Provide 12-by-12-inch hinged access panel with cam lock in duct in each side of sleeve.
- I. Connect ducts to duct silencers rigidly.
- J. Install duct access doors on sides of ducts to allow for inspecting, adjusting, and maintaining accessories and equipment at the following locations:
 - 1. On both sides of duct coils.
 - 2. Upstream and downstream from duct filters.
 - 3. At outdoor-air intakes and mixed-air plenums.
 - 4. At drain pans and seals.
 - 5. Downstream from manual volume dampers, control dampers, backdraft dampers, and equipment.
 - 6. Adjacent to and close enough to fire or smoke dampers, to reset or reinstall fusible links. Access doors for access to fire or smoke dampers having fusible links shall be pressure relief access doors and shall be outward operation for access doors installed upstream from dampers and inward operation for access doors installed downstream from dampers.
 - 7. At each change in direction and at maximum 50-foot spacing.
 - 8. Upstream from turning vanes.
 - 9. Upstream or downstream from duct silencers.
 - 10. Control devices requiring inspection.
 - 11. Elsewhere as indicated.
- K. Install access doors with swing against duct static pressure.
- L. Access Door Sizes:
 - 1. One-Hand or Inspection Access: 8 by 5 inches.
 - 2. Two-Hand Access: 12 by 6 inches.
 - 3. Head and Hand Access: 18 by 10 inches.
 - 4. Head and Shoulders Access: 21 by 14 inches.
 - 5. Body Access: 25 by 14 inches.
 - 6. Body plus Ladder Access: 25 by 17 inches.
- M. Label access doors according to Division 23 Section "Identification for HVAC Piping and Equipment" to indicate the purpose of access door.

- N. Install flexible connectors to connect ducts to equipment.
- O. For fans developing static pressures of 5-inch wg and more, cover flexible connectors with loaded vinyl sheet held in place with metal straps.
- P. Connect terminal units to supply ducts directly.
- Q. Connect diffusers or light troffer boots to ducts directly or with maximum 10'-0" lengths of flexible duct clamped or strapped in place.
- R. Connect flexible ducts to metal ducts with stainless steel clamps.
- S. Install duct test holes where required for testing and balancing purposes.
- T. Install thrust limits at centerline of thrust, symmetrical on both sides of equipment. Attach thrust limits at centerline of thrust and adjust to a maximum of 1/4-inch movement during start and stop of fans.

3.2 FIELD QUALITY CONTROL

- A. Tests and Inspections:
 - 1. Operate dampers to verify full range of movement.
 - 2. Inspect locations of access doors and verify that purpose of access door can be performed.
 - 3. Operate fire, smoke, and combination fire and smoke dampers to verify full range of movement and verify that proper heat-response device is installed.
 - 4. Inspect turning vanes for proper and secure installation.
 - 5. Operate remote damper operators to verify full range of movement of operator and damper.

END OF SECTION 233000

SECTION 233423

HVAC POWER VENTILATORS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. This Section includes the following:
 - 1. Centrifugal roof ventilators.
 - 2. Ceiling-mounting ventilators.

1.3 PERFORMANCE REQUIREMENTS

- A. Project Altitude: Base fan-performance ratings on actual Project site elevations.
- B. Operating Limits: Classify according to AMCA 99.

1.4 SUBMITTALS

- A. Product Data: Include rated capacities, furnished specialties, and accessories for each type of product indicated and include the following:
 - 1. Certified fan performance curves with system operating conditions indicated.
 - 2. Certified fan sound-power ratings.
 - 3. Motor ratings and electrical characteristics, plus motor and electrical accessories.
 - 4. Material thickness and finishes, including color charts.
 - 5. Dampers, including housings, linkages, and operators.
 - 6. Roof curbs.
 - 7. Fan speed controllers.
- B. Shop Drawings: Detail equipment assemblies and indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.

- 1. Wiring Diagrams: Power, signal, and control wiring.
- 2. Design Calculations: Calculate requirements for selecting vibration isolators and seismic restraints and for designing vibration isolation bases.
- 3. Vibration Isolation Base Details: Detail fabrication, including anchorages and attachments to structure and to supported equipment. Include auxiliary motor slides and rails, and base weights.
- C. Coordination Drawings: Reflected ceiling plans and other details, drawn to scale, on which the following items are shown and coordinated with each other, based on input from installers of the items involved:
 - 1. Roof framing and support members relative to duct penetrations.
 - 2. Ceiling suspension assembly members.
 - 3. Size and location of initial access modules for acoustical tile.
 - 4. Ceiling-mounted items including light fixtures, diffusers, grilles, speakers, sprinklers, access panels, and special moldings.
- D. Field quality-control test reports.
- E. Operation and Maintenance Data: For power ventilators to include in emergency, operation, and maintenance manuals.

1.5 QUALITY ASSURANCE

- A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.
- B. AMCA Compliance: Products shall comply with performance requirements and shall be licensed to use the AMCA-Certified Ratings Seal.
- C. NEMA Compliance: Motors and electrical accessories shall comply with NEMA standards.
- D. UL Standard: Power ventilators shall comply with UL 705.

1.6 DELIVERY, STORAGE, AND HANDLING

A. Deliver fans as factory-assembled unit, to the extent allowable by shipping limitations, with protective crating and covering.

- B. Disassemble and reassemble units, as required for moving to final location, according to manufacturer's written instructions.
- C. Lift and support units with manufacturer's designated lifting or supporting points.

1.7 COORDINATION

- A. Coordinate size and location of structural-steel support members.
- B. Coordinate size and location of concrete bases. Cast anchor-bolt inserts into bases. Concrete, reinforcement, and formwork requirements are specified in Division 03.
- C. Coordinate installation of roof curbs, equipment supports, and roof penetrations. These items are specified in Division 07 Section "Roof Accessories."

1.8 EXTRA MATERIALS

- A. Furnish extra materials described below that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 - 1. Belts: two set(s) for each belt-driven unit.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Centrifugal Roof Ventilators:
 - a. Greenheck Fan Corp (Basis of Design).
 - b. Cook, Loren Company
 - c. Penn Ventilation Companies, Inc.
 - 2. Ceiling-Mounting Ventilators:
 - a. Greenheck Fan Corp (Basis of Design).
 - b. Cook, Loren Company.

c. Penn Ventilation Companies, Inc.

2.2 CENTRIFUGAL ROOF VENTILATORS

- A. Description: Belt-driven and direct-driven centrifugal fans consisting of housing, wheel, fan shaft, bearings, motor and disconnect switch, drive assembly, curb base, and accessories as scheduled on the contract drawings.
- B. Housing: Removable, spun-aluminum, dome top and outlet baffle; square, one-piece, aluminum base with venturi inlet cone.
- C. Fan Wheels: Aluminum hub and wheel with backward-inclined blades.
- D. Belt-Driven Drive Assembly: Resiliently mounted to housing, with the following features:
 - 1. Fan Shaft: Turned, ground, and polished steel; keyed to wheel hub.
 - 2. Shaft Bearings: Permanently lubricated, permanently sealed, self-aligning ball bearings.
 - 3. Pulleys: Cast-iron, adjustable-pitch motor pulley.
 - 4. Fan and motor isolated from exhaust airstream.

E. Accessories:

- 1. Disconnect Switch: Nonfusible type, with thermal-overload protection mounted inside fan housing, factory wired through an internal aluminum conduit.
- 2. Bird Screens: Removable, 1/2-inch mesh, aluminum or brass wire.
- 3. Motorized Dampers: Parallel-blade dampers mounted in curb base with electric actuator; wired to close when fan stops.
- 4. Variable-Speed Controller for Direct Drive Fans: Solid-state control to reduce speed from 100 percent to less than 50 percent.
- 5. Additional accessories as noted on the exhaust fan equipment schedules.
- F. Roof Curbs: Roof curb shall be Trapezoidal fixed cell standing seam roof sloped seismic roof curb by Thybar or approved equal. Coordinate final roof type with Architect and Structural contractor.
 - 1. Overall Height: 18 inches.
 - 2. Sound Curb: Curb with sound-absorbing insulation matrix.
 - 3. Pitch Mounting: Manufacture curb for roof slope.
 - 4. Metal Liner: Galvanized steel.
 - 5. Hinged Subbase: Galvanized steel hinged arrangement permitting service and maintenance.

6. Mounting Pedestal: Galvanized steel with removable access panel.

2.3 CEILING-MOUNTING VENTILATORS

- A. Description: Centrifugal fans designed for installing in ceiling or wall or for concealed inline applications.
- B. Housing: Steel, lined with acoustical insulation.
- C. Fan Wheel: Centrifugal wheels directly mounted on motor shaft. Fan shrouds, motor, and fan wheel shall be removable for service.
- D. Grille: Painted Steel, louvered grille with flange on intake and thumbscrew attachment to fan housing.
- E. Electrical Requirements: Junction box for electrical connection on housing and receptacle for motor plug-in.

F. Accessories:

- 1. Variable-Speed Controller: Solid-state control to reduce speed from 100 percent to less than 50 percent.
- 2. Manufacturer's standard roof jack or wall cap, and transition fittings.
- 3. Isolation: Rubber-in-shear vibration isolators.
- 4. Additional accessories as noted on the exhaust fan equipment schedules.

2.4 MOTORS

- A. Refer to Division 15 Section "Motors" for general requirements for factory-installed motors.
- B. Motor Construction: NEMA MG 1, general purpose, continuous duty, Design B.
- C. Enclosure Type: TEFC.

2.5 SOURCE QUALITY CONTROL

A. Sound-Power Level Ratings: Comply with AMCA 301, "Methods for Calculating Fan Sound Ratings from Laboratory Test Data." Factory test fans according to AMCA 300,

- "Reverberant Room Method for Sound Testing of Fans." Label fans with the AMCA-Certified Ratings Seal.
- B. Fan Performance Ratings: Establish flow rate, pressure, power, air density, speed of rotation, and efficiency by factory tests and ratings according to AMCA 210, "Laboratory Methods of Testing Fans for Rating."

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Install power ventilators level and plumb.
- B. Secure roof-mounting fans to roof curbs with cadmium-plated hardware. Refer to Division 07 Section "Roof Accessories" for installation of roof curbs.
- C. Ceiling Units: Suspend units from structure; use steel wire or metal straps.
- D. Provide one additional exhaust fan similar to EF-8 as scheduled on the drawings to be used as directed by the Engineer.
- E. Support suspended units from structure using threaded steel rods and spring hangers with vertical-limit stops having a static deflection of 1 inch. Vibration-control devices are specified in Division 23 Section "Vibration and Seismic Controls for HVAC Piping and Equipment."
- F. Install units with clearances for service and maintenance.
- G. Label units according to requirements specified in Division 23 Section "Identification for HVAC Piping and Equipment."

3.2 CONNECTIONS

- A. Duct installation and connection requirements are specified in other Division 23 Sections. Drawings indicate general arrangement of ducts and duct accessories. Make final duct connections with flexible connectors. Flexible connectors are specified in Division 23 Section "Air Duct Accessories."
- B. Install ducts adjacent to power ventilators to allow service and maintenance.
- C. Ground equipment according to Division 26 Section "Grounding and Bonding for Electrical Systems."

D. Connect wiring according to Division 26 Section "Low-Voltage Electrical Power Conductors and Cables."

3.3 FIELD QUALITY CONTROL

- A. Perform the following field tests and inspections and prepare test reports:
 - 1. Verify that shipping, blocking, and bracing are removed.
 - 2. Verify that unit is secure on mountings and supporting devices and that connections to ducts and electrical components are complete. Verify that proper thermal-overload protection is installed in motors, starters, and disconnect switches.
 - 3. Verify that cleaning and adjusting are complete.
 - 4. Disconnect fan drive from motor, verify proper motor rotation direction, and verify fan wheel free rotation and smooth bearing operation. Reconnect fan drive system, align and adjust belts, and install belt guards.
 - 5. Adjust belt tension.
 - 6. Adjust damper linkages for proper damper operation.
 - 7. Verify lubrication for bearings and other moving parts.
 - 8. Verify that manual and automatic volume control and fire and smoke dampers in connected ductwork systems are in fully open position.
 - 9. Disable automatic temperature-control operators, energize motor and adjust fan to indicated rpm, and measure and record motor voltage and amperage.
 - 10. Shut unit down and reconnect automatic temperature-control operators.
 - 11. Remove and replace malfunctioning units and retest as specified above.
- B. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.

3.4 ADJUSTING

- A. Adjust damper linkages for proper damper operation.
- B. Adjust belt tension.
- C. Refer to Division 23 Section "Testing, Adjusting, and Balancing for HVAC" for testing, adjusting, and balancing procedures.
- D. Replace fan and motor pulleys as required to achieve design airflow.
- E. Lubricate bearings.

Addition & Alterations
Department of Public Works
10 Hartford Road
Delran, New Jersey

END OF SECTION 233423

SECTION 233616

DUCT MOUNTED HOT WATER COILS

PART 1 GEN	NERA	L
------------	------	---

- 1.01 SECTION INCLUDES
 - A. Water coils.
- 1.02 RELATED SECTIONS
 - A. Section 220700 Plumbing Insulation
 - B. Section 233133 Metal Ductwork
 - C. Section 233300 Air Duct Accessories
- 1.03 REFERENCES
 - A. ANSI/ARI 410 Forced-Circulation Air-Cooling and Air-Heating Coils.
 - B. ANSI/NFPA 70 National Electrical Code.
 - C. ANSI/UL 1096 Electric Central Air Heating Equipment.
 - D. SMACNA HVAC Duct Construction Standards, Metal and Flexible.

1.04 QUALITY ASSURANCE

- A. Heating and Cooling Coils: Product of manufacturer regularly engaged in production of coils who issues complete catalog data on product offering.
- B. Heating and Cooling Coils: Certify capacities, pressure drops and selection procedures in accordance with ARI 410-91.
- C. ISO 9001 Certification. The coil manufacturer shall be ISO 9001 Certified by a third party registrar, such as HSB Registration Services, that is accredited by an accreditation body such as ANSI-RAB and / or RvC Dutch Council for Accrediation.

1.05 SUBMITTALS

- A. Submit unit performance data including: capacity, nominal and operating performance.
- B. Submit Mechanical Specifications for unit and accessories describing construction,

components and options.

C. Submit shop drawings indicating overall dimensions as well as installation, operation and service clearances. Indicate lift points and recommendations and center of gravity. Indicate unit shipping, installation and operating weights including dimensions.

1.06 QUALIFICATIONS

A. Manufacturer: Company specializing in manufacturing the products specified in this Section with minimum 20 years [documented] experience.

1.07 DELIVERY, STORAGE, AND HANDLING

- A. Comply with manufacturer's installation instructions for rigging, unloading, and transporting units.
- B. Protect units from physical damage. Leave factory shipping covers in place until installation.
- C. Protect coil fins from crushing and bending by leaving in shipping cases until installation, and by storing indoors.
- D. Protect coils from entry of dirt and debris with pipe caps or plugs.

PART 2 PRODUCTS

2.01 MANUFACTURERS

- A. TRANE
- B. Cooney
- C. Superior Coil
- D. Or Approved Equal

2.02 Fabrication

- A. Fins: Shall be configurated aluminum plate type. Fins shall be die formed in multiple stages with full fin collars for maximum fin-tube contact and accurate spacing. Fin positioning must be continuous across entire coil face. Minimum fin thickness shall be (.0055)-INCH.
- B. Coil pressure testing: All coils are to be proof and leak tested. The proof test must be performed at 1.5 times the maximum operating pressure and the leak test at the maximum operating pressure.
- C. ARI certification: Coils, computer selection programs, and catalogs must be certified to ARI STANDARD 410-87 (where applicable).

2.03 1/2-Inch OD tubed water coils

- A. Tubes: Shall be seamless 1/2-inch OD copper tubes arranged in a parallel or staggered pattern. Tubes to be mechanically expanded into full fin collars for permanent fin-tube bond. Tube wall thickness must be a minimum of .016" Copper.
- B. Casing: A minimum of 16-gauge galvanized steel casing with center and end supports shall be provided. To ensure structural integrity and allow for easy stacking of coils, casing channels must be constructed with a minimum of four (4) forms each or channels must be constructed from 14-gauge galvanized steel.
- C. Water coil headers: Round copper pipe headers are to be provided on all coils. Coils shall have same end connection for supply and return piping. Drain and vent connections shall be provided on the supply/return pipe by the installing contractor.

PART 3 EXECUTION

3.01 INSTALLATION

- A. Install in accordance with manufacturer's instructions.
- B. Install in ducts and casings in accordance with SMACNA HVAC Duct Construction Standards, Metal and Flexible.
- C. Support coil sections independent of piping on steel channel or double angle frames and secure to casings. Provide frames for maximum three coil sections. Arrange supports to avoid piercing drain pans. Provide airtight seal between coil and duct or casing.
- D. Protect coils to prevent damage to fins and flanges. Comb out bent fins.
- E. Install coils level.
- F. Make connections to coils with unions and flanges.
- G. On water coils, provide shut-off valve on supply line and lockshield balancing valve on return line. Locate water supply at bottom of supply header and return water connection at top. Provide manual air vents at high points complete with stop valve. Ensure water coils are drainable and provide drain connection at low points.
- H. On water heating coils, connect water supply to leaving air side of coil (counterflow arrangement).
- I. Provide drain pan and drain connection for coils. Fabricate drain pan from 20 gauge (0.90 mm) stainless steel. The drain pan shall be sealed double wall construction and insulated to prevent sweating. The bottom of the drain pan shall be sloped in two planes which pitch the condensate to the drain connection. The drain pan, when the unit is installed and trapped per the manufacturer's installation manual, shall be designed to leave puddles no more than 2-inches in diameter and no more than 1/8-inch deep no longer than 3 minutes following step 4 of the following test. The test steps are:
 - 1. Temporarily plug the drain pan.
 - 2. Fill the drain pan with 1/2-inch of water or the maximum allowed by the drain depth,

whichever is smaller.

- 3. Start the fan if it is a draw-thru unit. Do not operate the fan if it is a blow-thru unit.
- 4. Start the fan if it is a draw-thru unit. Do not operate the fan if it is a blow-thru unit.

END OF SECTION

SECTION 23 37 13

DIFFUSERS, REGISTERS AND GRILLES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. This Section includes ceiling- and wall-mounted diffusers, registers, and grilles.
- B. Related Sections:
 - 1. Division 23 Section "Air Duct Accessories" for fire and smoke dampers and volume-control dampers not integral to diffusers, registers, and grilles.
 - 2. Division 23 Section "Testing, Adjusting, and Balancing for HVAC" for balancing diffusers, registers and grilles.

1.3 SUBMITTALS

- A. Product Data: For each type of product indicated, include the following:
 - Data Sheet: Indicate materials of construction, finish, and mounting details; and performance data including throw and drop, static pressure drop, and noise ratings.
 - 2. Diffuser, Register, and Grille Schedule: Indicate drawing designation, room location, quantity, model number, size, and accessories furnished.
- B. Samples for Initial Selection: For diffusers, registers, and grilles with factory-applied color finishes.
- C. Samples for Verification: For diffusers, registers, and grilles, in manufacturer's standard sizes to verify color selected.
- D. Coordination Drawings: Reflected ceiling plans, drawn to scale, on which the following items are shown and coordinated with each other, using input from Installers of the items involved:
 - 1. Ceiling suspension assembly members.
 - 2. Method of attaching hangers to building structure.
 - 3. Size and location of initial access modules for acoustical tile.

- 4. Ceiling-mounted items including lighting fixtures, diffusers, grilles, speakers, sprinklers, access panels, and special moldings.
- 5. Duct access panels.
- E. Source quality-control reports.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

- A. In other Part 2 articles where subparagraph titles below introduce lists, the following requirements apply for product selection:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by the manufacturers specified.
- B. Manufacturers:
 - Titus (Basis of Design).
 - 2. Tuttle & Bailey.
 - 3. Price.
 - 4. Krueger.
 - 5. Or Approved Equal.

2.2 SOURCE QUALITY CONTROL

A. Verification of Performance: Rate diffusers, registers, and grilles according to ASHRAE 70, "Method of Testing for Rating the Performance of Air Outlets and Inlets."

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine areas where diffusers, registers, and grilles are to be installed for compliance with requirements for installation tolerances and other conditions affecting performance of equipment.
- B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

- A. Install diffusers, registers, and grilles level and plumb.
- B. Ceiling-Mounted Outlets and Inlets: Drawings indicate general arrangement of ducts, fittings, and accessories. Air outlet and inlet locations have been indicated to achieve

design requirements for air volume, noise criteria, airflow pattern, throw, and pressure drop. Make final locations where indicated, as much as practical. For units installed in lay-in ceiling panels, locate units in the center of panel. Where architectural features or other items conflict with installation, notify Architect for a determination of final location.

- C. Provide an additional one diffusers/registers of each type and size used on the project to accommodate ductwork revisions required to resolve interferences or as directed by the Engineer.
- D. Install diffusers, registers, and grilles with airtight connections to ducts and to allow service and maintenance of dampers, air extractors, and fire dampers.

3.3 ADJUSTING

A. After installation, adjust diffusers, registers, and grilles to air patterns indicated, or as directed, before starting air balancing.

3.4 CLEANING

A. After installation of diffusers, registers, and grilles, inspect exposed finish. Clean exposed surfaces to remove burrs, dirt, and smudges. Replace diffusers, registers, and grilles that have damaged finishes.

END OF SECTION 233713

SECTION 238129

VARIABLE REFRIGERANT FLOW SYSTEMGeneral

1.01 SYSTEM DESCRIPTION TRUZ SERIES

The heat pump air conditioning system shall be a Trane split system with Variable Speed Inverter Compressor technology. The system shall consist of a horizontal discharge, single phase outdoor unit, a matched capacity indoor section that shall be equipped with a wired wall-mounted, wireless wall-mounted, wireless handheld, or other remote controller.

1.02 QUALITY ASSURANCE

- 1. The system components shall be tested by a Nationally Recognized Testing Laboratory (NRTL) and shall bear the ETL label.
- 2. All wiring shall be in accordance with the National Electrical Code (N.E.C.).
- 3. The units shall be rated in accordance with Air-conditioning, Heating and Refrigeration Institute's (AHRI) Standard 240 and bear the AHRI Certification label.
- 4. The units shall be manufactured in a facility registered to ISO 9001 and ISO 14001, which is a set of standards applying to product and manufacturing quality and environmental management and protection set by the International Standard Organization (ISO).
- 5. A dry air holding charge shall be provided in the indoor section.

1.03 DELIVERY, STORAGE AND HANDLING

- 1. Unit shall be stored and carefully handled according to the manufacturer's recommendations.
- 2. The wireless remote controller, for the wall mounted and floor standing indoor units, shall be shipped inside the carton and packaged with the indoor unit and shall be able to withstand 105°F storage temperatures and 95% relative humidity without adverse effect.
- 3. The remote controller, for the ceiling suspended, ceiling recessed and ducted indoor units, either wireless or wired, shall be shipped separately.

Part 2 - Warranty

The units shall have a manufacturer's parts and defects warranty for a period five (5) years from date of installation. The compressor shall have an extended warranty of seven (7) years from date of installation.

If, during this period, any part should fail to function properly due to defects in workmanship or material, it shall be replaced or repaired at the discretion of the manufacturer. This warranty will not include labor.

Manufacturer shall have a minimum of thirty eight (38) years continuous experience in the U.S. market.

All manufacturer technical and service manuals must be readily available for download by any local contractor should emergency service be required

Part 3 - Outdoor Units

3.01 TRUZ SYSTEM

General:

- 1. The TRUZ Series outdoor units are specifically designed to work with the wall mounted, ducted, 4-way cassette, ceiling suspended and multi-position air handler indoor units. The connected indoor unit shall be of the same capacity as the outdoor unit. The outdoor units must have a thermally fused powder coated finish. The outdoor unit shall be completely factory assembled, piped and wired. Each unit shall be run tested at the factory.
- 2. If an alternate manufacturer is selected, any additional material, cost, and labor to install additional lines shall be incurred by the contractor. Contractor responsible for ensuring alternative brand compatibility in terms of availability, physical dimensions, weight, electrical requirements, etc.
- 3. Outdoor unit shall have a sound rating no higher than 53 dB(A). If an alternate manufacturer is selected, any additional material, cost, and labor to meet published sound levels shall be incurred by the contractor.
- 4. Refrigerant lines from the outdoor unit to the indoor units shall be insulated in accordance with the installation manual.
- 5. The outdoor unit shall meet performance requirements per schedule and be within piping limitations & acceptable ambient temperature ranges as described in respective manufacturers' published product catalogs. Non-published product capabilities or performance data are not acceptable.

- 6. The outdoor unit shall be provided with a manufacturer supplied 20 gauge hot dipped galvanized snow /hail guard. The snow/hail guard protects the outdoor coil surfaces from hail damage and snow build-up in severe climates.
- 7. The outdoor unit shall be provided with a manufacturer supplied 20 gauge hot dipped galvanized wind baffle. The wind baffle shall allow for continuous cooling to 0FDB without any additional modifications to the unit.

Unit Cabinet:

- 1. The casing shall be fabricated of galvanized steel, bonderized, finished with an electrostatically applied, thermally fused acrylic or polyester powder coating for corrosion protection. Assembly hardware shall be cadmium plated for weather resistance.
- 1. Cabinet color shall be Munsell 3Y 7.8/1.1.
- 2. Easy access shall be afforded to all serviceable parts by means of removable panel sections.
- 3. Two (2) mild steel mounting feet, traverse mounted across the cabinet base pan, welded mount, providing four (4) slotted mounting holes shall be furnished. Assembly shall withstand lateral wind gust up to 155 MPH to meet applicable weather codes. The casing(s) shall be fabricated of galvanized steel, bonderized and finished.

Fan:

- 1. 1, 1.5, 2 and 2.5 ton units shall be furnished with a single direct drive propeller type fan. 3, 3.5 ton units shall be furnished with a two (2) direct drive propeller type fans.
- 1. The outdoor unit fan motor(s) shall be a direct current (DC) motor and have permanently lubricated bearings.
- 2. The fan motor shall be mounted for quiet operation.
- 3. The fan shall be provided with a raised guard to prevent contact with moving parts.
- 4. The outdoor unit shall have horizontal discharge airflow.

Refrigerant and Refrigerant Piping

1. R410A refrigerant shall be required for systems.

- 2. Polyolester (POE) oil—widely available and used in conventional domestic systems—shall be required. Prior to bidding, manufacturers using alternate oil types shall submit material safety data sheets (MSDS) and comparison of hygroscopic properties for alternate oil with list of local suppliers stocking alternate oil for approval at least two weeks prior to bidding.
- 3. Refrigerant piping shall be phosphorus deoxidized copper (copper and copper alloy seamless pipes) of sufficient radial thickness as defined by the equipment manufacturer and installed in accordance with manufacturer recommendations.
- 4. All refrigerant piping must be insulated with $\frac{1}{2}$ " closed cell, CFC-free foam insulation with flame-Spread Index of less than 25 and a smoke-development Index of less than 50 as tested by ASTM E 84 and CAN / ULC S-102. R value of insulation must be at least 3.
- 5. Refrigerant line sizing shall be in accordance with manufacturer specifications.

Coil:

- 1. The outdoor unit coil shall be of nonferrous construction with lanced or corrugated plate fins on copper tubing.
- 1. The coil shall be protected with an integral metal guard.
- 2. Refrigerant flow from the outdoor unit shall be regulated by means of an electronically controlled, precision, linear expansion valve.
- 3. All refrigerant lines between outdoor and indoor units shall be of annealed, refrigeration grade copper tubing, ARC Type, meeting ASTM B280 requirements, individually insulated in twin-tube, flexible, closed-cell, CFC-free (ozone depletion potential of zero), elastomeric material for the insulation of refrigerant pipes and tubes with thermal conductivity equal to or better than 0.27 BTU-inch/hour per Sq Ft / °F, a water vapor transmission equal to or better than 0.08 Perm-inch and superior fire ratings such that insulation will not contribute significantly to fire and up to 1" thick insulation shall have a Flame-Spread Index of less than 25 and a Smoke-development Index of less than 50 as tested by ASTM E 84 and CAN / ULC S-102.
- 4. All refrigerant connections between outdoor and indoor units shall be flare type.

Compressor:

- 1. The compressor shall be a high performance, hermetic, inverter driven, variable speed, dual rotary type manufactured by Mitsubishi Electric Corporation.
- 1. The compressor motor shall be direct current (DC) type equipped with a factory supplied and installed inverter drive package.

- 2. The compressor will be equipped with internal thermal overload protection.
- 3. To prevent liquid from accumulating in the compressor during the off cycle, a minimal amount of current shall be automatically, intermittently applied to the compressor motor windings to maintain sufficient heat to vaporize any refrigerant. No crankcase heater is to be used.
- 4. Filters, sight glasses, and traps shall not be used, and no additional refrigerant oil shall be required.
- 5. The compressor shall be mounted so as to avoid the transmission of vibration.
- 6. The outdoor unit shall have an accumulator and high pressure safety switch.

Operating Range:

1. Operating Range shall be in accord with the Table below:

Operating	Range	Indoor Intake Air Temp	Outdoor Intake Air Temp
Cooling	Maximum	95°F (35°C) DB, 71°F(21°C) WB	115°F (46°C) DB
	Minimum	67°F (19°C) DB, 57°F(14°C) WB	14°F (-10°C) DB
Heating	Maximum	80°F (27°C) DB, 67°F(19°C) WB	75°F (24°C) DB, 65°F(18°C) WB
	Minimum	70°F (21°C) DB, 60°F(16°C) WB	6°F (-14°C) DB, 5°F(-15°C) WB
			-12°F (-24°C) DB, -13°F(-25°C) WB*

Electrical:

- 1. The outdoor unit electrical power supply shall be 208/230 volts, 1-phase, 60 hertz.
- 2. The unit shall be capable of satisfactory operation within voltage limits of 198 volts to 253 volts.
- 3. The outdoor unit shall be controlled by microprocessors located in the indoor unit and outdoor unit. A 12 to 24 volt DC data stream shall communicate between the units providing all necessary information for full function control.
- 4. The outdoor unit shall be equipped with Pulse Amplitude Modulation (PAM) compressor inverter drive control for maximum efficiency with minimum power consumption.

Part 4 - Indoor Units

4.01 VERTICAL/HORIZONTAL DUCTED (MULTI-POSITION AIR HANDLER)

General:

1. The multi-position indoor unit shall be factory assembled, wired and run tested. Contained within the unit shall be all factory wiring, piping, electronic modulating linear expansion device, control circuit board and fan motor. The unit shall have a self-diagnostic function, 3-minute time delay mechanism, and an auto restart function. Indoor unit and refrigerant pipes shall be charged with dehydrated air before shipment from the factory. The unit shall be suitable for use in air handling spaces in accordance with Section 18.2 of UL 1995 4th Edition, be tested in accordance with ANSI/ASHRAE 193 and have less than 2% air leakage at maximum airflow setting.

Unit Cabinet:

1. The cabinet shall include a fixed bottom return, a fixed vertical discharge supply and be pre-painted, pre-insulated, 22 gauge galvanized steel or utilize black ZAM steel.

Fan:

- 1. The indoor unit fan shall be an assembly with a single, statically and dynamically balanced direct drive fan with a high efficiency DC motor with permanently lubricated bearings.
- 2. The fan shall have 3-speeds with the capability to operate between 0.3-0.8 In.WG selectable.

Filter:

1. The unit shall have a 1" filter rack with a reusable filter.

Coil:

- 1. The indoor coil shall be of nonferrous construction with smooth plate fins on copper tubing. The tubing shall have inner grooves for high efficiency heat exchange. All tube joints shall be brazed with phos-copper or silver alloy.
- 2. The coils shall be pressure tested at the factory.

Electrical:

- 1. The unit electrical power shall be 208/230 volts, 1-phase, 60 hertz.
- 2. The system shall be equipped with A-Control a system directing that the indoor unit be powered directly from the outdoor unit using a 3-wire, 14 gauge AWG connections plus ground.
- 3. The indoor unit shall have the option to be powered independently from the outdoor unit.
- 1. The indoor unit shall have a manufacturer supplied electric heat kit accessory. The electric heat kit shall offer either one or two stages of back up heat for maximum efficiency. The heater shall be designed to work with the indoor unit without any modifications to the unit or to the control sequence.
- 2. The heater shall be powered from a dedicated electrical feed, not from the indoor unit.

Controls:

1. Control board shall include contacts for control of no less than two stages of external heat. The first stage of external heat may be energized when the space temperature is 2.7°F from set point for between 10-25 minutes (user adjustable). The second stage of external heat may be energized when the first stage has been active for no less than 5 minutes and the space temperature has not risen by more than 0.9°F.

Part 5 - Controls

5.01 OVERVIEW

- 1. The control system shall consist of a minimum of one microprocessor on each indoor unit and one in the outdoor unit, communicating via A-Control data over power transmission. The microprocessor located in the indoor unit shall have the capability of monitoring return air temperature and indoor coil temperature, receiving and processing commands from the wired or wireless controller, providing emergency operation and controlling the outdoor unit. The control signal between the indoor and outdoor unit shall be pulse signal 24 volts DC. Indoor units shall have the ability to control supplemental heat via connector CN24 and a 12 VDC output.
- 2. 5.For A-Control, a three (3) conductor 14 gauge AWG wire with ground shall provide power feed and bi-directional control transmission between the outdoor and indoor units. If code requires a disconnect mounted near the indoor unit, a TAZ-MS303 3-Pole Disconnect shall be used all three conductors must be interrupted.
- 3. The system shall be capable of automatic restart when power is restored after power interruption. The system shall have self-diagnostics ability, including total hours of compressor run time. Diagnostics codes for indoor and outdoor units shall be displayed on the wired controller panel.
- 4. A remote controller needs to be selected and ordered separately from the unit unless the indoor unit is a wall mounted (excludes PKA), floor mounted or one-way ceiling recessed unit.

5.02 REMOTE CONTROLLERS

Deluxe Wired MA Remote Controller:

- 1. On wall mount (excludes PKA), floor mount and one-way ceiling recessed units the Deluxe Wired MA Remote Controller shall require a MAC-334IF-E Interface for communication.
- 2. The Deluxe Wired MA Remote Controller shall be capable of controlling up to 16 indoor units (defined as 1 group). When grouping M-Series units each unit requires a MAC-334IF-E Interface.
- 3. The Deluxe Wired MA Remote Controller shall only be used in same group with another Deluxe Wired MA Remote Controller, with up to two remote controllers per group.

Wired MA Remote Controller				
Item	Description	Operation	Display	
ON/OFF	Run and stop operation for a single group	Each Group	Each	
			Group	
Operation	Switches between Cool/Drying/Auto/Fan/Heat.	Each Group	Each	
Mode	Operation modes vary depending on the air conditioner unit.		Group	
Temperature	Sets the temperature from $40^{\circ}F - 87^{\circ}F$ depending on operation mode and indoor unit.	Each Group	Each	

	Wired MA Remote Controller		
Item	Description	Operation	Display
Setting			Group
Fan Speed Setting	Available fan speed settings depending on indoor unit.	Each Group	Each Group
Air Flow Direction Setting	Air flow direction settings vary depending on the indoor unit model.	Each Group	Each Group
Permit / Prohibit Local Operation	Individually prohibit operation of each local remote control function (Start/Stop, Change operation mode, Set temperature, Vane, Reset filter). *1: Centrally Controlled is displayed on the remote controller for prohibited functions.	N/A	Each Group *1
Display Indoor Unit Intake Temp	Measures and displays the intake temperature of the indoor unit when the indoor unit is operating.	N/A	Each Group
Display Backlight	Pressing a button lights up a backlight. The light automatically turns off after a certain period of time. (The brightness settings can be selected from Bright, Dark, and Light off.)	N/A	Each Unit
Error	When an error is currently occurring on an air conditioner unit, the afflicted unit and the error code are displayed	N/A	Each Unit
Test Run	Operates air conditioner units in test run mode. *2 The display for test run mode will be the same as for normal start/stop (does not display "test run").	Each Group	Each Group *2
Ventilation Equipment	Up to 16 indoor units can be connected to an interlocked system that has one LOSSNAY unit.	Each Group	N/A
Set Temperature Range Limit	Set temperature range limit for cooling, heating, or auto mode.	Each Group	Each Group
Schedule	Set up to 8 operations per day, 7 days per week. Operations include time on/off, mode and room temperature set point.	Each Group	Each Group

5.03 CMCN REMOTE CONTROLLERS: SYSTEM INTEGRATION

1. The CMCN shall be capable of supporting integration with Building Management Systems (BMS).

5.04 DEMONSTRATION

- A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain unit ventilators. Provide minimum 8 hrs training.
 - 1. Train Owner's maintenance personnel on procedures and schedules for starting and stopping, troubleshooting, servicing, and maintaining equipment.
 - 2. Review data in maintenance manuals.
- B. Engage a factory-authorized service representative to perform startup service. Startup by the contractor shall not be acceptable. Submit startup report to Engineer for review.

END OF SECTION 238129

SECTION 238219 FAN COIL UNITS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General, Special and Supplementary Conditions and Division 1 Thru Division 32 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. This Section includes fan coil units, accessories.
- B. Sheet metal pipe enclosures.

1.3 DEFINITIONS

A. BAS: Building automation system.

1.4 ACTION SUBMITTALS

- A. Product Data: Include rated capacities, operating characteristics, furnished specialties, and accessories.
- B. Shop Drawings: Detail equipment assemblies and indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
 - 1. Wiring Diagrams: Power, signal and control wiring. Distinguish between field and factory wiring.
 - 2. Pipe Enclosure: Dimensions, sheet metal materials thickness, paint finish, and method of fastening to building structure.
- C. Samples for Initial Selection: Color sample on sheet metal piece, for exposed units.

1.5 INFORMATIONAL SUBMITTALS

A. Coordination Drawings: Floor plans, reflected ceiling plans, and other details, drawn to scale, on which the following items are shown and coordinated with each other, based on input from

installers of the items involved:

- 1. Ceiling suspension components.
- 2. Structural members to which fan coil units will be attached.
- 3. Method of attaching hangers to building structure.
- 4. Size and location of initial access modules for acoustical tile.
- 5. Items penetrating finished ceiling, including the following:
 - a. Lighting fixtures.
 - b. Air outlets and inlets.
 - c. Speakers.
 - d. Sprinklers.
 - e. Access panels.
- 6. Perimeter moldings for exposed or partially exposed cabinets.
- B. Manufacturer's Qualification Certification: Submit certification that fan-coil units, accessories, and components will withstand seismic forces defined in Section 230548 "Vibration and Seismic Controls for HVAC Piping and Equipment." Include the following:
 - 1. Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculation.
 - a. The term "withstand" means "the unit will remain in place without separation of any parts from the device when subjected to the seismic forces specified."
 - b. The term "withstand" means "the unit will remain in place without separation of any parts from the device when subjected to the seismic forces specified and the unit will be fully operational after the seismic event."
 - 2. Dimensioned Outline Drawings of Equipment Unit: Identify center of gravity and locate and describe mounting and anchorage provisions.
 - 3. Detailed description of equipment anchorage devices on which the certification is based and their installation requirements.
- C. Field quality-control test reports.
- D. Warranty: Special warranty specified in this Section.

1.6 CLOSEOUT SUBMITTALS

- A. Operation and Maintenance Data: For fan-coil units to include in emergency, operation, and maintenance manuals. In addition to items specified in Section 017823 "Operation and Maintenance Data," include the following:
 - 1. Maintenance schedules and repair part lists for motors, coils, integral controls, and filters.

1.7 MAINTENANCE MATERIAL SUBMITTALS

- A. Furnish extra materials described below that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 - 1. Fan-Coil-Unit Filters: Furnish 3 spare filters for each filter installed.

1.8 QUALITY ASSURANCE

- A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.
- B. ASHRAE Compliance: Applicable requirements in ASHRAE 62.1, Section 5 "Systems and Equipment" and Section 7 "Construction and Startup."
- C. ASHRAE/IESNA 90.1 Compliance: Applicable requirements in ASHRAE/IESNA 90.1, Section 6 "Heating, Ventilating, and Air-Conditioning."

1.9 COORDINATION

- A. Coordinate layout and installation of fan-coil units and suspension system components with other construction that penetrates or is supported by ceilings, including light fixtures, HVAC equipment, fire-suppression-system components, and partition assemblies.
- B. Coordinate cabinet dimensions with space available for unit installation, including window sill height.
- C. Coordinate with manufacturer for requirements of devices furnished by BAS Contractor for field installation by BAS contractor.

1.10 WARRANTY

- A. Special Warranty: Manufacturer's standard form in which manufacturer agrees to repair or replace components of units that fail in materials or workmanship within specified warranty period.
 - 1. Failures include, but are not limited to:
 - a. Coil leaks, fan motors, controls, piping.
 - 2. Warranty Period: 2 years from date of Substantial Completion.

1.11 MOCK UP

A. Provide mock-up of valve package for fan coil units. Each fan coil unit tag number shall have mock-up example, ie., one mock-up for each model size and configuration of fan coil unit, i.e., FC-1, FC-2, etc, shall each have one mock-up. Mock-up shall include drain pan, insulation,

kickplate/return grille and condensate pump.

PART 2 - PRODUCTS

2.1 FAN COIL UNITS

- A. Manufacturers: Approved manufacturers, subject to compliance with requirements.
 - 1. Trane
 - 2. Nailor.
 - 3. Airtherm.
 - 4. Zehnder-Rittling.
- B. BAS Subcontractor's controls shall be installed in the field by BAS with coordination by BAS Subcontractor and manufacturer. Controls and wiring diagrams shall be provided by BAS subcontractors.
- C. BAS subcontractor's controls may also be factory installed by the manufacturer with coordination by BAS (mandatory requirement). Equipment warranties shall be maintained regardless of where controls are installed.
- D. Manufacturer and Prime Mechanical Contractor shall attend pre-shop drawing meeting at Architect/Engineer's office with BAS Contractors. Manufacturer shall attend pre-installation meeting on site with Architect/Engineer and BAS subcontractors. Manufacturer shall provide technical personnel to be on site for equipment controls and equipment start up.
- E. Equipment supplier shall provide all hardware and software necessary to integrate BAS Contractor's controls with BAS. Successful equipment supplier shall provide list of major integration components that they need to be integrated with BAS Contractor's controls.
- F. Equipment supplier shall provide proof of experience with integration of type outlined in this Specification. Supplier shall provide individuals experienced with the installation and startup of equipment relating to integration.
- G. Description: Factory-packaged and tested units rated according to AHRI 440 and ASHRAE 33.
- H. Coil Section Insulation: 1-inch-thick, coated glass fiber or foil-covered, closed-cell foam or matte-finish, closed-cell foam complying with ASTM C 1071 and attached with adhesive complying with ASTM C 916.
 - 1. Fire-Hazard Classification: Insulation and adhesive shall have a combined maximum flame-spread index of 25 and smoke-developed index of 50 when tested according to ASTM E 84.
 - 2. Airstream Surfaces: Surfaces in contact with the airstream shall comply with requirements in ASHRAE 62.1.
- I. Main and Auxiliary Drain Pans: Insulated stainless steel. Fabricate pans and drain connections to comply with ASHRAE 62.1. Drain pans shall be removable for cleaning.
- J. Chassis: Galvanized steel where exposed to moisture. Floor-mounting units shall have leveling

bolts.

K. Cabinet:

1. Exposed Units:

- a. Steel with baked-enamel finish in manufacturer's custom paint color as selected by Architect. Cabinet manufactured from 14-gauge sheet metal.
- b. Vertical Unit Front Panels: Removable, steel, with integral stamped steel discharge grille and channel-formed edges, cam fasteners, and insulation on back of panel.
- c. Side Pocket Extension: Provide side pocket extension for mounting of valves and controls for floor-mounted units and shall ship as single-piece assembly. Width of extension shall as indicated in schedule on Drawings.
- d. Provide return air grill on front of fan coil and fasten to fan coil unit with tamper-proof screws.
- e. Units shall have sloped top to attached to wall below window sill and maximum height shall be as indicated in schedule on Drawings.

2. Above-Ceiling Concealed Units:

- a. Designed for ducted supply air and return air duct connections.
- b. Access to unit interior through bottom removable panel.

L. Cooling Coil Condensate

- 1. Where units are unable to drain condensate by gravity alone, provide condensate pump, factory-wired to power source in unit and include float switch, factory-wired to shut down fan before drain pan overflows for both main and piping drain pans. Wire float switches to alarm at BAS.
- 2. Where units are able to drain by gravity alone and pump is not required, include drain pan float switch, factory-wired to shut down fan before drain pan overflows. Wire float switch to alarm at BAS.
- M. Filters: Minimum efficiency reporting value (MERV) according to ASHRAE 52.2.
 - 1. Pleated Cotton-Polyester Media: 90 percent arrestance and 8 MERV.
- N. Filter Supports: Support filter in rack to prevent bowing of filter. Include transverse sheet metal angles or channels in filter rack, installed perpendicular to long dimension of filter, from front of filter rack to rear, located maximum every 24 inches along long dimension of filter.
- O. Hydronic Coils: Copper tube, with mechanically bonded aluminum fins spaced no closer than 10 fins/inch, rated for minimum working pressure of 200 psig and maximum entering-water temperature of 220°F. Include manual air vent and drain valve.
- P. Fan and Motor: Removable.
 - 1. Fan: Draw-through forward-curved, double width, centrifugal; directly connected to motor. Thermoplastic or painted-steel wheels, and aluminum, painted-steel, or galvanized-steel fan scrolls.
 - 2. Motor: Energy efficient 3-speed ECM fan motor with thermal overload protection, resiliently mounted on motor board. Comply with requirements in Section 230513 "Common Motor Requirements for HVAC Equipment."
 - 3. Wiring Termination: Connect motor to chassis wiring with plug connection.
- Q. Factory installed, Hydronic Piping Package: ASTM B 88, Type L copper tube with wrought-copper fittings and brazed joints. Label piping to indicate service, inlet, and outlet. Refer to detail on Drawing.
- R. Control devices and operational sequences are specified 230900 "Instrumentation and Control for HVAC" and Section 230993 "Sequence and Operations for HVAC Controls." Controls shall be supplied by BAS Contractor and field-installed by BAS contractor.
- S. DDC Terminal Unit Controller:
 - 1. Refer to Division 23 Specification Section "Instrumentation and Control for HVAC" for

Addition & Alterations Department of Public Works 10 Hartford Road Delran, New Jersey

unit controller provided by BAS Contractor.

T. Electrical Connection: Factory wire motors, condensate pump, and controls for single electrical connection.

- U. Pipe Enclosures: Where shown on Drawings, provide vertical or horizontal galvanized sheet metal enclosure to conceal piping from ceiling to unit.
 - 1. Enclosure shall be manufactured by fan coil unit manufacturer to match fan coil unit cabinet.
 - 2. Factory paint finish shall be same as used for unit cabinet.
 - 3. Sheet metal thickness shall be same as used for unit cabinet.
 - 4. Enclosure shall aesthetically integrate with unit cabinet.
- V. Provide kickplate/return air grilles.
- W. Capacities and Characteristics: Refer to Schedule on Drawing.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine areas to receive fan-coil units for compliance with requirements for installation tolerances and other conditions affecting performance.
- B. Examine roughing-in for piping and electrical connections to verify actual locations before fancoil-unit installation.
- C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

- A. Install fan coil units level and plumb.
- B. Install fan coil units to comply with NFPA 90A.
- C. Install horizontal and/or vertical piping enclosures where shown on Drawings.
- D. Above-Ceiling Concealed Units: Suspend units from structure with elastomeric vibration isolators. Vibration isolators are specified in Section 230548 "Vibration and Seismic Controls for HVAC Piping and Equipment."
- E. Verify locations of thermostats/sensor and other exposed control sensors with Drawings and room details before installation. Install devices at height above finished floor that complies with ADA.
- F. Install new filters in each fan-coil unit within two weeks after Substantial Completion.
- G. Install BAS contractor's terminal unit controllers.

Addition & Alterations Department of Public Works 10 Hartford Road Delran, New Jersey

3.3 CONNECTIONS

A. Piping installation requirements are specified in other Sections. Drawings indicate general arrangement of piping, fittings, and specialties. Specific connection requirements are as follows:

- 1. Install piping adjacent to unit to allow service and maintenance.
- 2. Connect piping to fan coil unit factory hydronic piping package. Install piping package if shipped loose.
- 3. Connect condensate drain to condensate pump, if installed, and discharge as shown on Drawings.
 - a. Install condensate trap of adequate depth to seal against pressure of fan.
- B. Above-Ceiling Concealed Units: Connect supply and return ducts to units with flexible duct connectors specified in Section 233300 "Air Duct Accessories." Comply with safety requirements in UL 1995 for duct connections.
- C. Ground equipment according to Section 260526 "Grounding and Bonding for Electrical Systems" and connect wiring according to Section 260519 "Low-Voltage Electrical Power Conductors and Cables."

3.4 FIELD QUALITY CONTROL

- A. Manufacturer's Field Service: Engage factory employed service representative to inspect, test, and adjust field-assembled components and equipment installation, including connections, and to assist in field testing. Report results in writing.
- B. Perform the following field tests and inspections and prepare test reports:
 - 1. Operational Test: After electrical circuitry has been energized, start units to confirm proper motor rotation and unit operation.
 - 2. Operate electric heating elements through each stage to verify proper operation and electrical connections.
 - 3. Test and adjust controls and safety devices. Replace damaged and malfunctioning controls and equipment.
- C. Remove and replace malfunctioning units and retest as specified above.

3.5 ADJUSTING

- A. Adjust initial temperature set points.
- B. Occupancy Adjustments: When requested within 24 months of date of Substantial Completion, provide on-site assistance in adjusting system to suit actual occupied conditions. Provide up to four visits to Project during other than normal occupancy hours for this purpose.

3.6 DEMONSTRATION

A. Engage factory employed service representative to train Owner's maintenance personnel to adjust, operate, and maintain fan-coil units. Refer to Section 017900 "Demonstration and Training."

Addition & Alterations Department of Public Works 10 Hartford Road Delran, New Jersey

3.7 COORDINATION AND JOINT COMMISIONING

- A. Coordination Meeting: Installer furnishing manufacturer's BAS network interface shall meet with BAS Installer to coordinate details of interface between these products and BAS. Owner or his designated representative shall be present at this meeting. Each Installer shall provide Owner and all other Installers with details of proposed interface including PICS for BACnet equipment, hardware and software identifiers for interface points, network identifiers, wiring requirements, communication speeds, and required network accessories. Purpose of this meeting shall be to ensure there are no unresolved issues regarding integration of these products into BAS. Submittals for these products shall not be approved prior to completion of this meeting.
- B. Start Up and Check-out Procedures
 - 1. Equipment supplier shall independently start-up, check-out and test all hardware and software and verify communication between all components.
 - 2. Verify that all control wiring is properly connected and free of shorts and ground faults. Verify that terminations are tight.
 - 3. Verify that all analog and binary input/output points read properly.
 - 4. Verify alarms and interlocks.
- C. Joint Commissioning Verify operation of the integrated system.
 - 1. Upon review of software, point-to-point test of integrated control installation shall commence. Equipment supplier representative in conjunction with BAS representative shall test actual field operation of each control and sensing point. Compare values read in BAS to those indicated on control panel display.
 - 2. When point input/output testing is successfully completed, series of hardware/software system tests shall be performed. All groups of points that yield system control shall be tested for compliance with sequences of operation. Tests shall include but not be limited to:
 - a. Control interlocks and any miscellaneous sequences shall be tested.
 - b. All alarms and shutdown modes shall be tested for proper operation.
 - 3. Engineer and Owner may elect to be present to observe and review these tests. They shall be notified at least ten days in advance of start of testing procedures.

END OF SECTION 238219

SECTION 260450 - ELECTRICAL DEMOLITION & RENOVATION

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 1 Specification Sections, apply to this Section.

1.2 REFERENCE CODES AND STANDARDS

- A. The work shall conform to:
 - 1. National Electrical Code
 - 2. State and Local Codes

PART 2 - PRODUCTS

2.1 Materials used for this work shall be in accordance with the applicable specification sections in Division 16.

PART 3 - EXECUTION

- 3.1 Provide demolition, relocation, and alteration of electrical construction as required.
 - A. The contractor shall notify the owner 48 hours in advance of any interruptions of electric service to any area of the building.
 - B. All interruptions of electric service shall be kept to a minimum. Where power is to be interrupted longer than twenty (20) minutes, the work shall be done after normal business hours, and where necessary, temporary power shall be provided by means of additional temporary feeds or by means of a generator.
 - C. Should the electrical service be disrupted do to construction while the building is occupied the contractor shall provide temporary electrical power at no additional cost to the contract.
- 3.2 Check the locations of all existing electrical work, such as lighting fixtures, electrical conduit, wiring, fittings, controls, starters and other electrical construction and provide the removing, relocating, rerouting, and reconnecting of this work due to demolition and new construction. Any existing apparatus or wiring device to be retained shall be disconnected, relocated and reinstalled as required, to allow for new wall, floor or ceiling finishes.
- 3.3 Methods of installation and standards of workmanship shall be in accordance with the applicable specification sections under Division 16.

- 3.4 Where existing equipment will remain in service during construction, provide rerouting and reconnection of electrical service as required.
- 3.5 Protect existing electrical equipment and installations indicated to remain. If damaged or disturbed in the course of the work, remove damaged portions and install new products of equal capacity, quality, and functionality.
- 3.6 Accessible Work: Remove exposed electrical equipment and installations, indicated to be demolished, in their entirety.
- 3.7 Abandoned Work: Cut and remove buried raceway and wiring, indicated to be abandoned in place, 2 inches (50 mm), below the surface of adjacent construction. Cap raceways and patch surface to match existing finish.
- 3.8 Remove demolished material from project site. Any particular equipment that the owner wants saved shall be stored as directed.
- 3.9 Remove, store, clean, reinstall, reconnect, and make operational components indicated for relocation.
- Feeders or circuits, whether spliced, extended, relocated or new, shall maintain amperage and continuity of that respective feeder or circuit.
- Where new work interferes with existing work or other trades, relocate such existing work without additional cost. Approval by the Owner's Representative must be given before any relocation work can begin. The relocation work shall be done in a manner acceptable to the Owner. Engage Contractor of the appropriate trade to do the work.

END OF SECTION 260450

SECTION 260500 - COMMON WORK REQUIREMENTS FOR ELECTRICAL

PART 1 - GENERAL

1.1 SUMMARY

- A. This Section includes the following:
 - 1. Raceways.
 - 2. Building wire and connectors.
 - 3. Supporting devices for electrical components.
 - 4. Electrical identification.
 - 5. Utility company electricity-metering components.
 - 6. Concrete equipment bases.
 - 7. Electrical demolition.
 - 8. Cutting and patching for electrical construction.

1.2 SUBMITTALS

- A. Product Data: For utility company electricity-metering components.
- B. Shop Drawings: Dimensioned plans and sections or elevation layouts and single-line diagram of electricity-metering component assemblies specific to this Project.

1.3 QUALITY ASSURANCE

- A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.
- B. The contractor shall be fully responsible in the coordination and installation of all electrical products as per the manufacturer's recommendations. Should the contractor alter or change the manufacturer's installation recommendations, the contractor shall submit a certified installation report from the manufacturer's representative stating the installed is acceptable. Any discrepancies in the installation shall be corrected per the manufacturer's requirements at no additional cost to the owner and before final closeout of the project.
- C. Devices for Utility Company Electricity Metering: Comply and coordinate with local utility company requirements and Specification Section 262713 Electricity Metering.
- D. Comply with NFPA 70.

1.4 COORDINATION

- A. Coordinate chases, slots, inserts, sleeves, and openings for electrical supports, raceways, and cable with general construction work and all trades.
- B. Sequence, coordinate, and integrate installing electrical materials and equipment for efficient flow of the Work. Coordinate installing large equipment that requires positioning before closing in the building or space.
- C. Coordinate all electrical service connections to components furnished by utility companies.
 - 1. Coordinate installation and connection of exterior underground and overhead utilities and services, including provision for service entrances and electricity-metering components.
- D. Coordinate location of access panels and doors for electrical items that are concealed by finished surfaces. Access doors and panels are specified in Division 8 Section "Access Doors and Frames."
- E. Where electrical identification devices are applied to field-finished surfaces, coordinate installation of identification devices with completion of finished surface.

1.5 ITEMS NOT SHOWN OR SPECIFIED

- A. Any item of material not indicated on the drawings and/or not specified, but which is required for the complete and proper installation and/or operation of any part of the work, shall be provided as if indicated and specified, at no additional cost to the Owner.
- B. Any work not indicated on the drawings and/or not specified, but which is required for compliance with applicable codes and regulations, shall be provided as if indicated and specified, at no additional cost to the Owner.

PART 2 - PRODUCTS

2.1 RACEWAYS

- A. EMT: Electrical metallic tubing; ANSI C80.3, zinc-coated steel, with compression fittings.
- B. FMC: Flexible metal conduit; zinc-coated steel.
- C. IMC: Intermediate metal conduit; ANSI C80.6, zinc-coated steel, with threaded fittings.
- D. LFMC: Liquid tight flexible metal conduit; zinc-coated steel with sunlight-resistant and mineral-oil-resistant plastic iacket.
- E. RMC: Rigid metal conduit; galvanized rigid steel; ANSI C80.1.
- F. RNC: Rigid nonmetallic conduit; NEMA TC 2, Schedule 40 PVC, with NEMA TC3 fittings.
- G. Raceway Fittings: Specifically designed for raceway type with which used.

2.2 WIRES, CABLES, AND CONNECTIONS

- A. Conductors, No. 10 AWG and Smaller: Solid or stranded copper.
- B. Conductors, Larger Than No. 10 AWG: Stranded copper.
- C. Insulation: Thermoplastic, rated 600 V, 75 deg C minimum, Type THW, THHN-THWN, or USE depending on application.
- D. Wire Connectors and Splices: Units of size, ampacity rating, material, type, and class suitable for service indicated.

2.3 SUPPORTING DEVICES

- A. Material: Cold-formed steel, with corrosion-resistant coating.
- B. Metal Items for Use Outdoors or in Damp Locations: Hot-dip galvanized steel.
- C. Slotted-Steel Channel: Flange edges turned toward web, and 9/16-inch- (14-mm-) diameter slotted holes at a maximum of 2 inches (50 mm) o.c., in webs. Strength rating to suit structural loading.
- D. Nonmetallic Slotted Channel and Angle: Structural-grade, factory-formed, glass-fiber-resin channels and angles with 9/16-inch- (14-mm-) diameter holes at a maximum of 8 inches (203 mm) o.c., in at least one surface. Strength rating to suit structural loading.
- E. Slotted Channel Fittings and Accessories: Recommended by the manufacturer for use with the type and size of channel with which used.
 - 1. Materials: Same as channels and angles, except metal items may be stainless steel.
- F. Raceway and Cable Supports: Manufactured clevis hangers, riser clamps, straps, threaded C-clamps with retainers, ceiling trapeze hangers, wall brackets, and spring-steel clamps or click-type hangers.
- G. Pipe Sleeves: ASTM A 53, Type E, Grade A, Schedule 40, galvanized steel, plain ends.
- H. Cable Supports for Vertical Conduit: Factory-fabricated assembly consisting of threaded body and insulating wedging plug for nonarmored electrical cables in riser conduits. Plugs have number and size of conductor gripping holes as required to suit individual risers. Body constructed of malleable-iron casting with hot-dip galvanized finish.
- I. Expansion Anchors: Carbon-steel wedge or sleeve type.
- J. Toggle Bolts: All-steel springhead type.
- K. Powder-Driven Threaded Studs: Heat-treated steel.

2.4 ELECTRICAL IDENTIFICATION

- A. Identification Device Colors: Use those prescribed by ANSI A13.1, NFPA 70, and these Specifications.
- B. Colored Adhesive Marking Tape for Raceways, Wires, and Cables: Self-adhesive vinyl tape, not less than 1 inch wide by 3 mils thick (25 mm wide by 0.08 mm thick).
- C. Tape Markers for Conductors: Vinyl or vinyl-cloth, self-adhesive, wraparound type with preprinted numbers and letters.
- D. Color-Coding Cable Ties: Type 6/6 nylon, self-locking type. Colors to suit coding scheme.
- E. Underground Warning Tape: Permanent, bright-colored, continuous-printed, vinyl tape compounded for permanent direct-burial service, and with the following features:
 - 1. Not less than 6 inches wide by 4 mils thick (150 mm wide by 0.102 mm thick).
 - 2. Embedded continuous metallic strip or core.
 - 3. Printed legend that indicates type of underground line.
- F. Engraved-Plastic Labels, Signs, and Instruction Plates: Engraving stock, melamine plastic laminate punched or drilled for mechanical fasteners 1/16-inch (1.6-mm) minimum thickness for signs up to 20 sq. in. (129 sq. cm) and 1/8-inch (3.2-mm) minimum thickness for larger sizes. Engraved legend in black letters on white background.
- G. Warning and Caution Signs: Preprinted; comply with 29 CFR 1910.145, Chapter XVII. Colors, legend, and size appropriate to each application.
 - 1. Interior Units: Aluminum, baked-enamel-finish, punched or drilled for mechanical fasteners.
 - 2. Exterior Units: Weather-resistant, nonfading, preprinted, cellulose-acetate butyrate with 0.0396-inch (1-mm), galvanized-steel backing. 1/4-inch (6-mm) grommets in corners for mounting.
- H. Fasteners for Nameplates and Signs: Self-tapping, stainless-steel screws or No. 10/32 stainless-steel machine screws with nuts and flat and lock washers.

2.5 EQUIPMENT FOR UTILITY COMPANY'S ELECTRICITY METERING

- A. Comply with requirements of the local electrical power utility company for meter sockets and current transformer cabinet and as per Specification Section 262713 Electricity Metering.
- B. Provide Cold Sequence Meter Protection Switch as required by the Local Utility Company.

2.6 CONCRETE BASES

A. Not applicable

PART 3 - EXECUTION

3.1 ELECTRICAL EQUIPMENT INSTALLATION

- A. Headroom Maintenance: If mounting heights or other location criteria are not indicated, arrange and install components and equipment to provide maximum possible headroom.
- B. Materials and Components: Install level, plumb, and parallel and perpendicular to other building systems and components, unless otherwise indicated.
- C. Equipment: Install to facilitate service, maintenance, and repair or replacement of components. Connect for ease of disconnecting, with minimum interference with other installations.
- D. Right of Way: Give to raceways and piping systems installed at a required slope.

3.2 RACEWAY APPLICATION

- A. Outdoor Installations:
 - 1. Exposed: RGS.
 - 2. Concealed: RGS.
 - 3. Underground, Single Run: RNC.
 - 4. Underground, Grouped: RNC.
 - 5. Connection to Vibrating Equipment: LFMC.

- 6. Boxes and Enclosures: NEMA 250, Type 3R or Type 4, unless otherwise indicated.
- B. Indoor Installations:
 - 1. Exposed: EMT except in wet or damp locations, use IMC.
 - 2. Concealed in Walls or Ceilings: FMC.
 - 3. In Concrete Slab: RNC.
 - 4. Below Slab on Grade or in Crawlspace: RNC
 - 5. Connection to Vibrating Equipment: FMC; except in wet or damp locations: LFMC.
 - 6. Boxes and Enclosures: NEMA 250, Type 1, unless otherwise indicated.

3.3 RACEWAY AND CABLE INSTALLATION

- A. Conceal raceways and cables, unless otherwise indicated, within finished walls, ceilings, and floors.
- B. Keep legs of raceway bends in the same plane and keep straight legs of offsets parallel.
- C. Use RMC elbows where RNC turns out of slab.
- D. Where required to provide a Rough-in Only device application concealed within the vertical walls the contractor shall provide the device work box and 3/4" EMT raceway to above the ceiling with a 90-degree bend turned into the ceiling space and apply an open end plastic bushing or cap for future wiring application.
- E. Install pull wires in empty raceways. Use No. 14 AWG zinc-coated steel or woven polypropylene or monofilament plastic line with not less than 200-lb (90-kg) tensile strength. Leave at least 12 inches (300 mm) of slack at each end of pull wires.
- F. Connect motors and equipment subject to vibration, noise transmission, or movement with a maximum of 72-inches (1830-mm) flexible conduit. Install LFMC in wet or damp locations. Install separate ground conductor across flexible connections.

3.4 WIRING METHODS FOR POWER, LIGHTING, AND CONTROL CIRCUITS

- A. Application: Use wiring methods specified below to the extent permitted by applicable codes as interpreted by authorities having jurisdiction.
- B. Exposed Feeders: Insulated single conductors in raceway.
- C. Concealed Feeders in Concrete: Insulated single conductors in PVC raceway.
- D. Exposed Branch Circuits Insulated single conductors in raceway.
- E. Concealed Branch Circuits: Insulated single conductors in FMC raceway.
- F. Underground Feeders and Branch Circuits: Insulated single conductors in raceway.
- G. Remote-Control Signaling and Power-Limited Circuits, Classes 1, 2, and 3: Insulated conductors in FMC raceway unless otherwise indicated.

3.5 WIRING INSTALLATION

A. Make splices and taps that are compatible with conductor material and that possess equivalent or better mechanical strength and insulation ratings than unspliced conductors.

3.6 ELECTRICAL SUPPORTING DEVICE APPLICATION

- A. Damp Locations and Outdoors: Hot-dip galvanized materials or nonmetallic, slotted channel system components.
- B. Dry Locations: Steel materials.
- C. Strength of Supports: Adequate to carry present and future loads, times a safety factor of at least four with, 200-lb (90-kg) minimum design load for each support element.

3.7 SUPPORT INSTALLATION

- A. Support parallel runs of horizontal raceways together on trapeze- or bracket-type hangers.
- B. Size supports for multiple raceway or cable runs so capacity can be increased by a 25 percent minimum in the future.

- C. Support individual horizontal single raceways with separate, malleable-iron pipe hangers or clamps.
- D. Install sleeves for cable and raceway penetrations of concrete slabs and walls unless core-drilled holes are used. Install sleeves for cable and raceway penetrations of masonry and fire-rated gypsum walls and of all other fire-rated floor and wall assemblies. Install sleeves during erection of concrete and masonry walls.
- E. Secure electrical items and their supports to building structure, using the following methods unless other fastening methods are indicated:
 - 1. Wood: Wood screws or screw-type nails.
 - 2. Gypsum Board: Toggle bolts. Seal around sleeves with joint compound, both sides of wall.
 - Masonry: Toggle bolts on hollow block and expansion bolts on solid block. Seal around sleeves with mortar, both sides of wall.
 - 4. New Concrete: Concrete inserts with machine screws and bolts.
 - 5. Existing Concrete: Expansion bolts or threaded studs driven by powder charge and provided with lock washers.
 - 6. Structural Steel: Welded threaded studs.
 - a. Comply with AWS D1.1 for field welding.
 - 7. Light Steel Framing: Sheet metal screws.
 - 8. Fasteners for Damp, Wet, or Weather-Exposed Locations: Stainless steel.
 - 9. Light Steel: Sheet-metal screws.
 - 10. Fasteners: Select so load applied to each fastener does not exceed 25 percent of its proof-test load.

3.8 FIRESTOPPING

A. Apply firestopping to cable and raceway sleeves and other penetrations of fire-rated floor and wall assemblies to restore original undisturbed fire-resistance ratings of assemblies.

3.9 DEMOLITION

- A. Protect existing electrical equipment and installations indicated to remain. If damaged or disturbed in the course of the Work, remove damaged portions, and install new products of equal capacity, quality, and functionality.
- B. Accessible Work: Remove exposed electrical equipment and installations, indicated to be demolished, in their entirety and back to electrical panel source.
- C. Abandoned Work: Cut and remove buried raceway and wiring, indicated to be abandoned in place, 2 inches (50 mm) below the surface of adjacent construction. Cap raceways and patch surface to match existing finish.
- D. Remove, store, clean, reinstall, reconnect, and make operational components indicated for relocation.

3.10 TEMPORARY ELECTRICAL POWER / SERVICES

- A. Provide all necessary temporary electrical construction power by either a temporary service power pole or by portable generator to maintain adequate electrical power requirements for the duration of construction.
- B. Should the project include demolition or disruption of an existing electrical service the contractor shall provide temporary back-up power source and connection that meets the demand requirements of the disturbed service at no additional cost to the project or owner.

3.11 CUTTING AND PATCHING

- A. Cut, channel, chase, and drill floors, walls, partitions, ceilings, and other surfaces required to permit electrical installations. Perform cutting by skilled mechanics of trades involved.
- B. Repair, refinish and touch up disturbed finish materials and other surfaces to match adjacent undisturbed surfaces.

April 25, 2025 Bid Issue

Addition & Alterations Department of Public Works 10 Hartford Road Delran, New Jersey

END OF SECTION 26 05 00

SECTION 260519 - CONDUCTORS AND CABLES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 1 Specification Sections, apply to this Section.

1.2 SUMMARY

A. This Section includes building wires and cables and associated connectors, splices, and terminations for wiring systems rated 600 V and less.

1.3 SUBMITTALS

A. Field Test Reports: Indicate and interpret test results for compliance with performance requirements.

1.4 QUALITY ASSURANCE

- A. Listing and Labeling: Provide wires and cables specified in this Section that are listed and labeled.
 - 1. The Terms "Listed" and "Labeled" as defined in NFPA 70, Article 100.
 - 2. Listing and Labeling Agency Qualifications: A "Nationally Recognized Testing Laboratory" as defined in OSHA Regulation 1910.7.
- B. Comply with NFPA 70.

1.5 DELIVERY, STORAGE AND HANDLING

A. Deliver wires and cables according to NEMA WC 26.

1.6 COORDINATION

- A. Coordinate layout and installation of cables with other installations.
- B. Revise locations and elevations from those indicated, as required to suit field conditions and as approved by Engineer.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the manufacturers specified.

2.2 CONDUCTORS AND CABLES

- A. Manufacturers:
 - 1. American Insulated Wire Corp.; a Leviton Company.
 - 2. General Cable Corporation.
 - 3. Rome Cable Company.
 - 4. Southwire Corporation.
 - 5. Thermon
 - 6. Raychem; a Tyco Company
 - 7. Or Approved Equal
- B. Refer to Part 3 "Conductor and Insulation Applications" Article for insulation type, cable construction, and ratings.

- C. Conductor Material: Copper complying with NEMA WC 5 or 7; solid conductor for No. 10 AWG and smaller, stranded for No. 8 AWG and larger.
- D. Conductor Insulation Types: Type THW, THHN-THWN, XHHW and SO complying with NEMA WC 5 or 7.
- E. Multiconductor Cable: Armored cable Type AC, Metal-clad cable Type MC, and Type SO with ground wire. Armor shall be steel interlocked covering.
- F. Self-Regulating Heating Cable
 - A. Low Temperature Self-Regulating Heating Cable
 - 1. Heating cables shall be self-regulating, capable of maintaining process temperatures up to 150°F and a continuous exposure to pipeline temperature of 185°F while de-energized.
 - 2. Cable must be of parallel construction so that it can be cut to length without changing its power output per unit length.
 - 3. The heater cable assembly shall have a monolithic heating core construction consisting of two parallel 16 AWG nickel-plated copper bus conductors with a semiconductive PTC polymer extruded over and between these parallel conductors. A polyethylene dielectric insulating jacket is extruded over the heating element core.
 - 4. The semiconductive heating matrix and primary insulating jacket shall be cross-linked by irradiation.
 - 5. The basic cable will be covered by means of a metallic braid of tinned copper. The braid will provide a nominal coverage of eighty percent (80%) and will exhibit a resistance not exceeding 0.0.0045 ohm/ft.
 - 6. The cable shall be covered with a corrosion resistant over-jacket of thermoplastic elastomer (for possible exposure to aqueous solutions, mild acids, or bases) or fluoropolymer (for possible exposure to organic chemicals or corrosives).
 - 7. For longer circuit lengths and higher heat loss requirements greater than 10 W/ft @ 50°F, the heating cable shall have 14 AWG nickel-plated copper bus conductors.
 - 8. Long term stability shall be established by the service life
 - a. performance test per IEEE 515 Std-2004.
 - 9. Where self regulating cable is required the contractor shall also include all required control, thermostatic equipment, and overcurrent protection to achieve the safe operating requirements recommended by the manufacturer.

2.3 CONNECTORS AND SPLICES

- A. Manufacturers:
 - 1. AFC Cable Systems, Inc.
 - 2. AMP Incorporated/Tyco International.
 - 3. Hubbell/Anderson.
 - 4. O-Z/Gedney; EGS Electrical Group LLC.
 - 5. 3M Company; Electrical Products Division.
 - 6. Or Approved Equal
- B. Description: Factory-fabricated connectors and splices of size, ampacity rating, material, type, and class for application and service indicated.

PART 3 - EXECUTION

3.1 CONDUCTOR AND INSULATION APPLICATIONS

- A. Service Entrance: Type THHN-THWN, single conductors in raceway, XHHW, single conductors in raceway.
- B. Exposed Feeders: Type THHN-THWN, single conductors in raceway.
- C. Feeders Concealed in Ceilings, Walls, and Partitions: Type THHN-THWN, single conductors in raceway.
- D. Feeders Concealed in Concrete, below Slabs-on-Grade, and in Crawlspaces: Type THHN-THWN, single conductors in raceway.
- E. Exposed Branch Circuits, including in Crawlspaces: Type THHN-THWN, single conductors in raceway.
- F. Branch Circuits Concealed in Ceilings, Walls, and Partitions: Type THHN-THWN, single conductors in raceway, Armored cable Type AC, Metal-clad cable Type MC.
- G. Branch Circuits Concealed in Concrete and below Slabs-on-Grade: Type THHN-THWN, single conductors in raceway.
- H. Branch circuit homeruns exposed: Type THHN-THWN, single conductors in EMT or RMC.
- I. Cord Drops and Portable Appliance Connections: Type SO, hard service cord.
- J. Fire Alarm Circuits: Type THHN-THWN, in raceway or Power-limited, fire-protective, signaling circuit cable in steel armor spiral cover, colored red.
- K. Class 1 Control Circuits: Type THHN-THWN, in raceway.
- L. Class 2 Control Circuits: Power-limited cable, concealed in building finishes.

3.2 INSTALLATION

- A. Conceal cables in finished walls, ceilings, and floors, unless otherwise indicated.
- B. Use manufacturer-approved pulling compound or lubricant where necessary; compound used must not deteriorate conductor or insulation. Do not exceed manufacturer's recommended maximum pulling tensions and sidewall pressure values.
- C. Use pulling means; including fish tape, cable, rope, and basket-weave wire/cable grips, which will not damage cables or raceway.
- D. Install exposed cables parallel and perpendicular to surfaces of exposed structural members and follow surface contours where possible.
- E. Support cables according to Division 26 Section "Basic Electrical Materials and Methods."
- F. Provide an additional two thousand linear feet of cable/conductor and accessories of each type and size used on the project to accommodate any changes required to resolve interferences or as directed by the Engineer.
- G. Seal around cables penetrating fire-rated elements according to Division 7 Section "Through-Penetration Firestop Systems."
- H. Identify and color-code conductors and cables according to Division 26 Section "Electrical Identification."

3.3 CONNECTIONS

- A. Tighten electrical connectors and terminals according to manufacturer's published torque-tightening values. If manufacturer's torque values are not indicated, use those specified in UL 486A and UL 486B.
- B. Make splices and taps that are compatible with conductor material and that possess equivalent or better mechanical strength and insulation ratings than un-spliced conductors.
 - 1. Use oxide inhibitor in each splice and tap conductor for aluminum conductors.
- C. Wiring at Outlets: Install conductor at each outlet, with at least 12 inches (300 mm) of slack.

3.4 FIELD QUALITY CONTROL

- A. Testing: Perform the following field quality-control testing:
 - 1. After installing conductors and cables and before electrical circuitry has been energized, test for compliance with requirements.

Addition & Alterations Department of Public Works 10 Hartford Road Delran, New Jersey

- 2. Perform each electrical test and visual and mechanical inspection stated in NETA ATS, Section 7.3.1. Certify compliance with test parameters.
- B. Test Reports: Prepare a written report to record the following:
 - 1. Test procedures used.
 - 2. Test results that comply with requirements.
 - 3. Test results that do not comply with requirements and corrective action taken to achieve compliance with requirements.

END OF SECTION 26 05 19

SECTION 260526 - GROUNDING AND BONDING

PART 1 - GENERAL

1.1 SUMMARY

A. This Section Includes Grounding Of Electrical Systems And Equipment. Requirements Specified In This Section May Be Supplemented By Requirements Of Other Sections.

1.2 SUBMITTALS

- A. Product Data: For Ground Rods And Chemical Rods.
- B. Field Quality-Control Test Reports.

1.3 QUALITY ASSURANCE

- A. Electrical Components, Devices, And Accessories: Listed And Labeled Under Ul 467 As Defined In NFPA 70, Article 100, By A Testing Agency Acceptable To Authorities Having Jurisdiction, And Marked For Intended Use.
- B. Comply With NFPA 70; For Overhead-Line Construction And Medium-Voltage Underground Construction, Comply With Ieee C2.
- C. Comply With NFPA 780 And Ul 96 When Interconnecting With Lightning Protection System.

1.4 EXTRA MATERIALS

- A. Furnish Extra Materials Described Below That Match Products Installed And That Are Packaged With Protective Covering For Storage And Identified With Labels Describing Contents.
 - 1. Ground Rods-Provide An Additional 4 Ground Rods Of Each Type And Size Utilized On This Project.
 - 2. Ground Conductors-Provide An Additional 150 Feet Of Each Ground Conductor Type And Size Utilized On This Project.
 - 3. Ground Connections-Provide An Additional 4 Connections Of Each Type And Size Utilized On This Project.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

- A. Manufacturers: Subject To Compliance With Requirements, Provide Products By One Of The Following:
 - 1. Apache Grounding/Erico Inc.
 - 2. Boggs, Inc.
 - 3. Chance/Hubbell.
 - 4. Copperweld Corp.
 - 5. Dossert Corp.
 - 6. Erico Inc.; Electrical Products Group.
 - 7. Framatome Connectors/Burndy Electrical.
 - 8. Ideal Industries, Inc.
 - 9. Ilsco.
 - 10. Kearney/Cooper Power Systems.
 - 11. Korns, C. C. Co.; Division Of Robroy Industries.
 - 12. Lightning Master Corp.

- 13. Lyncole Xit Grounding.
- 14. O-Z/Gedney Co.; A Business Of The Egs Electrical Group.
- 15. Raco, Inc.; Division Of Hubbell.
- 16. Robbins Lightning, Inc.
- 17. Salisbury, W. H. & Co.
- 18. Superior Grounding Systems, Inc.
- 19. Thomas & Betts, Electrical.
- 20. Or Approved Equal

2.2 GROUNDING CONDUCTORS

- A. For Insulated Conductors, Comply With Division 16 Section "Conductors And Cables."
- B. Equipment Grounding Conductors: Insulated With Green-Colored Insulation.
- C. Isolated Ground Conductors: Insulated With Green-Colored Insulation With Yellow Stripe. On Feeders With Isolated Ground, Use Colored Tape, Alternating Bands Of Green And Yellow Tape To Provide A Minimum Of Three Bands Of Green And Two Bands Of Yellow.
- D. Grounding Electrode Conductors: Stranded Cable.
- E. Underground Conductors: Bare, Tinned, Stranded, Unless Otherwise Indicated.
- F. Bare, Solid-Copper Conductors: Astm B 3.
- G. Assembly Of Bare, Stranded-Copper Conductors: Astm B 8.
- H. Bare, Tinned-Copper Conductors: Astm B 33.
- I. Copper Bonding Conductor: No. 4 Or No. 6 Awg, Stranded Copper Conductor.
- J. Copper Bonding Jumper: Bare Copper Tape, Braided Bare Copper Conductors, Terminated With Copper Ferrules; 1-5/8 Inches (42 Mm) Wide And 1/16 Inch (1.5 Mm) Thick.
- K. Tinned-Copper Bonding Jumper: Tinned-Copper Tape, Braided Copper Conductors, Terminated With Copper Ferrules; 1-5/8 Inches (42 Mm) Wide And 1/16 Inch (1.5 Mm) Thick.
- L. Ground Conductor For Overhead Distribution: No. 4 Awg Minimum, Soft-Drawn Copper.
- M. Grounding Bus: Bare, Annealed Copper Bars Of Rectangular Cross Section, With Insulated Spacer.
- N. Connectors: Comply With Ieee 837 And Ul 467; Listed For Use For Specific Types, Sizes, And Combinations Of Conductors And Connected Items. Compression Type Or Exothermic-Welded Type, In Kit Form, Selected Per Manufacturer's Written Instructions.

2.3 GROUNDING ELECTRODES

- A. Ground Rods: Copper-Clad Steel.
- B. Ground Rods: Sectional Type; Copper-Clad Steel.
 - 1. Size: 3/4 By 120 Inches (19 By 3000 Mm) In Diameter.
- C. Chemical Electrodes: Copper Tube, Straight Or L-Shaped, Filled With Nonhazardous Chemical Salts, Terminated With A 4/0 Bare Conductor. Provide Backfill Material Recommended By Manufacturer.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Use Only Copper Conductors For Both Insulated And Bare Grounding Conductors In Direct Contact With Earth, Concrete, Masonry, Crushed Stone, And Similar Materials.
- B. In Raceways, Use Insulated Equipment Grounding Conductors.
- C. Exothermic-Welded Connections: Use For Connections To Structural Steel And For Underground Connections.
- D. Grounding Bus: Install In Electrical And Telephone Equipment Rooms, In Rooms Housing Service Equipment, And Elsewhere As Indicated.
 - 1. Use Insulated Spacer; Space 1 Inch (25.4 Mm) From Wall And Support From Wall 6 Inches (150 Mm) Above Finished Floor, Unless Otherwise Indicated.

- 2. At Doors, Route The Bus Up To The Top Of The Door Frame, Across The Top Of The Doorway, And Down To The Indicated Height Above The Floor.
- E. Underground Grounding Conductors: Use Tinned-Copper Conductor, No. 2/0 Awg Minimum. Bury At Least 24 Inches (600 Mm) Below Grade Or Bury 12 Inches (300 Mm) Above Duct Bank When Installed As Part Of The Duct Bank.
- F. Equipment Grounding Conductors: Comply With NFPA 70, Article 250, For Types, Sizes, And Quantities Of Equipment Grounding Conductors, Unless Specific Types, Larger Sizes, Or More Conductors Than Required By NFPA 70 Are Indicated.
 - 1. Install Insulated Equipment Grounding Conductors In Feeders And Branch Circuits.
 - 2. Busway Supply Circuits: Install Insulated Equipment Grounding Conductor From The Grounding Bus In The Switchgear, Switchboard, Or Distribution Panel To Equipment Grounding Bar Terminal On Busway.
 - 3. Computer Outlet Circuits: Install Insulated Equipment Grounding Conductor In Branch-Circuit Runs From Computer-Area Power Panels Or Power-Distribution Units.
 - 4. Isolated Grounding Receptacle Circuits: Install An Insulated Equipment Grounding Conductor Connected To The Receptacle Grounding Terminal. Isolate Grounding Conductor From Raceway And From Panelboard Grounding Terminals. Terminate At Equipment Grounding Conductor Terminal Of The Applicable Derived System Or Service, Unless Otherwise Indicated.
 - 5. Isolated Equipment Enclosure Circuits: For Designated Equipment Supplied By A Branch Circuit Or Feeder, Isolate Equipment Enclosure From Supply Raceway With A Nonmetallic Raceway Fitting Listed For The Purpose. Install Fitting Where Raceway Enters Enclosure, And Install An Insulated Equipment Grounding Conductor. Isolate Equipment Grounding Conductor From Raceway And From Panelboard Grounding Terminals. Terminate At Equipment Grounding Conductor Terminal Of The Applicable Derived System Or Service, Unless Otherwise Indicated.
 - 6. Nonmetallic Raceways: Install An Equipment Grounding Conductor In Nonmetallic Raceways Unless They Are Designated For Telephone Or Data Cables.
 - 7. Air-Duct Equipment Circuits: Install An Insulated Equipment Grounding Conductor To Duct-Mounted Electrical Devices Operating At 120 V And More, Including Air Cleaners And Heaters. Bond Conductor To Each Unit And To Air Duct.
 - 8. Water Heater, Heat-Tracing, And Antifrost Heating Cables: Install An Insulated Equipment Grounding Conductor To Each Electric Water Heater, Heat-Tracing, And Antifrost Heating Cable. Bond Conductor To Heater Units, Piping, Connected Equipment, And Components.
 - 9. Signal And Communication Systems: For Telephone, Alarm, Voice And Data, And Other Communication Systems, Provide No. 4 Awg Minimum Insulated Grounding Conductor In Raceway From Grounding Electrode System To Each Service Location, Terminal Cabinet, Wiring Closet, And Central Equipment Location.
 - a. Service And Central Equipment Locations And Wiring Closets: Terminate Grounding Conductor On A 1/4-By-2-By-12-Inch (6.4-By-50-By-300-Mm) Grounding Bus.
 - b. Terminal Cabinets: Terminate Grounding Conductor On Cabinet Grounding Terminal.
 - 10. Metal Poles Supporting Outdoor Lighting Fixtures: Provide A Grounding Electrode In Addition To Installing An Insulated Equipment Grounding Conductor With Supply Branch-Circuit Conductors.
 - 11. Common Ground Bonding With Lightning Protection System: Bond Electrical Power System Ground Directly To Lightning Protection System Grounding Conductor At Closest Point To Electrical Service Grounding Electrode. Use Bonding Conductor Sized Same As System Grounding Electrode Conductor, And Install In Conduit.
- G. Metal Frame Grounding For Buildings: Drive A Ground Rod At The Base Of Every Corner Column And At Intermediate Exterior Columns At Distances Not More Than 60 Feet (18 M) Apart. Connect Rod To Column With An Underground Grounding Conductor. Interconnect Ground Rods With A Continuous Underground Conductor, Extending Around The Perimeter Of The Building, 24 Inches (600 Mm) Minimum From Building Foundation. Use Tinned-Copper Conductor Not Less Than No. 2/0 Awg For Underground Conductor, And Bury 18 Inches (450 Mm) Below Grade, Minimum.
- H. Building Ground Rings: Provide A Perimeter Ground Ring For The Entire Building As Required Per The National Electrical Code Article 250.66c.

- Bond All Concrete Encased Electrode (Foundation/Footing Reinforcing) Provide As Required Per National Electrical Code Article 250.66b.
- J. Ground Rods: Install At Least Three Rods Spaced At Least One-Rod Length From Each Other And Located At Least The Same Distance From Other Grounding Electrodes.
 - Drive Ground Rods Until Tops Are 2 Inches (50 Mm) Below Finished Floor Or Final Grade, Unless Otherwise Indicated.
 - Interconnect Ground Rods With Grounding Electrode Conductors. Use Exothermic Welds, Except As Otherwise Indicated. Make Connections Without Exposing Steel Or Damaging Copper Coating.
- K. Grounding Conductors: Route Along Shortest And Straightest Paths Possible, Unless Otherwise Indicated. Avoid Obstructing Access Or Placing Conductors Where They May Be Subjected To Strain, Impact, Or Damage.
- L. Bonding Straps And Jumpers: Install So Vibration By Equipment Mounted On Vibration Isolation Hangers Or Supports Is Not Transmitted To Rigidly Mounted Equipment. Use Exothermic-Welded Connectors For Outdoor Locations, Unless A Disconnect-Type Connection Is Required; Then, Use A Bolted Clamp. Bond Straps Directly To The Basic Structure Taking Care Not To Penetrate Any Adjacent Parts. Install Straps Only In Locations Accessible For Maintenance.
- M. Metal Water Service Pipe: Provide Insulated Copper Grounding Conductors, In Conduit, From Building's Main Service Equipment, Or Grounding Bus, To Main Metal Water Service Entrances To Building. Connect Grounding Conductors To Main Metal Water Service Pipes By Grounding Clamp Connectors. Where A Dielectric Main Water Fitting Is Installed, Connect Grounding Conductor To Street Side Of Fitting. Bond Metal Grounding Conductor Conduit Or Sleeve To Conductor At Each End.
- N. Water Meter Piping: Use Braided-Type Bonding Jumpers To Electrically Bypass Water Meters. Connect To Pipe With Grounding Clamp Connectors.
- O. Comply With NFPA 780 And Ul 96 When Interconnecting With Lightning Protection System.
- P. Bond Interior Metal Piping Systems And Metal Air Ducts To Equipment Grounding Conductors Of Associated Pumps, Fans, Blowers, Electric Heaters, And Air Cleaners. Use Braided-Type Bonding Straps.
- Q. Bond Each Aboveground Portion Of Gas Piping System Upstream From Equipment Shutoff Valve.
- R. Connections: Make Connections So Galvanic Action Or Electrolysis Possibility Is Minimized. Select Connectors, Connection Hardware, Conductors, And Connection Methods So Metals In Direct Contact Will Be Galvanically Compatible.
 - 1. Use Electroplated Or Hot-Tin-Coated Materials To Ensure High Conductivity And To Make Contact Points Closer To Order Of Galvanic Series.
 - 2. Make Connections With Clean, Bare Metal At Points Of Contact.
 - 3. Make Aluminum-To-Steel Connections With Stainless-Steel Separators And Mechanical Clamps.
 - 4. Make Aluminum-To-Galvanized Steel Connections With Tin-Plated Copper Jumpers And Mechanical Clamps.
 - 5. Coat And Seal Connections Having Dissimilar Metals With Inert Material To Prevent Future Penetration Of Moisture To Contact Surfaces.
 - 6. Exothermic-Welded Connections: Comply With Manufacturer's Written Instructions. Welds That Are Puffed Up Or That Show Convex Surfaces Indicating Improper Cleaning Are Not Acceptable.
 - 7. Equipment Grounding Conductor Terminations: For No. 8 Awg And Larger, Use Pressure-Type Grounding Lugs. No. 10 Awg And Smaller Grounding Conductors May Be Terminated With Winged Pressure-Type Connectors.
 - 8. Noncontact Metal Raceway Terminations: If Metallic Raceways Terminate At Metal Housings Without Mechanical And Electrical Connection To Housing, Terminate Each Conduit With A Grounding Bushing. Connect Grounding Bushings With A Bare Grounding Conductor To Grounding Bus Or Terminal In Housing. Bond Electrically Noncontinuous Conduits At Entrances And Exits With Grounding Bushings And Bare Grounding Conductors, Unless Otherwise Indicated.
 - 9. Tighten Screws And Bolts For Grounding And Bonding Connectors And Terminals According To Manufacturer's Published Torque-Tightening Values. If Manufacturer's Torque Values Are Not Indicated, Use Those Specified In Ul 486a And Ul 486b.

- 10. Compression-Type Connections: Use Hydraulic Compression Tools To Provide Correct Circumferential Pressure For Compression Connectors. Use Tools And Dies Recommended By Connector Manufacturer. Provide Embossing Die Code Or Other Standard Method To Make A Visible Indication That A Connector Has Been Adequately Compressed On Grounding Conductor.
- 11. Moisture Protection: If Insulated Grounding Conductors Are Connected To Ground Rods Or Grounding Buses, Insulate Entire Area Of Connection And Seal Against Moisture Penetration Of Insulation And Cable.
- S. Overhead Line Grounding: Comply With Ieee C2 Except Where Stricter Requirements Are Indicated. Use 2 Or More Parallel Ground Rods If A Single Ground Rod Electrode Resistance To Ground Exceeds 25 Ohms.
 - 1. Drive Ground Rods To A Depth Of 12 Inches (300 Mm) Below Finished Grade In Undisturbed Earth.
 - Ground Rod Connections: Use Clamp-Type Connectors Listed For The Purpose For Underground Connections And Connections To Rods.
 - 3. Lightning Arresters: Separate Arrester Grounds From Other Grounding Conductors.
 - 4. Secondary Neutral And Tank Of Transformer: Interconnect And Connect To Grounding Conductor.
 - 5. Protect Grounding Conductors On Surface Of Wood Poles With Molding Extended From Grade Level Up To And Through Communication Service And Transformer Spaces.
- T. Duct Banks: Install A Grounding Conductor With At Least 50 Percent Ampacity Of The Largest Phase Conductor In The Duct Bank.
- U. Manholes And Handholes: Install A Driven Ground Rod Close To Wall And Set Rod Depth So 4 Inches (100 Mm) Will Extend Above Finished Floor. If Necessary, Install Ground Rod Before Manhole Is Placed And Provide A No. 1/0 Awg Bare, Tinned-Copper Conductor From Ground Rod Into Manhole Through A Waterproof Sleeve In Manhole Wall. Protect Ground Rods Passing Through Concrete Floor With A Double Wrapping Of Pressure-Sensitive Tape Or Heat-Shrunk Insulating Sleeve From 2 Inches (50 Mm) Above To 6 Inches (150 Mm) Below Concrete. Seal Floor Opening With Waterproof, Nonshrink Grout.
- V. Connections To Manhole Components: Connect Exposed-Metal Parts, Such As Inserts, Cable Racks, Pulling Irons, Ladders, And Cable Shields Within Each Manhole Or Handhole, To Ground Rod Or Grounding Conductor. Make Connections With No. 4 Awg Minimum, Stranded, Hard-Drawn Copper Conductor. Train Conductors Level Or Plumb Around Corners And Fasten To Manhole Walls. Connect To Cable Armor And Cable Shields As Recommended By Manufacturer Of Splicing And Termination Kits.
- W. Pad-Mounted Transformers And Switches: Install Two Ground Rods And Counterpoise Circling Pad. Ground Pad-Mounted Equipment And Noncurrent-Carrying Metal Items Associated With Substations By Connecting Them To Underground Cable And Grounding Electrodes. Use Tinned-Copper Conductor Not Less Than No. 2 Awg For Counterpoise And For Taps To Equipment Ground Pad. Bury Counterpoise Not Less Than 18 Inches (450 Mm) Below Grade And 6 Inches (150 Mm) From The Foundation.

3.2 FIELD QUALITY CONTROL

- A. Testing: Perform The Following Field Quality-Control Testing:
 - 1. After Installing Grounding System But Before Permanent Electrical Circuitry Has Been Energized, Test For Compliance With Requirements.
 - 2. Test Completed Grounding System At Each Location Where A Maximum Ground-Resistance Level Is Indicated And At Service Disconnect Enclosure Grounding Terminal. Measure Ground Resistance Not Less Than Two Full Days After The Last Trace Of Precipitation, And Without The Soil Being Moistened By Any Means Other Than Natural Drainage Or Seepage And Without Chemical Treatment Or Other Artificial Means Of Reducing Natural Ground Resistance. Perform Tests, By The Fall-Of-Potential Method According To Ieee 81.

- 3. Provide Drawings Locating Each Ground Rod, Ground Rod Assembly, And Other Grounding Electrodes. Identify Each By Letter In Alphabetical Order, And Key To The Record Of Tests And Observations. Include The Number Of Rods Driven And Their Depth At Each Location And Include Observations Of Weather And Other Phenomena That May Affect Test Results. Describe Measures Taken To Improve Test Results. Nominal Maximum Values Are As Follows:
 - a. Equipment Rated 500 Kva And Less: 10 Ohms.
 - b. Equipment Rated 500 To 1000 Kva: 5 Ohms.
 - c. Equipment Rated More Than 1000 Kva: 3 Ohms.
 - d. Overhead Distribution Line Equipment: 25 Ohms.
 - e. Substations And Pad-Mounted Switching Equipment: 5 Ohms.
 - f. Manhole Grounds: 10 Ohms.

END OF SECTION 26 05 26

SECTION 260529 - HANGERS AND SUPPORTS FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 SUMMARY

- A. Section includes:
 - 1. Hangers and supports for electrical equipment and systems.
 - 2. Construction requirements for concrete bases.

1.2 PERFORMANCE REQUIREMENTS

- Design supports for multiple raceways capable of supporting combined weight of supported systems and its contents.
- B. Design equipment supports capable of supporting combined operating weight of supported equipment and connected systems and components.
- C. Rated Strength: Adequate in tension, shear, and pullout force to resist maximum loads calculated or imposed for this Project, with a minimum structural safety factor of five times the applied force.

1.3 SUBMITTALS

- A. Product Data: For steel slotted support systems.
- B. Shop Drawings Show fabrication and installation details and include calculations for the following:
 - 1. Trapeze hangers. Include Product Data for components.
 - 2. Steel slotted channel systems. Include Product Data for components.
 - 3. Equipment supports.
- C. Welding certificates.

1.4 QUALITY ASSURANCE

- A. Welding: Qualify procedures and personnel according to AWS D1.1/D1.1M, "Structural Welding Code Steel."
- B. Comply with NFPA 70.

PART 2 - PRODUCTS

2.1 SUPPORT, ANCHORAGE, AND ATTACHMENT COMPONENTS

- A. Steel Slotted Support Systems: Comply with MFMA-4, factory-fabricated components for field assembly.
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Allied Tube & Conduit.
 - b. Cooper B-Line, Inc.; a division of Cooper Industries.
 - c. ERICO International Corporation.
 - d. GS Metals Corp.
 - e. Thomas & Betts Corporation.
 - f. Unistrut; Tyco International, Ltd.
 - g. Or Approved Equal
 - 2. Metallic Coatings: Hot-dip galvanized after fabrication and applied according to MFMA-4.

- 3. Nonmetallic Coatings: Manufacturer's standard PVC, polyurethane, or polyester coating applied according to MFMA-4.
- 4. Channel Dimensions: Selected for applicable load criteria.
- B. Raceway and Cable Supports: As described in NECA 1 and NECA 101.
- C. Conduit and Cable Support Devices: Steel hangers, clamps, and associated fittings, designed for types and sizes of raceway or cable to be supported.
- D. Support for Conductors in Vertical Conduit: Factory-fabricated assembly consisting of threaded body and insulating wedging plug or plugs for non-armored electrical conductors or cables in riser conduits. Plugs shall have number, size, and shape of conductor gripping pieces as required to suit individual conductors or cables supported. Body shall be malleable iron.
- E. Structural Steel for Fabricated Supports and Restraints: ASTM A 36/A 36M, steel plates, shapes, and bars; black and galvanized.
- F. Mounting, Anchoring, and Attachment Components: Items for fastening electrical items or their supports to building surfaces include the following:
 - Powder-Actuated Fasteners: Threaded-steel stud, for use in hardened portland cement concrete, steel, or wood, with tension, shear, and pullout capacities appropriate for supported loads and building materials where used.
 - a. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1) Hilti Inc.
 - 2) ITW Ramset/Red Head; a division of Illinois Tool Works, Inc.
 - 3) Simpson Strong-Tie Co., Inc.; Masterset Fastening Systems Unit.
 - 4) Or Approved Equal
 - 2. Mechanical-Expansion Anchors: Insert-wedge-type, stainless steel, for use in hardened portland cement concrete with tension, shear, and pullout capacities appropriate for supported loads and building materials in which used.
 - a. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1) Cooper B-Line, Inc.; a division of Cooper Industries.
 - 2) Empire Tool and Manufacturing Co., Inc.
 - 3) Hilti Inc.
 - 4) ITW Ramset/Red Head; a division of Illinois Tool Works, Inc.
 - 5) Or Approved Equal
 - 3. Concrete Inserts: Steel or malleable-iron, slotted support system units similar to MSS Type 18; complying with MFMA-4 or MSS SP-58.
 - 4. Clamps for Attachment to Steel Structural Elements: MSS SP-58, type suitable for attached structural element.
 - 5. Through Bolts: Structural type, hex head, and high strength. Comply with ASTM A 325.
 - 6. Toggle Bolts: All-steel springhead type.
 - 7. Hanger Rods: Threaded steel.
 - 8. Or Approved Equal

2.2 FABRICATED METAL EQUIPMENT SUPPORT ASSEMBLIES

- A. Description: Welded or bolted, structural-steel shapes, shop or field fabricated to fit dimensions of supported equipment.
- B. Materials: Comply with requirements in Division 05 Section "Metal Fabrications" for steel shapes and plates.

PART 3 - EXECUTION

3.1 APPLICATION

- A. Comply with NECA 1 and NECA 101 for application of hangers and supports for electrical equipment and systems except if requirements in this Section are stricter.
- B. Maximum Support Spacing and Minimum Hanger Rod Size for Raceway: Space supports for EMT, IMC, and RMC as required by NFPA 70. Minimum rod size shall be 3/8 inch in diameter.
- C. Multiple Raceways or Cables: Install trapeze-type supports fabricated with steel slotted support system, sized so capacity can be increased by at least 50 percent in future without exceeding specified design load limits.
 - 1. Secure raceways and cables to these supports with two-bolt conduit clamps and/or single-bolt conduit clamps using spring friction action for retention in support channel.

3.2 SUPPORT INSTALLATION

- A. Comply with NECA 1 and NECA 101 for installation requirements except as specified in this Article.
- B. Strength of Support Assemblies: Where not indicated, select sizes of components so strength will be adequate to carry present and future static loads within specified loading limits. Minimum static design load used for strength determination shall be weight of supported components plus 200 lb (90 kg).
- C. Mounting and Anchorage of Surface-Mounted Equipment and Components: Anchor and fasten electrical items and their supports to building structural elements by the following methods unless otherwise indicated by code:
 - 1. To Wood: Fasten with lag screws or through bolts.
 - 2. To New Concrete: Bolt to concrete inserts.
 - 3. To Masonry: Approved toggle-type bolts on hollow masonry units and expansion anchor fasteners on solid masonry units.
 - 4. To Existing Concrete: Expansion anchor fasteners.
 - 5. To Steel: Beam clamps (MSS Type 19, 21, 23, 25, or 27) complying with MSS SP-69.
 - 6. To Light Steel: Sheet metal screws.
 - 7. Items Mounted on Hollow Walls and Nonstructural Building Surfaces: Mount cabinets, panelboards, disconnect switches, control enclosures, pull and junction boxes, transformers, and other devices on slotted-channel racks attached to substrate by means that meet seismic-restraint strength and anchorage requirements.
- D. Drill holes for expansion anchors in concrete at locations and to depths that avoid reinforcing bars.

3.3 INSTALLATION OF FABRICATED METAL SUPPORTS

- A. Comply with installation requirements in Division 05 Section "Metal Fabrications" for site-fabricated metal supports.
- B. Cut, fit, and place miscellaneous metal supports accurately in location, alignment, and elevation to support and anchor electrical materials and equipment.
- C. Provide an additional 20 metal supports with required fasteners of each size and type used on the project to accommodate any changes required to resolve interferences or directed by the Engineer.
- D. Field Welding: Comply with AWS D1.1/D1.1M.

3.4 CONCRETE BASES

- A. Construct concrete bases of dimensions indicated but not less than 4 inches (100 mm) larger in both directions than supported unit, and so anchors will be a minimum of 10 bolt diameters from edge of the base.
- B. Use 4000-psi, 28-day compressive-strength concrete. Concrete materials, reinforcement, and placement requirements are specified in Division 03 Section "Cast-in-Place Concrete"

- C. Anchor equipment to concrete base.
 - 1. Place and secure anchorage devices. Use supported equipment manufacturer's setting drawings, templates, diagrams, instructions, and directions furnished with items to be embedded.
 - 2. Install anchor bolts to elevations required for proper attachment to supported equipment.
 - 3. Install anchor bolts according to anchor-bolt manufacturer's written instructions.

3.5 PAINTING

- A. Touchup: Clean field welds and abraded areas of shop paint. Paint exposed areas immediately after erecting hangers and supports. Use same materials as used for shop painting. Comply with SSPC-PA 1 requirements for touching up field-painted surfaces.
 - 1. Apply paint by brush or spray to provide minimum dry film thickness of 2.0 mils (0.05 mm).
- B. Galvanized Surfaces: Clean welds, bolted connections, and abraded areas and apply galvanizing-repair paint to comply with ASTM A 780.

END OF SECTION 26 05 29

SECTION 260533 - RACEWAYS AND BOXES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 1 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. This Section includes raceways, fittings, boxes, enclosures, and cabinets for electrical wiring.
- B. Related Sections include the following:
 - 1. Division 26 Section "Underground Ducts" for exterior ductbanks, manholes, and underground utility construction.
 - 2. Division 26 Section "Fire Rated Penetration Systems" for firestopping materials and installation at penetrations through walls, ceilings, and other fire-rated elements.
 - 3. Division 26 Section "Basic Electrical Materials and Methods" for supports, anchors, and identification products.
 - 4. Division 26 Section "Wiring Devices" for devices installed in boxes and for floor-box service fittings.

1.3 DEFINITIONS

- A. EMT: Electrical metallic tubing.
- B. ENT: Electrical nonmetallic tubing.
- C. FMC: Flexible metal conduit.
- D. IMC: Intermediate metal conduit.
- E. LFMC: Liquidtight flexible metal conduit.
- F. LFNC: Liquidtight flexible metal conduit.
- G. RMC: Rigid Metal Conduit.
- H. RNC: Rigid nonmetallic conduit.

1.4 SUBMITTALS

A. Product Data: For surface raceways, wireways and fittings.

1.5 QUALITY ASSURANCE

- A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.
- B. Comply with NFPA 70.

1.6 COORDINATION

A. Coordinate layout and installation of raceways, boxes, enclosures, cabinets, and suspension system with other construction that penetrates ceilings or is supported by them, including light fixtures, HVAC equipment, fire-suppression system, and partition assemblies.

2.1 MANUFACTURERS

- A. In other Part 2 articles where subparagraph titles below introduce lists, the following requirements apply for product selection:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by the manufacturers specified.

2.2 METAL CONDUIT AND TUBING

A. Manufacturer:

- 1. AFC Cable Systems, Inc.
- 2. Alflex Inc.
- 3. Anamet Electrical, Inc.; Anaconda Metal Hose.
- 4. Electri-Flex Co.
- 5. Grinnell Co./Tyco International; Allied Tube and Conduit Div.
- 6. LTV Steel Tubular Products Company.
- 7. Manhattan/CDT/Cole-Flex.
- 8. O-Z Gedney; Unit of General Signal.
- 9. Wheatland Tube Co.
- 10. Or Approved Equal
- B. Rigid Steel Conduit: ANSI C80.1.
- C. IMC: ANSI C80.6.
- D. EMT and Fittings: ANSI C80.3.
 - 1. Fittings: Compression type up to 1-1/2 in. conduit, 2 in. and larger use set screw type.
- E. FMC: Zinc-coated steel.
- F. LFMC: Flexible steel conduit with PVC jacket.
- G. Fittings: NEMA FB 1; compatible with conduit and tubing materials.

2.3 METAL WIREWAYS

- A. Manufacturer:
 - 1. Hoffman.
 - 2. Square D.
- B. Material and Construction: Sheet metal sized and shaped as indicated, NEMA 1 or 3R.
- C. Fittings and Accessories: Include couplings, offsets, elbows, expansion joints, adapters, hold-down straps, end caps, plastic edge covers, and other fittings to match and mate with wireways as required for complete system.
- D. Select features, unless otherwise indicated, as required to complete wiring system and to comply with NFPA 70.
- E. Wireway Covers: Screw cover type, Flanged and gasketed type at exterior.
- F. Finish: Manufacturer's standard enamel finish.

2.4 NONMETALLIC WIREWAYS

- A. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
- B. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Hoffman.
 - 2. Lamson & Sessions; Carlon Electrical Products.
 - 3. J-M Manufacturing Company, Inc.
 - 4. Or Approved Equal
- C. Description: Fiberglass polyester, extruded and fabricated to size and shape indicated, with no holes or knockouts. Cover is gasketed with oil-resistant gasket material and fastened with captive screws treated for corrosion resistance. Connections are flanged, with stainless-steel screws and oil-resistant gaskets.

- D. Description: PVC plastic, extruded and fabricated to size and shape indicated, with snap-on cover and mechanically coupled connections with plastic fasteners.
- E. Fittings and Accessories: Include couplings, offsets, elbows, expansion joints, adapters, hold-down straps, end caps, and other fittings to match and mate with wireways as required for complete system.

2.5 SURFACE RACEWAYS

- A. Surface Metal Raceways: Galvanized steel with snap-on covers. Finish with manufacturer's standard grey finish coat.
 - 1. Manufacturer:
 - a. Walker Systems, Inc.; Wiremold Company (The).
 - b. Wiremold Company (The); Electrical Sales Division.
 - c. Or Approved Equal.
- B. Types, sizes, and channels as indicated and required for each application, with fittings that match and mate with raceways.
- C. Surface Non-Metallic Raceways: Polyvinyl with snap-on covers. Finish with manufacturer's light ivory color.
 - 1. Manufacturer:
 - a. Hubbell Inc.
 - b. Or Approved Equal
- D. Types, sizes, and channels as indicated and required for each application, with fittings that match and mate with raceways.
 - 1. Single channel polyvinyl (raceway for branch circuit power and/or low potential services shall be Premise Trak (Latching) as manufactured by Hubbell.
 - 2. The two-piece single channel shall consist of a base section, 5 feet length, latching snap on cover, 0.38 in 2 channel base. Provide 1-gang or 2-gang boxes as required. Apply channel with adhesive.
 - 3. Two channel polyvinyl raceway for branch circuit power and low potential services shall be Wall Trak as manufactured by Hubbell.
 - 4. The two-piece, two channel raceway shall consist of a base section, 5 feet length, latching snap on cover, 0.81 in 2 and 0.79 in 2 channel bases. Provide 1-gang or 2-gang boxes as required. Apply base with adhesive.

2.6 BOXES, ENCLOSURES, AND CABINETS

A. Manufacturer:

- 1. Cooper Crouse-Hinds; Div. of Cooper Industries, Inc.
- 2. Emerson/General Signal; Appleton Electric Company.
- 3. Erickson Electrical Equipment Co.
- 4. Hoffman.
- 5. Hubbell, Inc.; Killark Electric Manufacturing Co.
- 6. Legrand, Inc.; Wiremold Company
- 7. O-Z/Gedney; Unit of General Signal.
- 8. RACO: Division of Hubbell, Inc.
- 9. Robroy Industries, Inc.; Enclosure Division.
- 10. Scott Fetzer Com.; Adalet-PLM Division.
- 11. Spring City Electrical Manufacturing Co.
- 12. Thomas & Betts Corporation.
- 13. Walker Systems, Inc.; Wiremold Company (The).
- 14. Woodhead, Daniel Company; Woodhead Industries, Inc. Subsidiary.
- 15. Or Approved Equal.
- B. Sheet Metal Outlet and Device Boxes: NEMA OS 1.
- C. Cast-Metal Outlet and Device Boxes: NEMA FB 1, Type FD, with gasketed cover.
- D. Floor Boxes: Cast metal, fully adjustable, rectangular.
- E. Small Sheet Metal Pull and Junction Boxes: NEMA OS 1.

- F. Cast-Metal Pull and Junction Boxes: NEMA FB 1, cast aluminum with gasketed cover.
- G. Hinged-Cover Enclosures: NEMA 250, Type 1, with continuous hinge cover and flush latch.
 - 1. Metal Enclosures: Steel, finished inside and out with manufacturer's standard enamel.
 - 2. Nonmetallic Enclosures: Plastic, finished inside with radio-frequency-resistant paint.
- H. Cabinets: NEMA 250, Type 1, galvanized steel box with removable interior panel and removable front, finished inside and out with manufacturer's standard enamel. Hinged door in front cover with flush latch and concealed hinge. Key latch to match panelboards. Include metal barriers to separate wiring of different systems and voltage and include accessory feet where required for freestanding equipment.
- I. Poke-Through junction boxes: 6 inch diameter junction box that complies with UL514A and/or UL514C and bear the U.S. UL Listing Mark, NEC Section 300-21, and 2-hour fire rated. Basis of design Legrand evolution 6AT
 - 1. Below conference room tables: Model # 6ATP
 - 2. Furniture feed assembly: Model # 6ATCFF with 152CHA bottom feed device plate

2.7 FACTORY FINISHES

A. Finish: For raceway, enclosure, or cabinet components, provide manufacturer's standard gray paint applied to factory-assembled surface raceways, enclosures, and cabinets before shipping.

PART 3 - EXECUTION

3.1 RACEWAY APPLICATION

- A. Outdoors:
 - 1. Exposed: Rigid steel or IMC.
 - 2. Concealed: Rigid steel or IMC.
 - 3. Underground, Single Run: RMC or RNC.
 - 4. Underground, Grouped: RMC or RNC.
 - 5. Connection to Vibrating Equipment (Including Transformers and Hydraulic, Pneumatic, Electric Solenoid, or Motor-Driven Equipment): LFMC.
 - 6. Boxes and Enclosures: NEMA 250, Type 3R or 4.
- B. Indoors:
 - 1. Exposed: EMT, surface metal raceway.
 - 2. Concealed: EMT.
 - 3. Connection to Vibrating Equipment (Including Transformers and Hydraulic, Pneumatic, Electric Solenoid, or Motor-Driven Equipment): FMC; except use LFMC in damp or wet locations.
 - 4. Damp or Wet Locations: Rigid steel conduit.
 - 5. Boxes and Enclosures: NEMA 250, Type 1, except as follows:
 - a. Damp or Wet Locations: NEMA 250, Type 4..
- C. Minimum Raceway Size: 3/4-inch trade size (DN 21)
- D. Raceway Fittings: Compatible with raceways and suitable for use and location.
 - Intermediate Steel Conduit: Use threaded rigid steel conduit fittings, unless otherwise indicated.

3.2 INSTALLATION

- A. Keep raceways at least 6 inches (150 mm) away from parallel runs of flues and steam or hot-water pipes. Install horizontal raceway runs above water and steam piping.
- B. Complete raceway installation before starting conductor installation.
- C. Support raceways as specified in Division 26 Section "Basic Electrical Materials and Methods."
- D. Install temporary closures to prevent foreign matter from entering raceways.

RACEWAYS AND BOXES 260533 - 4

- E. Protect stub-ups from damage where conduits rise through floor slabs. Arrange so curved portions of bends are not visible above the finished slab.
- F. Make bends and offsets so ID is not reduced. Keep legs of bends in the same plane and keep straight legs of offsets parallel, unless otherwise indicated.
- G. Conceal conduit and EMT within finished walls, ceilings, and floors, unless otherwise indicated.
 - 1. Install concealed raceways with a minimum of bends in the shortest practical distance, considering type of building construction and obstructions, unless otherwise indicated.
- H. Raceways Embedded in Slabs: Install in middle 1/3 of slab thickness where practical and leave at least 2 inches (50 mm) of concrete cover.
 - 1. Secure raceways to reinforcing rods to prevent sagging or shifting during concrete placement.
 - 2. Space raceways laterally to prevent voids in concrete.
 - 3. Run conduit larger than 1-inch trade size (DN 27) parallel or at right angles to main reinforcement. Where at right angles to reinforcement, place conduit close to slab support.
 - 4. Change from nonmetallic tubing to Schedule 40 nonmetallic conduit, rigid steel conduit, or IMC before rising above the floor.
- I. Install exposed raceways parallel or at right angles to nearby surfaces or structural members and follow surface contours as much as possible.
 - 1. Run parallel or banked raceways together on common supports.
 - 2. Make parallel bends in parallel or banked runs. Use factory elbows only where elbows can be installed parallel; otherwise, provide field bends for parallel raceways.
- J. Join raceways with fittings designed and approved for that purpose and make joints tight.
 - 1. Use insulating bushings to protect conductors.
- K. Terminations:
 - 1. Where raceways are terminated with locknuts and bushings, align raceways to enter squarely and install locknuts with dished part against box. Use two locknuts, one inside and one outside box.
 - 2. Where raceways are terminated with threaded hubs, screw raceways or fittings tightly into hub so end bears against wire protection shoulder. Where chase nipples are used, align raceways so coupling is square to box; tighten chase nipple so no threads are exposed.
- L. Install pull wires in empty raceways. Use polypropylene or monofilament plastic line with not less than 200-lb (90-kg) tensile strength. Leave at least 12 inches (300 mm) of slack at each end of pull wire.
- M. Telephone and Signal System Raceways, 2-Inch Trade Size (DN 53) and Smaller: In addition to above requirements, install raceways in maximum lengths of 150 feet (45 m) and with a maximum of two 90-degree bends or equivalent. Separate lengths with pull or junction boxes where necessary to comply with these requirements
- N. Install raceway sealing fittings at suitable, approved, and accessible locations and fill them with UL-listed sealing compound. For concealed raceways, install each fitting in a flush steel box with a blank cover plate having a finish similar to that of adjacent plates or surfaces. Install raceway sealing fittings at the following points:
 - 1. Where conduits pass from warm to cold locations, such as boundaries of refrigerated spaces.
 - 2. Where otherwise required by NFPA 70.
- O. Stub-up Connections: Extend conduits through concrete floor for connection to freestanding equipment. Install with an adjustable top or coupling threaded inside for plugs set flush with finished floor. Extend conductors to equipment with rigid steel conduit; FMC may be used 6 inches (150 mm) above the floor. Install screwdriver-operated, threaded plugs flush with floor for future equipment connections.
- P. Flexible Connections: Use maximum of 72 inches (1830 mm) of flexible conduit for recessed and semirecessed lighting fixtures; for equipment subject to vibration, noise transmission, or movement; and for all motors. Use LFMC in damp or wet locations. Install separate ground conductor across flexible connections.
- Q. Provide an additional one thousand feet of raceway and accessories of each type and size used on the project to accommodate any changes required to resolve interferences or as directed by the Engineer.
- R. Provide an additional twenty boxes (floor, junction, etc.) and accessories of each size and type used on the project to accommodate any changes required to resolve interferences.
- S. Provide an additional three hundred feet of surface raceway and accessories of each size and type used on the project to accommodate any changes required to resolve interferences.

Addition & Alterations
Department of Public Works
10 Hartford Road
Delran, New Jersey

- T. Surface Raceways: Install a separate, green, ground conductor in raceways from junction box supplying raceways to receptacle or fixture ground terminals.
- U. Set floor boxes level and flush with finished floor surface.
- V. Set floor boxes level. Trim after installation to fit flush with finished floor surface.
- W. Install hinged-cover enclosures and cabinets plumb. Support at each corner.
- X. Poke-through junction poxes shall mount in a 6" cored hole, actual 6 1/16"core hole.

3.3 PROTECTION

- A. Provide final protection and maintain conditions that ensure coatings, finishes, and cabinets are without damage or deterioration at time of Substantial Completion.
 - 1. Repair damage to galvanized finishes with zinc-rich paint recommended by manufacturer.
 - Repair damage to PVC or paint finishes with matching touchup coating recommended by manufacturer.

3.4 CLEANING

A. After completing installation of exposed, factory-finished raceways and boxes, inspect exposed finishes and repair damaged finishes.

END OF SECTION 26 05 33

SECTION 260543 - UNDERGROUND DUCTS AND RACEWAYS FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:

- 1. Metal conduits and fittings, including GRC and PVC-coated steel conduit.
- 2. Rigid nonmetallic duct.
- 3. Flexible nonmetallic duct.
- 4. Duct accessories.
- 5. Polymer concrete handholes and boxes with polymer concrete cover.

1.2 DEFINITIONS

- A. Direct Buried: Duct or a duct bank that is buried in the ground, without any additional casing materials such as concrete.
- B. Duct: A single duct or multiple ducts. Duct may be either installed singly or as component of a duct bank.
- C. Duct Bank:
 - 1. Two or more ducts installed in parallel, with or without additional casing materials.
 - 2. Multiple duct banks.

1.3 ACTION SUBMITTALS

- A. Product Data: For each type of product.
- B. Shop Drawings:
 - 1. Factory-Fabricated Handholes and Boxes Other Than Precast Concrete:
 - a. Include dimensioned plans, sections, and elevations, and fabrication and installation details.
 - b. Include duct entry provisions, including locations and duct sizes.
 - c. Include cover design.
 - d. Include grounding details.
 - e. Include dimensioned locations of cable rack inserts, and pulling-in and lifting irons.

1.4 INFORMATIONAL SUBMITTALS

- A. Duct and Duct-Bank Coordination Drawings: Show duct profiles and coordination with other utilities and underground structures. Drawings shall be signed and sealed by a qualified professional engineer.
- B. Product Certificates: For concrete and steel used in precast concrete handholes, as required by ASTM C 858.
- C. Source quality-control reports.
- D. Field quality-control reports.

1.5 QUALITY ASSURANCE

A. Testing Agency Qualifications: Qualified according to ASTM E 329 for testing indicated.

PART 2 - PRODUCTS

2.1 METAL CONDUIT AND FITTINGS

A. GRC: Comply with ANSI C80.1 and UL 6.

B. Listed and labeled as defined in NFPA 70, by a nationally recognized testing laboratory, and marked for intended location and application.

2.2 RIGID NONMETALLIC DUCT

- A. Underground Plastic Utilities Duct: Type EPC-40-PVC RNC, complying with NEMA TC 2 and UL 651, with matching fittings complying with NEMA TC 3 by same manufacturer as duct.
- B. Acceptable Manufacturer:
 - 1. ARNCO Corp
 - 2. Cantex Inc.
 - 3. Certain Teed Corp.
 - 4. Condux Internations, Inc.
 - 5. Crown Line Plastics
 - 6. ElecSys, Inc.
 - 7. Electri-Flex Co.
 - 8. Lamson & Sesions
 - 9. National Pipe & Plastics
 - 10. Or Approved Equal
- C. Listed and labeled as defined in NFPA 70, by a nationally recognized testing laboratory, and marked for intended location and application.
- D. Solvents and Adhesives: As recommended by conduit manufacturer.

2.3 FLEXIBLE NONMETALLIC DUCTS

- A. HDPE Duct: Type EPEC-40 HDPE, complying with NEMA TC 7 and UL 651A.
 - 1. ABB, Electrification Products
 - 2. ARNCO Corp.
 - 3. National Pipe & Plastics
 - 4. Premier Conduit
 - 5. Or Approved Equal
- B. Listed and labeled as defined in NFPA 70, by a nationally recognized testing laboratory, and marked for intended location and application.

2.4 DUCT ACCESSORIES

- A. Duct Spacers: Factory-fabricated, rigid, PVC interlocking spacers; sized for type and size of duct with which used and selected to provide minimum duct spacing indicated while supporting duct during concreting or backfilling.
 - 1. ABB, Electrification Products
 - 2. Allied Tube & Conduit
 - 3. Cantex Inc.
 - 4. IPEX USA LLC
 - 5. PenCell Plastics
 - 6. Underground Devices, Inc.
 - Or Approved equal
- B. Underground-Line Warning Tape: Comply with requirements for underground-line warning tape specified in Section 260553 "Identification for Electrical Systems."

2.5 POLYMER CONCRETE HANDHOLES AND BOXES WITH POLYMER CONCRETE COVER

- A. Description: Molded of sand and aggregate, bound together with a polymer resin, and reinforced with steel or fiberglass or a combination of the two.
- B. Acceptable Manufacturers:

- 1. Armoreast Products Co.
- 2. MacLean Highline
- 3. Oldcastle Infrastructure
- 4. Quazite, Hubbell Inc. (Basis of Design)
- 5. Or Approved Equal
- C. Standard: Comply with SCTE 77. Comply with tier requirements in "Underground Enclosure Application" Article.
- D. Color: Gray.
- E. Configuration: Units shall be designed for flush burial and have open bottom unless otherwise indicated.
- F. Cover: Weatherproof, secured by tamper-resistant locking devices and having structural load rating consistent with enclosure.
- G. Cover Finish: Nonskid finish shall have a minimum coefficient of friction of 0.50.
- H. Cover Legend: Molded lettering, "ELECTRIC."
- I. Direct-Buried Wiring Entrance Provisions: Knockouts equipped with insulated bushings or end-bell fittings, selected to suit box material, sized for wiring indicated, and arranged for secure, fixed installation in enclosure wall.
- J. Duct Entrance Provisions: Duct-terminating fittings shall mate with entering duct for secure, fixed installation in enclosure wall.
- K. Handholes shall have factory-installed inserts for cable racks and pulling-in irons.

2.6 SOURCE QUALITY CONTROL

- A. Nonconcrete Handhole and Pull-Box Prototype Test: Test prototypes of manholes and boxes for compliance with SCTE 77. Strength tests shall be for specified tier ratings of products supplied.
 - 1. Strength tests of complete boxes and covers shall be by an independent testing agency or manufacturer. A qualified registered professional engineer shall certify tests by manufacturer.
 - 2. Testing machine pressure gages shall have current calibration certification, complying with ISO 9000 and ISO 10012, and traceable to NIST standards.

PART 3 - EXECUTION

3.1 PREPARATION

- A. Coordinate layout and installation of duct, duct bank, manholes, handholes, and boxes with final arrangement of other utilities, site grading, and surface features as determined in the field. Notify Architect if there is a conflict between areas of excavation and existing structures or archaeological sites to remain.
- B. Coordinate elevations of duct and duct-bank entrances into manholes, handholes, and boxes with final locations and profiles of duct and duct banks, as determined by coordination with other utilities, underground obstructions, and surface features. Revise locations and elevations as required to suit field conditions and to ensure that duct and duct bank will drain to manholes and handholes, and as approved by Architect.

3.2 UNDERGROUND DUCT APPLICATION

- A. Duct for Electrical Feeders 600 V and Less: RNC Type EPC-40-PVC, concrete-encased unless otherwise indicated.
- B. Duct for Electrical Feeders 600 V and Less: RNC Type EPC-40-PVC, direct-buried unless otherwise indicated.
- C. Duct for Electrical Branch Circuits: RNC Type EPC-40-PVC, direct-buried unless otherwise indicated.
- D. Bored Underground Duct: Type EPEC-40 HDPE unless otherwise indicated.
- E. Underground Ducts Crossing Paved Paths and Walks direct-buried unless otherwise indicated.
- F. Underground Ducts Crossing: Driveways, Roadways and Railroads: RNC Type EPC-40 PVC, encased in reinforced concrete.
- G. Stub-ups: Concrete-encased RNC and GRC.

3.3 EARTHWORK

- A. Excavation and Backfill: Comply with Section 312000 "Earth Moving," but do not use heavy-duty, hydraulic-operated, compaction equipment.
- B. Restoration: Replace area immediately after backfilling is completed.
- C. Restore surface features at areas disturbed by excavation, and re-establish original grades unless otherwise indicated. Replace removed sod immediately after backfilling is completed.
- D. Restore areas disturbed by trenching, storing of dirt, cable laying, and other work. Restore vegetation and include necessary topsoiling, fertilizing, liming, seeding, sodding, sprigging, and mulching. Comply with Section 329200 "Turf and Grasses" and Section 329300 "Plants."
- E. Cut and patch existing pavement in the path of underground duct, duct bank, and underground structures according to "Cutting and Patching" Article in Section 017300 "Execution."

3.4 DUCT AND DUCT-BANK INSTALLATION

- A. Where indicated on Drawings, install duct, spacers, and accessories into the duct-bank configuration shown. Duct installation requirements in this Section also apply to duct bank.
- B. Install duct according to NEMA TCB 2.
- C. Slope: Pitch duct a minimum slope of 1:300 down toward manholes and handholes and away from buildings and equipment. Slope duct from a high point between two manholes, to drain in both directions.
- D. Curves and Bends: Use 5-degree angle couplings for small changes in direction. Use manufactured long sweep bends with a minimum radius of 36" when used for Fiber Optic Cable, both horizontally and vertically, at other locations unless otherwise indicated.
- E. Joints: Use solvent-cemented joints in duct and fittings and make watertight according to manufacturer's written instructions. Stagger couplings so those of adjacent duct do not lie in same plane.
- F. Installation Adjacent to High-Temperature Steam Lines: Where duct is installed parallel to underground steam lines, perform calculations showing the duct will not be subject to environmental temperatures above 40 deg C. Where environmental temperatures are calculated to rise above 40 deg C, and anywhere the duct crosses above an underground steam line, install insulation blankets listed for direct burial to isolate the duct bank from the steam line.
- G. End Bell Entrances to Manholes and Concrete and Polymer Concrete Handholes: Use end bells, spaced approximately 10 inches (250 mm) o.c. for 5-inch (125-mm) duct, and vary proportionately for other duct sizes.
- H. Terminator Entrances to Manholes and Concrete and Polymer Concrete Handholes: Use manufactured, cast-in-place duct terminators, with entrances into structure spaced approximately 6 inches (150 mm) o.c. for 4-inch (100-mm) duct, and vary proportionately for other duct sizes.
- I. Building Wall Penetrations: Make a transition from underground duct to GRC at least 10 feet (3 m) outside the building wall, without reducing duct line slope away from the building and without forming a trap in the line. Use fittings manufactured for RNC-to-GRC transition. Install GRC penetrations of building walls as specified in Section 260544 "Sleeves and Sleeve Seals for Electrical Raceways and Cabling."
- J. Sealing: Provide temporary closure at terminations of duct with pulled cables. Seal spare duct at terminations. Use sealing compound and plugs to withstand at least 15-psig (1.03-MPa) hydrostatic pressure.
- K. Pulling Cord: Install 200-lbf- (1000-N-) test nylon cord in empty ducts.
- L. Concrete-Encased Ducts and Duct Bank:
 - 1. Excavate trench bottom to provide firm and uniform support for duct. Prepare trench bottoms as specified in Section 312000 "Earth Moving" for pipes less than 6 inches (150 mm) in nominal diameter.
 - 2. Width: Excavate trench 12 inches (300 mm) wider than duct on each side.
 - 3. Width: Excavate trench 3 inches (75 mm) wider than duct on each side.
 - 4. Depth: Install so top of duct envelope is at least 24 inches (600 mm) below finished grade in areas not subject to deliberate traffic, and at least 30 inches (750 mm) below finished grade in deliberate traffic paths for vehicles unless otherwise indicated.
 - 5. Support duct on duct spacers coordinated with duct size, duct spacing, and outdoor temperature.

- 6. Spacer Installation: Place spacers close enough to prevent sagging and deforming of duct, with not less than five spacers per 20 feet (6 m) of duct. Place spacers within 24 inches (600 mm) of duct ends. Stagger spacers approximately 6 inches (150 mm) between tiers. Secure spacers to earth and to duct to prevent floating during concreting. Tie entire assembly together using fabric straps; do not use tie wires or reinforcing steel that may form conductive or magnetic loops around ducts or duct groups.
- 7. Elbows: Use manufactured duct elbows for stub-ups, at building entrances, and at changes of direction in duct unless otherwise indicated. Extend encasement throughout length of elbow.
- 8. Elbows: Use manufactured GRC elbows for stub-ups, at building entrances, and at changes of direction in duct run.
- 9. Reinforcement: Reinforce concrete-encased duct where crossing disturbed earth and where indicated. Arrange reinforcing rods and ties without forming conductive or magnetic loops around ducts or duct groups.
- 10. Forms: Use walls of trench to form side walls of duct bank where soil is self-supporting and concrete envelope can be poured without soil inclusions; otherwise, use forms.
- 11. Concrete Cover: Install a minimum of 3 inches (75 mm) of concrete cover between edge of duct to exterior envelope wall, 2 inches (50 mm) between duct of like services, and 4 inches (100 mm) between power and communications ducts.
- 12. Concreting Sequence: Pour each run of envelope between manholes or other terminations in one continuous operation.
- 13. Pouring Concrete: Comply with requirements in "Concrete Placement" Article in Section 033000 "Cast-in-Place Concrete." Place concrete carefully during pours to prevent voids under and between duct and at exterior surface of envelope. Do not allow a heavy mass of concrete to fall directly onto ducts. Allow concrete to flow around duct and rise up in middle, uniformly filling all open spaces. Do not use power-driven agitating equipment unless specifically designed for duct-installation application.

M. Direct-Buried Duct and Duct Bank:

- 1. Excavate trench bottom to provide firm and uniform support for duct. Comply with requirements in Section 312000 "Earth Moving" for preparation of trench bottoms for pipes less than 6 inches (150 mm) in nominal diameter.
- 2. Width: Excavate trench 12 inches (300 mm) wider than duct on each side.
- 3. Width: Excavate trench 3 inches (75 mm) wider than duct on each side.
- 4. Depth: Install top of duct at least 18 inches (900 mm) below finished grade unless otherwise indicated.
- 5. Set elevation of bottom of duct bank below frost line.
- 6. Support ducts on duct spacers coordinated with duct size, duct spacing, and outdoor temperature.
- 7. Spacer Installation: Place spacers close enough to prevent sagging and deforming of duct, with not less than five spacers per 20 feet (6 m) of duct. Place spacers within 24 inches (600 mm) of duct ends. Stagger spacers approximately 6 inches (150 mm) between tiers. Secure spacers to earth and to ducts to prevent floating during concreting. Tie entire assembly together using fabric straps; do not use tie wires or reinforcing steel that may form conductive or magnetic loops around ducts or duct groups.
- 8. Elbows: Install manufactured duct elbows for stub-ups, at building entrances, and at changes of direction in duct direction unless otherwise indicated. Encase elbows for stub-up ducts throughout length of elbow.
- 9. Install manufactured GRC elbows for stub-ups, at building entrances, and at changes of direction in duct.
- 10. After installing first tier of duct, backfill and compact. Start at tie-in point and work toward end of duct run, leaving ducts at end of run free to move with expansion and contraction as temperature changes during this process. Repeat procedure after placing each tier. After placing last tier, hand place backfill to 4 inches (100 mm) over duct and hand tamp. Firmly tamp backfill around ducts to provide maximum supporting strength. Use hand tamper only. After placing controlled backfill over final tier, make final duct connections at end of run and complete backfilling with normal compaction. Comply with requirements in Section 312000 "Earth Moving" for installation of backfill materials.

- a. Place minimum 3 inches (75 mm) of sand as a bed for duct. Place sand to a minimum of 6 inches (150 mm) above top level of duct.
- b. Place minimum 6 inches (150 mm) of engineered fill above concrete encasement of duct.
- N. Underground-Line Warning Tape: Bury conducting underground line specified in Section 260553 "Identification for Electrical Systems" no less than 12 inches (300 mm) above all concrete-encased duct and duct banks and approximately 6" below grade. Align tape parallel to and within 3 inches (75 mm) of centerline of duct bank. Provide an additional warning tape for each 12-inch (300-mm) increment of ductbank width over a nominal 18 inches (450 mm). Space additional tapes 12 inches (300 mm) apart, horizontally.

3.5 INSTALLATION OF HANDHOLES AND BOXES OTHER THAN PRECAST CONCRETE

- A. Install handholes and boxes level and plumb and with orientation and depth coordinated with connecting duct, to minimize bends and deflections required for proper entrances. Use box extension if required to match depths of duct, and seal joint between box and extension as recommended by manufacturer.
- B. Unless otherwise indicated, support units on a level bed of crushed stone or gravel, graded from 1/2-inch (12.5-mm) sieve to No. 4 (4.75-mm) sieve and compacted to same density as adjacent undisturbed earth.
- C. Elevation: In paved areas and trafficways, set cover flush with finished grade. Set covers of other handholes 1 inch (25 mm) above finished grade.
- D. Install handholes and boxes with bottom below frost line, <Insert depth of frost line below grade at Project site> below grade.
- E. Install removable hardware, including pulling eyes, cable stanchions, cable arms, and insulators, as required for installation and support of cables and conductors and as indicated. Select arm lengths to be long enough to provide spare space for future cables, but short enough to preserve adequate working clearances in enclosure.
- F. Field cut openings for duct according to enclosure manufacturer's written instructions. Cut wall of enclosure with a tool designed for material to be cut. Size holes for terminating fittings to be used, and seal around penetrations after fittings are installed.
- G. For enclosures installed in asphalt paving and brick masonry pavers and subject to occasional, nondeliberate, heavy-vehicle loading, form and pour a concrete ring encircling, and in contact with, enclosure and with top surface screeded to top of box cover frame. Bottom of ring shall rest on compacted earth.
 - 1. Concrete: 3000 psi (20 kPa), 28-day strength, complying with Section 033000 "Cast-in-Place Concrete," with a troweled finish.
 - 2. Dimensions: 10 inches wide by 12 inches deep (250 mm wide by 300 mm deep).

3.6 GROUNDING

A. Ground underground ducts and utility structures according to Section 260526 "Grounding and Bonding for Electrical Systems."

3.7 FIELD QUALITY CONTROL

- A. Perform the following tests and inspections:
 - Demonstrate capability and compliance with requirements on completion of installation of underground duct, duct bank, and utility structures.
 - 2. Pull solid aluminum or wood test mandrel through duct to prove joint integrity and adequate bend radii, and test for out-of-round duct. Provide a minimum 12-inch- (300-mm-) long mandrel equal to duct size minus 1/4 inch (6 mm). If obstructions are indicated, remove obstructions and retest.
 - 3. Test handhole grounding to ensure electrical continuity of grounding and bonding connections. Measure and report ground resistance as specified in Section 260526 "Grounding and Bonding for Electrical Systems."
- B. Correct deficiencies and retest as specified above to demonstrate compliance.
- C. Prepare test and inspection reports.

3.8 CLEANING

- A. Pull leather-washer-type duct cleaner, with graduated washer sizes, through full length of duct until duct cleaner indicates that duct is clear of dirt and debris. Follow with rubber duct swab for final cleaning and to assist in spreading lubricant throughout ducts.
- B. Clean internal surfaces of manholes, including sump.
 - 1. Sweep floor, removing dirt and debris.
 - 2. Remove foreign material.

END OF SECTION 26 05 43

SECTION 260544- SLEEVES AND SLEEVE SEALS FOR ELECTRICAL RACEWAYS AND CABLING

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:

- 1. Sleeves for raceway and cable penetration of non-fire-rated construction walls and floors.
- 2. Sleeve-seal systems.
- 3. Sleeve-seal fittings.
- 4. Grout.
- 5. Silicone sealants.

1.2 ACTION SUBMITTALS

A. Product Data: For each type of product.

PART 2 - PRODUCTS

2.1 SLEEVES

A. Wall Sleeves:

- 1. Steel Pipe Sleeves: ASTM A 53/A 53M, Type E, Grade B, Schedule 40, zinc coated, plain ends.
- 2. Cast-Iron Pipe Sleeves: Cast or fabricated "wall pipe," equivalent to ductile-iron pressure pipe, with plain ends and integral waterstop unless otherwise indicated.
- B. Sleeves for Conduits Penetrating Non-Fire-Rated Gypsum Board Assemblies: Galvanized-steel sheet; 0.0239-inch (0.6-mm) minimum thickness; round tube closed with welded longitudinal joint, with tabs for screw-fastening the sleeve to the board.
- C. Sleeves for Rectangular Openings:
 - 1. Material: Galvanized sheet steel.
 - 2. Minimum Metal Thickness:
 - a. For sleeve cross-section rectangle perimeter less than 50 inches (1270 mm) and with no side larger than 16 inches (400 mm), thickness shall be 0.052 inch (1.3 mm).
 - b. For sleeve cross-section rectangle perimeter 50 inches (1270 mm) or more and one or more sides larger than 16 inches (400 mm), thickness shall be 0.138 inch (3.5 mm).

2.2 SLEEVE-SEAL SYSTEMS

A. Description: Modular sealing device, designed for field assembly, to fill annular space between sleeve and raceway or cable.

- 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Advance Products & Systems, Inc.
 - b. CALPICO, Inc.
 - c. Metraflex Company (The).
 - d. Pipeline Seal and Insulator, Inc.
 - e. Proco Products, Inc.
- 2. Sealing Elements: EPDM rubber interlocking links shaped to fit surface of pipe. Include type and number required for pipe material and size of pipe.
- 3. Pressure Plates: Carbon steel.
- 4. Connecting Bolts and Nuts: Carbon steel, with corrosion-resistant coating, of length required to secure pressure plates to sealing elements.

2.3 SLEEVE-SEAL FITTINGS

- A. Description: Manufactured plastic, sleeve-type, waterstop assembly made for embedding in concrete slab or wall. Unit shall have plastic or rubber waterstop collar with center opening to match piping OD.
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. HOLDRITE; Reliance Worldwide Company.

2.4 GROUT

- A. Description: Nonshrink; recommended for interior and exterior sealing openings in non-fire-rated walls or
- B. Standard: ASTM C 1107/C 1107M, Grade B, post-hardening and volume-adjusting, dry, hydraulic-cement grout.
- C. Design Mix: 5000-psi (34.5-MPa), 28-day compressive strength.
- D. Packaging: Premixed and factory packaged.

2.5 SILICONE SEALANTS

- A. Silicone Sealants: Single-component, silicone-based, neutral-curing elastomeric sealants of grade indicated below.
 - 1. Grade: Pourable (self-leveling) formulation for openings in floors and other horizontal surfaces that are not fire rated.
- B. Silicone Foams: Multicomponent, silicone-based liquid elastomers that, when mixed, expand and cure in place to produce a flexible, nonshrinking foam.

PART 3 - EXECUTION

3.1 SLEEVE INSTALLATION FOR NON-FIRE-RATED ELECTRICAL PENETRATIONS

- A. Comply with NECA 1.
- B. Comply with NEMA VE 2 for cable tray and cable penetrations.
- C. Sleeves for Conduits Penetrating Above-Grade Non-Fire-Rated Concrete and Masonry-Unit Floors and Walls:
 - 1. Interior Penetrations of Non-Fire-Rated Walls and Floors:
 - Seal annular space between sleeve and raceway or cable, using joint sealant appropriate for size, depth, and location of joint. Comply with requirements in Section 079200 "Joint Sealants."
 - b. Seal space outside of sleeves with mortar or grout. Pack sealing material solidly between sleeve and wall so no voids remain. Tool exposed surfaces smooth; protect material while curing.
 - 2. Use pipe sleeves unless penetration arrangement requires rectangular sleeved opening.
 - 3. Size pipe sleeves to provide 1/4-inch (6.4-mm) annular clear space between sleeve and raceway or cable unless sleeve seal is to be installed.
 - 4. Install sleeves for wall penetrations unless core-drilled holes or formed openings are used. Install sleeves during erection of walls. Cut sleeves to length for mounting flush with both surfaces of walls. Deburr after cutting.
 - 5. Install sleeves for floor penetrations. Extend sleeves installed in floors 2 inches (50 mm) above finished floor level. Install sleeves during erection of floors.
- D. Sleeves for Conduits Penetrating Non-Fire-Rated Gypsum Board Assemblies:
 - 1. Use circular metal sleeves unless penetration arrangement requires rectangular sleeved opening.
 - 2. Seal space outside of sleeves with approved joint compound for gypsum board assemblies.
- E. Aboveground, Exterior-Wall Penetrations: Seal penetrations using steel pipe sleeves and mechanical sleeve seals. Select sleeve size to allow for 1-inch (25-mm) annular clear space between pipe and sleeve for installing mechanical sleeve seals.
- F. Underground, Exterior-Wall and Floor Penetrations: Install cast-iron pipe sleeves. Size sleeves to allow for 1-inch (25-mm) annular clear space between raceway or cable and sleeve for installing sleeve-seal system.

3.2 SLEEVE-SEAL-SYSTEM INSTALLATION

- A. Install sleeve-seal systems in sleeves in exterior concrete walls and slabs-on-grade at raceway entries into building.
- B. Install type and number of sealing elements recommended by manufacturer for raceway or cable material and size. Position raceway or cable in center of sleeve. Assemble mechanical sleeve seals and install in annular space between raceway or cable and sleeve. Tighten bolts against pressure plates that cause sealing elements to expand and make watertight seal.

3.3 SLEEVE-SEAL-FITTING INSTALLATION

- A. Install sleeve-seal fittings in new walls and slabs as they are constructed.
- B. Assemble fitting components of length to be flush with both surfaces of concrete slabs and walls. Position waterstop flange to be centered in concrete slab or wall.
- C. Secure nailing flanges to concrete forms.
- D. Using grout, seal the space around outside of sleeve-seal fittings.

3.4 FIRESTOPPING

A. Apply firestopping to electrical penetrations of fire-rated floor and wall assemblies to restore original fire-resistance rating of assembly accordingly.

END OF SECTION 260544

SECTION 260553 - ELECTRICAL IDENTIFICATION

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 1 Specification Sections, apply to this Section.

1.2 SUMMARY

A. This Section includes electrical identification materials and devices required to comply with ANSI C2, NFPA 70, OSHA standards, and authorities having jurisdiction.

1.3 SUBMITTALS

A. No submittals.

1.4 QUALITY ASSURANCE

- A. Comply with ANSI C2.
- B. Comply with NFPA 70.
- C. Comply with ANSI A13.1 and NFPA 70 for color-coding.

PART 2 - PRODUCTS

2.1 RACEWAY AND CABLE LABELS

- A. Comply with ANSI A13.1, Table 3, for minimum size of letters for legend and for minimum length of color field for each raceway and cable size.
 - 1. Color: Black letters on orange field.
 - 2. Legend: Indicates voltage and service.
- B. Adhesive Labels: Preprinted, flexible, self-adhesive vinyl with legend overlaminated with a clear, weather- and chemical-resistant coating.
- C. Pretensioned, Wraparound Plastic Sleeves: Flexible, preprinted, color-coded, acrylic band sized to suit the diameter of the line it identifies and arranged to stay in place by pretensioned gripping action when placed in position.
- D. Consider alternatives before specifying self-adhesive product in paragraph below. See Editing Instruction No. 1 in the Evaluations.
- E. Colored Adhesive Tape: Self-adhesive vinyl tape not less than 3 mils thick by 1 to 2 inches wide (0.08 mm thick by 25 to 51 mm wide).
- F. Underground-Line Warning Tape: Permanent, bright-colored, continuous-printed, vinyl tape.
 - 1. Not less than 6 inches wide by 4 mils thick (152 mm wide by 0.102 mm thick).
 - 2. Compounded for permanent direct-burial service.
 - 3. Embedded continuous metallic strip or core.
 - 4. Printed legend indicating type of underground line.
- G. Tape Markers: Vinyl or vinyl-cloth, self-adhesive, wraparound type with preprinted numbers and letters.
- H. Aluminum, Wraparound Marker Bands: Bands cut from 0.014-inch- (0.4-mm-) thick aluminum sheet, with stamped or embossed legend, and fitted with slots or ears for permanently securing around wire or cable jacket or around groups of conductors.

2.2 NAMEPLATES AND SIGNS

- A. Safety Signs: Comply with 29 CFR, Chapter XVII, Part 1910.145.
- B. Engraved Plastic Nameplates and Signs: Engraving stock, melamine plastic laminate, minimum 1/16 inch (1.6 mm) thick for signs up to 20 sq. in. (129 sq. cm) and 1/8 inch (3.2 mm) thick for larger sizes.
 - 1. Engraved legend with black letters on white face.
 - 2. Punched or drilled for mechanical fasteners.
- C. Baked-Enamel Signs for Interior Use: Preprinted aluminum signs, punched or drilled for fasteners, with colors, legend, and size required for the application. 1/4-inch (6.4-mm) grommets in corners for mounting.
- D. Exterior, Metal-Backed, Butyrate Signs: Weather-resistant, nonfading, preprinted, cellulose-acetate butyrate signs with 0.0396-inch (1-mm) galvanized-steel backing; and with colors, legend, and size required for the application. 1/4-inch (6.4-mm) grommets in corners for mounting.
- E. Fasteners for Nameplates and Signs: Self-tapping, stainless-steel screws or No. 10/32, stainless-steel machine screws with nuts and flat and lock washers.

2.3 MISCELLANEOUS IDENTIFICATION PRODUCTS

- A. Cable Ties: Fungus-inert, self-extinguishing, one-piece, self-locking, Type 6/6 nylon cable ties.
 - 1. Minimum Width: 3/16 inch (5 mm).
 - 2. Tensile Strength: 50 lb (22.3 kg) minimum.
 - 3. Temperature Range: Minus 40 to plus 185 deg F (Minus 40 to plus 85 deg C).
 - 4. Color: According to color-coding.
- B. Paint: Formulated for the type of surface and intended use.
 - 1. Primer for Galvanized Metal: Single-component acrylic vehicle formulated for galvanized surfaces.
 - 2. Primer for Concrete Masonry Units: Heavy-duty-resin block filler.
 - 3. Primer for Concrete: Clear, alkali-resistant, binder-type sealer.
 - 4. Enamel: Silicone-alkyd or alkyd urethane as recommended by primer manufacturer.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Identification Materials and Devices: Install at locations for most convenient viewing without interference with operation and maintenance of equipment.
- B. Lettering, Colors, and Graphics: Coordinate names, abbreviations, colors, and other designations with corresponding designations in the Contract Documents or with those required by codes and standards. Use consistent designations throughout Project.
- C. Sequence of Work: If identification is applied to surfaces that require finish, install identification after completing finish work.
- D. Self-Adhesive Identification Products: Clean surfaces before applying.
- E. Circuits with More Than 600 V: Identify raceway and cable with "DANGER--HIGH VOLTAGE" in black letters 2 inches (51 mm) high, stenciled with paint at 10-foot (3-m) intervals over a continuous, painted orange background. Identify the following:
 - 1. Entire floor area directly above conduits running beneath and within 12 inches (305 mm) of a basement or ground floor that is in contact with earth or is framed above unexcavated space.
 - 2. Wall surfaces directly external to conduits concealed within wall.
 - 3. All accessible surfaces of concrete envelope around conduits in vertical shafts, exposed in the building, or concealed above suspended ceilings.
 - 4. Entire surface of exposed conduits.
- F. Install painted identification according to manufacturer's written instructions and as follows:
 - 1. Clean surfaces of dust, loose material, and oily films before painting.
 - 2. Prime surfaces using type of primer specified for surface.
 - 3. Apply one intermediate and one finish coat of enamel.

- G. Color Banding Raceways and Exposed Cables: Band exposed and accessible raceways of the systems listed below:
 - 1. Bands: Pretensioned, wraparound plastic sleeves; colored adhesive tape; or a combination of both. Make each color band 2 inches (51 mm) wide, completely encircling conduit, and place adjacent bands of two-color markings in contact, side by side.
 - 2. Band Locations: At changes in direction, at penetrations of walls and floors, at 50-foot (15-m) maximum intervals in straight runs, and at 25-foot (7.6-m) maximum intervals in congested areas.
 - 3. Apply the following colors to the systems listed below:
 - a. Fire Alarm System: Red.
 - b. Fire-Suppression Supervisory and Control System: Red and yellow.
 - c. Combined Fire Alarm and Security System: Red and blue.
 - d. Security System: Blue and yellow.
 - e. Mechanical and Electrical Supervisory System: Green and blue.
 - f. Telecommunication System: Green and yellow.
- H. Caution Labels for Indoor Boxes and Enclosures for Power and Lighting: Install pressure-sensitive, self-adhesive labels identifying system voltage with black letters on orange background. Install on exterior of door or cover.
- I. Circuit Identification Labels on Boxes: Install labels externally.
 - 1. Exposed Boxes: Pressure-sensitive, self-adhesive plastic label on cover.
 - 2. Concealed Boxes: Plasticized card-stock tags.
 - 3. Labeling Legend: Permanent, waterproof listing of panel and circuit number or equivalent.
- J. Paths of Underground Electrical Lines: During trench backfilling, for exterior underground power, control, signal, and communication lines, install continuous underground plastic line marker located directly above line at 6 to 8 inches (150 to 200 mm) below finished grade. Where width of multiple lines installed in a common trench or concrete envelope does not exceed 16 inches (400 mm) overall, use a single line marker. Install line marker for underground wiring, both direct-buried cables and cables in raceway.
- K. Color-Coding of Secondary Phase Conductors: Use the following colors for service feeder, and branch-circuit phase conductors:
 - 1. 208/120-V Conductors:
 - a. Phase A: Black.
 - b. Phase B: Red.
 - c. Phase C: Blue.
 - 2. 480/277-V Conductors:
 - a. Phase A: Brown.
 - b. Phase B: Orange.
 - c. Phase C: Yellow
 - 3. Factory apply color the entire length of conductors, except the following field-applied, color-coding methods may be used instead of factory-coded wire for sizes larger than No. 10 AWG:
 - a. Colored, pressure-sensitive plastic tape in half-lapped turns for a distance of 6 inches (150 mm) from terminal points and in boxes where splices or taps are made. Apply last two turns of tape with no tension to prevent possible unwinding. Use 1-inch- (25-mm-) wide tape in colors specified. Adjust tape bands to avoid obscuring cable identification markings.
 - b. Colored cable ties applied in groups of three ties of specified color to each wire at each terminal or splice point starting 3 inches (76 mm) from the terminal and spaced 3 inches (76 mm) apart. Apply with a special tool or pliers, tighten to a snug fit, and cut off excess length.
- L. Power-Circuit Identification: Metal tags or aluminum, wraparound marker bands for cables, feeders, and power circuits in vaults, pull and junction boxes, manholes, and switchboard rooms.
 - 1. Legend: 1/4-inch- (6.4-mm-) steel letter and number stamping or embossing with legend corresponding to indicated circuit designations.
 - 2. Tag Fasteners: Nylon cable ties.
 - 3. Band Fasteners: Integral ears.

- M. Apply identification to conductors as follows:
 - 1. Conductors to Be Extended in the Future: Indicate source and circuit numbers.
 - 2. Multiple Power or Lighting Circuits in the Same Enclosure: Identify each conductor with source, voltage, circuit number, and phase. Use color-coding to identify circuits' voltage and phase.
 - 3. Multiple Control and Communication Circuits in the Same Enclosure: Identify each conductor by its system and circuit designation. Use a consistent system of tags, color-coding, or cable marking tape.
- N. Apply warning, caution, and instruction signs as follows:
 - 1. Warnings, Cautions, and Instructions: Install to ensure safe operation and maintenance of electrical systems and of items to which they connect. Install engraved plastic-laminated instruction signs with approved legend where instructions are needed for system or equipment operation. Install metal-backed butyrate signs for outdoor items.
 - 2. Emergency Operation: Install engraved laminated signs with white legend on red background with minimum 3/8-inch- (9-mm-) high lettering for emergency instructions on power transfer, load shedding, and other emergency operations.
- O. Equipment Identification Labels: Engraved plastic laminate. Install on each unit of equipment, including central or master unit of each system. This includes power, lighting, communication, signal, and alarm systems, unless units are specified with their own self-explanatory identification. Unless otherwise indicated, provide a single line of text with 1/2-inch- (13-mm-) high lettering on 1-1/2-inch- (38-mm-) high label; where two lines of text are required, use labels 2 inches (50 mm) high. Use white lettering on black field. Apply labels for each unit of the following categories of equipment using mechanical fasteners:
 - 1. Panelboards, electrical cabinets, and enclosures.
 - 2. Access doors and panels for concealed electrical items.
 - 3. Electrical switchgear and switchboards.
 - 4. Emergency system boxes and enclosures.
 - 5. Disconnect switches.
 - 6. Enclosed circuit breakers.
 - 7. Motor starters.
 - 8. Push-button stations.
 - 9. Power transfer equipment.
 - 10. Contactors.
 - 11. Remote-controlled switches.
 - 12. Control devices.
 - 13. Transformers.
 - 14. Power-generating units.
 - 15. Telephone switching equipment.
 - 16. Clock/program master equipment.
 - 17. Fire alarm master station or control panel.

END OF SECTION 26 05 53

SECTION 260923 - LIGHTING CONTROL DEVICES

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:

- 1. Time switches.
- 2. Photoelectric switches.
- 3. Standalone daylight-harvesting switching and dimming controls.
- 4. Indoor occupancy and vacancy sensors.
- 5. Switchbox-mounted occupancy and vacancy sensors
- 6. Digital timer light switches.
- 7. High-bay occupancy and vacancy sensors.
- 8. Outdoor motion sensors.
- 9. Lighting contactors.

B. Related Requirements:

1. Section 262726 "Wiring Devices" for wall-box dimmers, non-networkable wall-switch occupancy sensors, and manual light switches.

1.2 ACTION SUBMITTALS

- A. Product Data: For each type of product.
- B. Shop Drawings:
 - 1. Show installation details for the following:
 - a. Occupancy sensors.
 - b. Vacancy sensors.
 - 2. Interconnection diagrams showing field-installed wiring.
 - 3. Include diagrams for power, signal, and control wiring.

1.3 INFORMATIONAL SUBMITTALS

- A. Product Data, including technical specifications.
- B. Field quality-control reports.
- C. Sample warranty.

1.4 CLOSEOUT SUBMITTALS

A. Operation and maintenance data.

B. Software and firmware operational documentation.

1.5 WARRANTY

- A. Manufacturer's Warranty: Manufacturer and Installer agree to repair or replace lighting control devices that fail(s) in materials or workmanship within specified warranty period.
 - 1. Warranty Period: Three year(s) from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 TIME SWITCHES

- A. Manufacturer's:
 - 1. Intermatic (Basis of Design)
 - 2. GE
 - 3. Square D.
 - 4. Or equal.
- B. Electronic Time Control: Solid state, programmable, with alphanumeric display; complying with UL 917.
 - 1. Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
 - 2. Contact Configuration: SPDP-DPDT.
 - 3. Contact Rating: 20-A ballast load, 120-/240-V ac.
 - Programs: Astronomic, 365-Day, Multi-Circuit Electronic Control, 120-277VAC, 50/60Hz.
 - 5. Circuitry: Allow connection of a photoelectric relay as substitute for on-off function of a program.
 - 6. Astronomic Time: All channels.
 - 7. Automatic daylight savings time changeover.
 - 8. Battery Backup: Not less than seven days reserve, to maintain schedules and time clock.
 - 9. Four (4) circuit model: Intermatic model #ET90415CR. (used with Electric Panel T lighting)
 - 10. Eight (8) circuit model: Intermatic model #ET90815CR. (used with Electric Panel AP lighting)

2.2 INDOOR OCCUPANCY AND VACANCY SENSORS

- A. Manufacturer's
 - 1. Hubbell Control Solutions
 - 2. Intermatic, Inc.
 - 3. Lutron
 - 4. Watt Stopper, Legrand
 - 5. Or equal.
- B. General Requirements for Sensors:
 - 1. Ceiling-mounted, solid-state indoor occupancy sensors.

- 2. Dual technology (ultrasonic and passive infrared).
- 3. Integrated power pack.
- Hardwired connection to switch.
- 5. Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- 6. Operation:
 - a. Combination Sensor: Unless otherwise indicated, sensor shall be programmed to turn lights on when coverage area is occupied and turn them off when unoccupied, or to turn off lights that have been manually turned on; with a time delay for turning lights off, adjustable over a minimum range of 1 to 15 minutes.
- 7. Sensor Output: Contacts rated to operate the connected relay, complying with UL 773A.
- 8. Power: Line voltage.
- Power Pack: Dry contacts rated for 20-A ballast or LED load at 120- and 277-V ac, for 13-A tungsten at 120-V ac, and for 1 hp at 120-V ac. Sensor has 24-V dc, 150-mA, Class 2 power source, as defined by NFPA 70.
- 10. Mounting:
 - a. Sensor: Suitable for mounting in any position on a standard outlet box.
 - b. Relay: Externally mounted through a 1/2-inch (13-mm) knockout in a standard electrical enclosure.
 - c. Time-Delay and Sensitivity Adjustments: Recessed and concealed behind hinged door.
- 11. Indicator: Digital display, to show when motion is detected during testing and normal operation of sensor.
- 12. Bypass Switch: Override the "on" function in case of sensor failure.
- 13. Automatic Light-Level Sensor: Adjustable from 2 to 200 fc (21.5 to 2152 lux); turn lights off when selected lighting level is present.
- C. PIR Type: Ceiling mounted; detect occupants in coverage area by their heat and movement.
 - 1. Detector Sensitivity: Detect occurrences of 6-inch- (150-mm-) minimum movement of any portion of a human body that presents a target of not less than 36 sq. in. (232 sq. cm).
 - 2. Detection Coverage in spaces that are less than 800 square feet (Room, Ceiling Mounted): Detect occupancy anywhere in a circular area of 1000 sq. ft. (93 sq. m) when mounted on a 96-inch- (2440-mm-) high ceiling.
 - 3. Detection Coverage in spaces that are greater than 800 square feet (Corridor, Ceiling Mounted): Detect occupancy within 90 feet (27.4 m) when mounted on a 10-foot- (3-m-) high ceiling.
- D. Ultrasonic Type: Ceiling mounted; detect occupants in coverage area through pattern changes of reflected ultrasonic energy.
 - 1. Detector Sensitivity: Detect a person of average size and weight moving not less than 12 inches (305 mm) in either a horizontal or a vertical manner at an approximate speed of 12 inches/s (305 mm/s).
 - 2. Detection Coverage in spaces less than 800 square feet (Standard Room): Detect occupancy anywhere within a circular area of 1000 sq. ft. (93 sq. m) when mounted on a 96-inch- (2440-mm-) high ceiling.
 - 3. Detection Coverage in spaces greater than 800 square feet (Large Room): Detect occupancy anywhere within a circular area of 2000 sq. ft. (186 sq. m) when mounted on a 96-inch- (2440-mm-) high ceiling.

- E. Dual-Technology Type: Ceiling mounted; detect occupants in coverage area using PIR and ultrasonic detection methods. The particular technology or combination of technologies that control on-off functions is selectable in the field by operating controls on unit.
 - 1. Sensitivity Adjustment: Separate for each sensing technology.
 - 2. Detector Sensitivity: Detect occurrences of 6-inch- (150-mm-) minimum movement of any portion of a human body that presents a target of not less than 36 sq. in. (232 sq. cm), and detect a person of average size and weight moving not less than 12 inches (305 mm) in either a horizontal or a vertical manner at an approximate speed of 12 inches/s (305 mm/s).
 - 3. Detection Coverage in spaces less than 800 square feet (Standard Room): Detect occupancy anywhere within a circular area of 1000 sq. ft. (93 sq. m) when mounted on a 96-inch- (2440-mm-) high ceiling.
 - 4. Detection Coverage in spaces greater than 800 square feet (Large Room): Detect occupancy anywhere within a circular area of 2000 sq. ft. (186 sq. m) when mounted on a 96-inch- (2440-mm-) high ceiling.

2.3 SWITCHBOX-MOUNTED OCCUPANCY SENSORS

- A. Used in spaces less than 200 square feet, unless otherwise specified.
- B. General Requirements for Sensors: Automatic-wall-switch occupancy sensor with manual on-off switch, suitable for mounting in a single gang switchbox using hardwired connection.
 - 1. Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
 - 2. Occupancy Sensor Operation: Unless otherwise indicated, turn lights on when coverage area is occupied, and turn lights off when unoccupied; with a time delay for turning lights off, adjustable over a minimum range of 1 to 15 minutes.
 - 3. Operating Ambient Conditions: Dry interior conditions, 32 to 120 deg F (0 to 49 deg C).
 - 4. Switch Rating: Not less than 800-VA ballast or LED load at 120 V, 1200-VA ballast or LED load at 277 V, and 800-W incandescent.

2.4 OUTDOOR MOTION SENSORS

- A. Manufacturer's:
 - 1. Hubbell Control Solutions
 - 2. Cooper Industries, Inc.
 - 3. Leviton Manufacturing Co.
 - 4. Watt Stopper, Legrand.
 - Or equal.
- B. General Requirements for Sensors: Solid-state outdoor motion sensors.
 - 1. Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
 - 2. Dual-technology (PIR and infrared) type, weatherproof. Detect occurrences of 6-inch-(150-mm-) minimum movement of any portion of a human body that presents a target of not less than 36 sq. in. (232 sq. cm). Comply with UL 773A.
 - 3. Switch Rating:

- a. Luminaire-Mounted Sensor: 1000-W incandescent, 500-VA fluorescent/LED.
- b. Separately Mounted Sensor: Dry contacts rated for 20-A ballast load at 120- and 277-V ac, for 13-A tungsten at 120-V ac, and for 1 hp at 120-V ac. Sensor has 24-V dc, 150-mA, Class 2 power source, as defined by NFPA 70.
- 4. Voltage: Dual voltage, 120- and 277-V type.
- 5. Detector Coverage:
 - a. Standard Range: 210-degree field of view, with a minimum coverage area of 900 sq. ft. (84 sq. m).
 - b. Long Range: 180-degree field of view and 110-foot (34-m) detection range.
- 6. Ambient-Light Override: Concealed, field-adjustable, light-level sensor from 10 to 150 fc (108 to 1600 lux). The switch prevents the lights from turning on when the light level is higher than the set point of the sensor.
- 7. Concealed, "off" time-delay selector at 30 seconds and 5, 10, and 20 minutes.
- 8. Adaptive Technology: Self-adjusting circuitry detects and memorizes usage patterns of the space and help eliminate false "off" switching.
- Operating Ambient Conditions: Suitable for operation in ambient temperatures ranging from minus 40 to plus 130 deg F (minus 40 to plus 54 deg C), rated as "raintight" according to UL 773A.

2.5 LIGHTING CONTACTORS

- A. < Double click here to find, evaluate, and insert list of manufacturers and products.>
- B. Manufacturer's:
 - 1. ABB, Electrification Products Division
 - 2. Allen Bradley/Rockwell Automation
 - 3. Square D, Schneider Electric USA
 - 4. Or Equal.
- C. Description: Electrically operated and mechanically held, combination-type lighting contactors with fusible switch, complying with NEMA ICS 2 and UL 508.
 - Current Rating for Switching: Listing or rating consistent with type of load served, including tungsten filament, inductive, and high-inrush ballast (ballast with 15 percent or less THD of normal load current).
 - 2. Fault Current Withstand Rating: Equal to or exceeding the available fault current at the point of installation.
 - 3. Enclosure: Comply with NEMA 250.
 - Provide with control and pilot devices as indicated on Drawings, matching the NEMA type specified for the enclosure.

2.6 CONDUCTORS AND CABLES

A. Power Wiring to Supply Side of Remote-Control Power Sources: Not smaller than No. 12 AWG. Comply with requirements in Section 260519 "Low-Voltage Electrical Power Conductors and Cables."

- B. Classes 2 and 3 Control Cable: Multiconductor cable with stranded-copper conductors not smaller than No. 18 AWG. Comply with requirements in Section 260519 "Low-Voltage Electrical Power Conductors and Cables."
- C. Class 1 Control Cable: Multiconductor cable with stranded-copper conductors not smaller than No. 14 AWG. Comply with requirements in Section 260519 "Low-Voltage Electrical Power Conductors and Cables."

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Comply with NECA 1.
- B. Examine lighting control devices before installation. Reject lighting control devices that are wet, moisture damaged, or mold damaged.
- C. Coordinate layout and installation of ceiling-mounted devices with other construction that penetrates ceilings or is supported by them, including light fixtures, HVAC equipment, smoke detectors, fire-suppression systems, and partition assemblies.
- D. Install and aim sensors in locations to achieve not less than 90-percent coverage of areas indicated. Do not exceed coverage limits specified in manufacturer's written instructions.

3.2 WIRING INSTALLATION

- A. Wiring Method: Comply with Section 260519 "Low-Voltage Electrical Power Conductors and Cables." Minimum conduit size is 1/2 inch (13 mm).
- B. Wiring within Enclosures: Separate power-limited and nonpower-limited conductors according to conductor manufacturer's written instructions.
- C. Size conductors according to lighting control device manufacturer's written instructions unless otherwise indicated.
- D. Splices, Taps, and Terminations: Make connections only on numbered terminal strips in junction, pull, and outlet boxes; terminal cabinets; and equipment enclosures.

3.3 IDENTIFICATION

- A. Identify components and power and control wiring according to Section 260553 "Identification for Electrical Systems."
- B. Label time switches and contactors with a unique designation.

3.4 FIELD QUALITY CONTROL

- A. Perform the following tests and inspections with the assistance of a factory-authorized service representative:
 - 1. Operational Test: After installing time switches and sensors, and after electrical circuitry has been energized, start units to confirm proper unit operation.
 - 2. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.
- B. Prepare test and inspection reports.

3.5 ADJUSTING

- A. Occupancy Adjustments: When requested within 12 months from date of Substantial Completion, provide on-site assistance in adjusting lighting control devices to suit actual occupied conditions. Provide up to one visit to Project during other-than-normal occupancy hours for this purpose.
 - 1. For occupancy and motion sensors, verify operation at outer limits of detector range. Set time delay to suit Owner's operations.
 - 2. For daylighting controls, adjust set points and deadband controls to suit Owner's operations.
 - 3. Align high-bay occupancy sensors using manufacturer's laser aiming tool.

3.6 SOFTWARE SERVICE AGREEMENT

- A. Technical Support: Beginning at Substantial Completion, service agreement shall include software support for two years.
- B. Upgrade Service: At Substantial Completion, update software to latest version. Install and program software upgrades that become available within two years from date of Substantial Completion. Upgrading software shall include operating system and new or revised licenses for using software.
 - 1. Upgrade Notice: At least 60 days to allow Owner to schedule and access the system and to upgrade computer equipment if necessary.

3.7 DEMONSTRATION

A. Engage a factory-authorized service representative to train] Owner's maintenance personnel to adjust, operate, and maintain lighting control devices.

END OF SECTION 260923

SECTION 262416 - PANELBOARDS & SWITCHBOARDS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 1 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. This Section includes panelboards, overcurrent protective devices, and associated auxiliary equipment rated 600 V and less for the following types:
 - 1. Lighting and appliance branch-circuit panelboards.
 - 2. Distribution switchboards.
 - 3. Transient voltage surge suppressor panelboards.
- B. Related Sections include the following:
 - 1. Division 26 Section "Fuses."

1.3 DEFINITIONS

- A. EMI: Electromagnetic interference.
- B. GFCI: Ground-fault circuit interrupter.
- C. RFI: Radio-frequency interference.
- D. RMS: Root mean square.
- E. SPDT: Single pole, double throw.
- F. TVSS: Transient voltage surge suppressor.

1.4 SUBMITTALS

- A. Product Data: For each type of panelboard, switchboard, overcurrent protective device, TVSS device, accessory, and component indicated. Include dimensions and manufacturers' technical data on features, performance, electrical characteristics, ratings, and finishes.
- B. Shop Drawings: For each panelboard, switchboard and related equipment.
 - 1. Dimensioned plans, elevations, sections, and details. Show tabulations of installed devices, equipment features, and ratings. Include the following:
 - a. Enclosure types and details for types other than NEMA 250, Type 1.

- b. Bus configuration, current, and voltage ratings.
- c. Short-circuit current rating of panelboards and overcurrent protective devices.
- d. UL listing for series rating of installed devices.
- e. Features, characteristics, ratings, and factory settings of individual overcurrent protective devices and auxiliary components.
- 2. Wiring Diagrams: Diagram power, signal, and control wiring and differentiate between manufacturer-installed and field-installed wiring.
- C. Field Test Reports: Submit written test reports and include the following:
 - 1. Test procedures used.
 - 2. Test results that comply with requirements.
 - 3. Results of failed tests and corrective action taken to achieve test results that comply with requirements.
- D. Panelboard and Switchboard Schedules: For installation in panelboards. Submit final versions after load balancing.
- E. Maintenance Data: For panelboards and components to include in maintenance manuals specified in Division 1. In addition to requirements specified in Division 1 Section "Contract Closeout," include the following:
 - 1. Manufacturer's written instructions for testing and adjusting overcurrent protective devices.
 - 2. Time-current curves, including selectable ranges for each type of overcurrent protective device.
- F. Should the contractor submit any substitution (including other approved manufacturers) other than the specified product the contractor shall be responsible for all electrical, mechanical, structural, and architectural revisions as required to accommodate the installation of the substituted equipment at no additional cost to the owner.
- 1.5 QUALITY ASSURANCE
 - A. Comply with NEMA PB 1.
 - B. Comply with NFPA 70.

1.6 COORDINATION

A. Coordinate layout and installation of switchboards, panelboards and associated components with other construction that penetrates walls or is supported by them, including electrical and other types of equipment, raceways, piping, and encumbrances to workspace clearance requirements.

1.7 EXTRA MATERIALS

A. Keys: Four spares of each type of panelboard cabinet lock. Key all cabinets alike.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Panelboards, Overcurrent Protective Devices, Controllers, Contactors, and Accessories:
 - a. Eaton Corp.; Cutler-Hammer Products.
 - b. Schneider Electric Square D Co. (Basis of Design)
 - c. General Electric
 - d. Or equal

2.2 FABRICATION AND FEATURES

- A. Enclosures: Flush- and surface-mounted cabinets as noted on the drawings. NEMA PB 1, Type 1, to meet environmental conditions at installed location.
 - 1. Outdoor Locations: NEMA 250, Type 3R.
- B. Front: Secured to box with concealed trim clamps. For surface-mounted fronts, match box dimensions; for flush-mounted fronts, overlap box.
- C. Hinged Front Cover: For boxes more than 28 inches high, entire front trim hinged to box and with standard door within hinged trim cover.
- D. Finish: Manufacturer's standard enamel finish over corrosion-resistant treatment or primer coat.
- E. Directory Card: With transparent protective cover, mounted inside metal frame, inside panelboard door.
- F. Bus: Hard-drawn copper, 98 percent conductivity.
- G. Main and Neutral Lugs: Mechanical type suitable for use with conductor material.
- H. Equipment Ground Bus: Adequate for feeder and branch-circuit equipment ground conductors; bonded to box.
- I. Service Equipment Label: UL labeled for use as service equipment for panelboards with main service disconnect switches.
- J. Future Devices: Mounting brackets, bus connections, and necessary appurtenances required for future installation of devices.
- K. Isolated Equipment Ground Bus: Adequate for branch-circuit equipment ground conductors; insulated from box.
- L. Extra-Capacity Neutral Bus: Neutral bus rated 200 percent of phase bus and UL listed as suitable for nonlinear loads as noted on the drawings.
- M. Split Bus: Vertical buses divided into individual vertical sections.
- N. Gutter Barrier: Arrange to isolate individual panel sections.
- O. Feed-through Lugs: Mechanical type suitable for use with conductor material. Locate at opposite end of bus from incoming lugs or main device. Provide wire feed same size as feeder.

P. Provide ARC Flash labeling as required by the National Electrical Code.

2.3 PANELBOARD SHORT-CIRCUIT RATING

- A. UL label indicating series-connected rating with integral or remote upstream devices. Include size and type of upstream device allowable, branch devices allowable, and UL series-connected short-circuit rating.
- B. Fully rated to interrupt symmetrical short-circuit current available at terminals.
- C. Contractor shall confirm from local utility company prior to submittal review of minimum symmetrical short circuit rating requirements within project site, should the contract documents differ the contractor shall submit and provide the greater rated value.

2.4 LIGHTING AND APPLIANCE BRANCH-CIRCUIT PANELBOARDS

- A. Branch Overcurrent Protective Devices: Bolt-on circuit breakers, replaceable without disturbing adjacent units.
- B. Doors: Front mounted with concealed hinges; secured with flush latch with tumbler lock; keyed alike.
- C. All panelboards shall be fully equipped with all branch breaker mounting assemblies.
- D. All panelboards shall be fully equipped with a grounding bus bar assembly which must be large enough to meet a minimum of 100% of the branch circuit quantities plus 10%.
- E. All panelboards shall be fully equipped with a neutral bus bar assembly which must be large enough to meet a minimum of 100% of the branch breaker quantities plus 10%.

2.5 CLASS 2 LIGHTING PANELS – WITH CONTROL SYSTEM

Lighting Control System

- A. The lighting control system shall consist of microprocessor-based control electronics with remotely operated circuit breakers mounted to a UL67 listed lighting panelboard interior and enclosed in a UL50 listed panelboard enclosure. The circuit breakers shall provide overcurrent protection, and have an AIR rating or series connected rating that meets or exceeds the fault current of the system to which the panelboard is being applied.
- B. Each master control panel shall meet or exceed the following capabilities:
 - 1. Sixteen (16) 2-wire input terminals for connection to external low voltage switch contacts.
 - 2. Time of day scheduling to automatically shut off lighting at specific programmed times
 - 3. Direct control of branch circuits in a master/slave sub-net configuration.
 - 4. Provide true status feedback by monitoring branch circuit breaker status based on actual system voltage at load side terminal.
 - 5. Accept remote commands through the facilities Ethernet infrastructure.
- C. All lighting control components shall be installed in a conventional panelboard 20 inches wide or column-width enclosures (as noted on drawings). Suitable barriers shall be installed to separate Class 2 wiring from power conductors.

2.6 DISTRIBUTION SWITCHBOARDS

- A. Doors: Front mounted, except omit in fused-switch panelboards; secured with vault-type latch with tumbler lock; keyed alike. Door-in-door construction.
- B. Main Overcurrent Protective Devices: Circuit breaker as noted. Main lugs only unless otherwise noted.
- C. Branch overcurrent protective devices shall be one of the following:
 - 1. For Circuit-Breaker Frame Sizes 125 A and Smaller: Bolt-on circuit breakers.
 - 2. For Circuit-Breaker Frame Sizes Larger Than 125 A: Bolt-on circuit breakers; plug-in circuit breakers where individual positive-locking device requires mechanical release for removal.

2.7 OVERCURRENT PROTECTIVE DEVICES

- A. Molded-Case Circuit Breaker: NEMA AB 1, with interrupting capacity to meet available fault currents.
 - 1. Thermal-Magnetic Circuit Breakers: Inverse time-current element for low-level overloads, and instantaneous magnetic trip element for short circuits. Adjustable magnetic trip setting for circuit-breaker frame sizes 250 A and larger.
 - 2. Adjustable Instantaneous-Trip Circuit Breakers: Magnetic trip element with front-mounted, field-adjustable trip setting.
 - 3. GFCI Circuit Breakers: Single- and two-pole configurations with 5-mA trip sensitivity.
- B. Molded-Case Circuit-Breaker Features and Accessories. Standard frame sizes, trip ratings, and number of poles.
 - 1. Lugs: Mechanical style, suitable for number, size, trip ratings, and material of conductors.
 - 2. Application Listing: Appropriate for application; Type SWD for switching fluorescent lighting loads; Type HACR for ALL heating, air-conditioning, and refrigerating equipment.
 - 3. Ground-Fault Protection: Integrally mounted relay and trip unit with adjustable pickup and time-delay settings, push-to-test feature, and ground-fault indicator.
 - 4. Undervoltage Trip: Set to operate at 35 to 75 percent of rated voltage without intentional time delay.
 - 5. Auxiliary Switch: Two SPDT switches with "a" and "b" contacts; "a" contacts mimic circuit-breaker contacts, "b" contacts operate in reverse of circuit-breaker contacts.
 - 6. Lock-on clips: Install on circuit breakers for alarm, telecommunications, control systems, and refrigeration equipment.
 - 7. Shunt Trip Device: Integrally mounted relay and trip unit with manual reset ONLY. In addition to the designated locations indicated on the contract documents it shall be required to provide a shunt trip device for any/all elevator and escalator equipment and systems. All elevator and escalator shunt trip devices shall be installed per the ASME A17.1 Safety Code for Elevators and Escalators..

PART 3 - EXECUTION

3.1 INSTALLATION

A. Install panelboards and accessories according to NEMA PB 1.1.

- B. Mounting Heights: Top of trim 74 inches (1880 mm) above finished floor, unless otherwise indicated.
- C. Mounting: Plumb and rigid without distortion of box. Mount recessed panelboards with fronts uniformly flush with wall finish.
- D. Circuit Directory: Create a directory to indicate installed circuit loads after balancing panelboard loads. Obtain approval before installing. Use a computer or typewriter to create directory; handwritten directories are not acceptable.
- E. Install filler plates in unused spaces.
- F. Provide ONE additional panelboard and accessories of each size and type used on the project to accommodate changes required to resolve interferences or as directed by the Engineer.
- G. Provision for Future Circuits at Flush Panelboards: Stub four 1-inch (27-GRC) empty conduits from panelboard into accessible ceiling space or space designated to be ceiling space in the future. Stub four 1-inch (27-GRC) empty conduits into raised floor space or below slab not on grade.
- H. Wiring in Panelboard Gutters: Arrange conductors into groups and bundle and wrap with wire ties after completing load balancing.

3.2 IDENTIFICATION

- A. Identify field-installed conductors, interconnecting wiring, and components; provide warning signs as specified in Division 16 Section "Electrical Identification."
- B. Panelboard Nameplates: Label each panelboard with engraved laminated-plastic nameplate mounted with corrosion-resistant screws.

3.3 CONNECTIONS

- A. Install equipment grounding connections for panelboards with ground continuity to main electrical ground bus.
- B. Tighten electrical connectors and terminals according to manufacturer's published torque-tightening values. If manufacturer's torque values are not indicated, use those specified in UL 486A and UL 486B.

3.4 FIELD QUALITY CONTROL

- A. Prepare for acceptance tests as follows:
 - Test insulation resistance for each panelboard bus, component, connecting supply, feeder, and control
 circuit.
 - 2. Test continuity of each circuit.
- B. Testing: After installing panelboards and after electrical circuitry has been energized, demonstrate product capability and compliance with requirements.
 - 1. Procedures: Perform each visual and mechanical inspection and electrical test indicated in NETA ATS, Section 7.5 for switches and Section 7.6 for molded-case circuit breakers. Certify compliance with test parameters.
 - 2. Correct malfunctioning units on-site, where possible, and retest to demonstrate compliance; otherwise, replace with new units and retest.

- C. Balancing Loads: After Substantial Completion, but not more than 60 days after Final Acceptance, measure load balancing and make circuit changes as follows:
 - 1. Measure as directed during period of normal system loading.
 - 2. Perform load-balancing circuit changes outside normal occupancy/working schedule of the facility and at time directed. Avoid disrupting critical 24-hour services such as fax machines and on-line data-processing, computing, transmitting, and receiving equipment.
 - 3. After circuit changes, recheck loads during normal load period. Record all load readings before and after changes and submit test records.
 - 4. Tolerance: Difference exceeding 20 percent between phase loads, within a panelboard, is not acceptable. Rebalance and recheck as necessary to meet this minimum requirement.

3.5 ADJUSTING

A. Set field-adjustable switches and circuit-breaker trip ranges.

3.6 CLEANING

A. On completion of installation, inspect interior and exterior of panelboards. Remove paint splatters and other spots. Vacuum dirt and debris; do not use compressed air to assist in cleaning. Repair exposed surfaces to match original finish.

END OF SECTION 262416

Addition & Alterations
Department of Public Works
10 Hartford Road
Delran, New Jersey

SECTION 262726 - WIRING DEVICES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 1 Specification Sections, apply to this Section.

1.2 SUMMARY

A. This Section includes receptacles, connectors, switches, and finish plates.

1.3 DEFINITIONS

- A. GFCI or GFI: Ground-fault circuit interrupter.
- B. SPD or TVSS: Transient voltage surge suppressor.

1.4 SUBMITTALS

- A. Product Data: For each product specified.
- B. Shop Drawings: Legends for receptacles and switch plates.
- C. Samples: For devices and device plates for color selection and evaluation of technical features.
- D. Maintenance Data: For materials and products to include in maintenance manuals specified in Division 1.

1.5 QUALITY ASSURANCE

- A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction.
- B. Comply with NEMA WD 1.
- C. Comply with NFPA 70.

1.6 COORDINATION

- A. Receptacles for Owner-Furnished Equipment: Match plug configurations.
 - 1. Cord and Plug Sets: Match equipment requirements.

1.7 EXTRA MATERIALS

- A. Furnish extra materials described below that match products installed and that are packaged with protective covering for storage and identified with labels describing contents. Deliver extra materials to Owner.
 - 1. Floor Service-Outlet Assemblies: One for each 10, but not less than one.
 - 2. GFCI Receptacles: One for each fourty installed.
 - 3. TVSS Receptacles: One for each fourty installed.
 - 4. T/R Receptacles: One for each fourty installed.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

- A. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - 1. Wiring Devices:
 - a. Hubbell, Inc.; Wiring Devices Div.
 - b. Killark Electric Manufacturing Co.
 - c. Leviton Manufacturing Co., Inc.
 - d. Pass & Seymour/Legrand; Wiring Devices Div.
 - f. Or Approved Equal
 - 2. Wiring Devices for Hazardous (Classified) Locations:
 - a. Crouse-Hinds Electrical Co.; Distribution Equipment Div.
 - b. Killark Electric Manufacturing Co.
 - c. Pyle-National, Inc.; an Amphenol Co.
 - d. Or Approved Equal
 - 3. Multioutlet Assemblies:
 - a. Airey-Thompson Co.
 - b. Wiremold.
 - c. Or Approved Equal

2.2 RECEPTACLES

- A. Straight-Blade and Locking Receptacles: Heavy-Duty grade.
- B. GFCI Receptacles: Feed-through type, with integral NEMA WD 6, Configuration 5-20R duplex receptacle arranged to protect connected downstream receptacles on same circuit. Design units for installation in a 2-3/4-inch- (70-mm-) deep outlet box without an adapter.
- C. Isolated-Ground Receptacles: Equipment grounding contacts connected only to the green grounding screw terminal of the device with inherent electrical isolation from mounting strap.
 - 1. Devices: Listed and labeled as isolated-ground receptacles.
 - 2. Isolation Method: Integral to receptacle construction and not dependent on removable parts.
- D. TVSS Receptacles: Duplex type, NEMA WD 6, Configuration 5-20R, with integral/interchangeable TVSS in line to ground, line to neutral, and neutral to ground.
 - 1. TVSS Components: Multiple metal-oxide varistors; rated a nominal clamp level of 500 transient-suppression voltage and minimum single transient pulse energy dissipation of 140 J line to neutral, and 70 J line to ground and neutral to ground.
 - 2. Active TVSS Indication: Light visible in face of device to indicate device as "active" or "no longer active."
 - 3. Identification: Distinctive marking on face of device denotes TVSS-type unit.
- E. Tamper Resistant (T/R) Receptacles: Integral NEMA WD 6, Configuration 5-20R duplex receptacle. Design units for installation in a 2-3/4-inch-deep outlet box without an adapter.
 - 1. Devices: Listed and labeled as tamper resistant receptacles.
 - 2. Protection Method: Containts a sturdy mechanical shutter system to prevent objects from being inseted into the receptacle
 - 3. Identification: Distinctive marking on face of device denotes T/R-type unit.
- F. Industrial Heavy-Duty Receptacle: Comply with IEC 309-1.
- G. Hazardous (Classified) Location Receptacles: Comply with NEMA FB 11.

2.3 PENDANT CORD/CONNECTOR DEVICES

A. Description: Matching, locking type, plug and receptacle body connector, NEMA WD 6, Configurations L5-20P and L5-20R, Heavy-Duty grade.

1. Body: Nylon with screw-open cable-gripping jaws and provision for attaching external cable grip. WIRING DEVICES 262726 - 2

2. External Cable Grip: Woven wire-mesh type made of high-strength galvanized-steel wire strand, matched to cable diameter, and with attachment provision designed for corresponding connector.

2.4 CORD AND PLUG SETS

- A. Description: Match voltage and current ratings and number of conductors to requirements of equipment being connected.
 - 1. Cord: Rubber-insulated, stranded-copper conductors, with type SOW-A jacket. Green-insulated grounding conductor, and equipment-rating ampacity plus a minimum of 30 percent.
 - 2. Plug: Nylon body and integral cable-clamping jaws. Match cord and receptacle type for connection.

2.5 FLOOR BOX ASSEMBLIES

A. Box size - 8" x 6" x 5" [203mm x 152mm x 127mm] (Wiremold AF1 & AF2 Series)

The panel opening shall be 8" x 6" [203mm x 152mm] and have an overall module depth of 5" [127mm].

The box must provide a total activation chamber volume of at least 130 cubic inches
[2130 ml]. The total Box Volume capacity shall have a minimum of 208 cubic inches [3418 ml].

The box lid shall be constructed of polycarbonate material, available in standard colors of black, brown and gray. The lid shall provide a removable cable guard for egress of power and communication workstation cables. The cable guards shall hold workstation cables in place with the lid either in the open or closed position.

The trim flange shall be constructed of polycarbonate material and have a minimum overall dimension of 8 3/4" x 6 3/4" [222mm x 171mm]. The hinged lid and trim flange shall be available for either carpet or tile floor applications.

The wiring chamber shall provide a minimum of three separate compartments to accommodate a combination of both power and communication wiring. The compartments shall be separated by use of die cast aluminum built in dividers.

If a prewired flexible wiring system is specified, the same manufacturer shall supply the box, and the flexible wiring system. The box shall contain integral connectors to mate with the flexible wiring system. The box shall be capable of disconnecting from the flexible wiring system directly at the box. The prewired box shall be able to contain up to three separate circuits, utilizing up to an 8-conductor MC cable assembly.

The box shall be secured to the raised floor by the use of two locking tabs. The locking tabs shall be integral to the box and adjusted by use of their locking screws.

B. Box size - 8" x 10" x 5" [203mm x 254mm x 127mm] (Wiremold AF3 & AF4 Series)
The panel opening shall be 8" x 10" [203mm x 254mm] and have an overall module depth of 5" [127mm].
The box must provide a total Device Wiring Chamber volume of at least 220 cubic inches [3604 ml]. The total Box Volume capacity shall have a minimum of 300 cubic inches [4915 ml].

The box lid shall be a hinged style and constructed of polycarbonate material, available in standard colors of black, brown and gray. The lid shall provide a minimum of three removable cable guards for egress of power and communication workstation cables. The cable guards shall hold workstation cables in place with the lid either in the open or closed position.

The trim flange shall be constructed of polycarbonate material and have a minimum overall dimension of 9 1/8" x 11" (232mm x 279mm). The hinged lid and trim flange shall be available for either carpet or tile floor applications.

The wiring chamber shall provide an upper and a lower compartment. The top compartment shall be divided into three separate compartments to accommodate a combination of both power and communication wiring. These compartments shall be separated by use of integral; die cast aluminum built in dividers. The bottom compartment shall be available for either all power or all communication wiring.

If a prewired flexible wiring system is specified, the same manufacturer shall supply the box, and the flexible wiring system. The box shall contain integral connectors to mate with the flexible wiring system. The box shall be capable of disconnecting from the flexible wiring system directly at the box. The prewired box shall be able to contain up to three separate circuits, utilizing up to an 8-conductor MC cable assembly.

The box shall be secured to the raised floor by the use of two locking tabs. The locking tabs shall be integral to the box and adjusted by use of their locking screws.

C. Communication Devices and Accessories

2.2.3 Box size - 8" x 10" x 21/2" [203mm x 254mm x 64mm] (SAF21/2 Series) The panel opening shall be 8" x 10" [203mm x 254mm] and have overall depth of 21/2" [64mm]. The box must provide a total Device Wiring Chamber volume of at least 18.5 cubic inches [303ml]. The total Box Volume capacity shall have a minimum of 29 cubic inches [475ml].

The box lid shall be a hinged style and constructed of polycarbonate material, available in standard colors of black, brown and gray. The lid shall provide a minimum of three (3) removable cable guards for egress of power and communication workstations cables. The cable guards shall hold workstation cables in place with the lid either in the open or closed position.

The trim flange shall be constructed of polycarbonate material and have a minimum overall dimension of 91/8" x 11" [232mm x 279mm]. The hinged lid and trim flange shall be available for either carpet or tile floor applications.

2.6 CORD REELS

- A. A. Description: Match voltage and current ratings and number of conductors to requirements of equipment being connected.
 - 1. Cord: Rubber-insulated, stranded-copper conductors, with type SOW-A jacket. Green-insulated grounding conductor, and equipment-rating ampacity plus a minimum of 30 percent.
 - 2. Plug: GFCI type device, Nylon body. Match cord and receptacle type for connection
 - 3. Reel: 15 Amp rated, 125V, with 45 linear feet of retractable cable (Hubbell model #HBL45123C). Provide mounting assembly as required for complete installation.

2.7 SWITCHES

- A. Snap Switches: Heavy-duty, quiet type.
 - 1. Switch: 20 A, 120/277-V ac.
 - 2. Or Approved Equal

2.8 WALL PLATES

- A. Single and combination types match corresponding wiring devices.
 - 1. Plate-Securing Screws: Metal with head color to match plate finish.

- 2. Material for Finished Spaces: 0.04-inch- (1-mm-) thick, Type 302, satin-finished stainless steel.
- 3. Material for Unfinished Spaces: Galvanized steel.
- 4. Or Approved Equal

2.9 MULTIOUTLET ASSEMBLIES

- A. Components of Assemblies: Products from a single manufacturer designed for use as a complete, matching assembly of raceways and receptacles.
- B. Raceway Material: Metal, with manufacturer's standard finish.
- C. Raceway Material: Nonmetal.(accepted in office areas only)
- D. Wire: No. 12 AWG minimum.

2.10 MISCELLANEUOS WIRING CONNECTIONS AND COMPONENTS

- A. Components of Assemblies: Products from a single manufacturer designed for use as a complete, matching assembly of raceways and receptacles.
- B. Raceway Material: Metal, with manufacturer's standard finish.
- C. Raceway Material: Nonmetal.(accepted in office areas only)
- D. Wire: not less than the manufacturers recommendation unless noted otherwise.
- E. Security Devices: Provide all wiring devices and connections as specified by the manufacturer and the contract documents. Unless otherwise noted.
- F. IT Devices: Provide all wiring devices and connections as specified by the manufacturer and the contract documents. Unless otherwise noted.
- G. Audio Visual Devices: Provide all wiring devices and connections as specified by the manufacturer and the contract documents Unless otherwise noted.

2.11 FINISHES

A. Color: Manufacturers standard, as selected by Architect.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Install devices and assemblies plumb and secure.
- B. Install wall plates when painting is complete.
- C. Install wall dimmers to achieve indicated rating after derating for ganging as instructed by manufacturer.
- D. All receptacles used for garage installations shall be GFCI type wiring devices.
- E. Do not share neutral conductor on load side of dimmers.
 - 1. Provide installation and materials for an additional thirty wiring devices with cover plates of each type used with 100 feet of circuit wiring to accommodate changes as directed by the Engineer.
- F. Arrangement of Devices: Unless otherwise indicated, mount flush, with long dimension vertical, and grounding terminal of receptacles on top. Group adjacent switches under single, multigang wall plates.
- G. Protect devices and assemblies during painting.
- H. Adjust locations at which floor service outlets and telephone/power service poles are installed to suit arrangement of partitions and furnishings.

3.2 IDENTIFICATION

- A. Comply with Division 26 Section "Electrical Identification."
- B. Comply with Division 26 Section "Basic Electrical Materials and Methods."

- 1. Switches: Where three or more switches are ganged, and elsewhere as indicated, identify each switch with approved legend engraved on wall plate.
- 2. Receptacles: Identify panelboard and circuit number from which served. Use machine-printed, pressure-sensitive, abrasion-resistant label tape on face of plate and durable wire markers or tags within outlet boxes.

3.3 CONNECTIONS

- A. Connect wiring device grounding terminal to outlet box with bonding jumper.
- B. Connect wiring device grounding terminal to branch-circuit equipment grounding conductor.
- C. Isolated-Ground Receptacles: Connect to isolated-ground conductor routed to designated isolated equipment ground terminal of electrical system.
- D. Tighten electrical connectors and terminals according to manufacturers published torque-tightening values. If manufacturers torque values are not indicated, use those specified in UL 486A and UL 486B.

3.4 FIELD QUALITY CONTROL

- A. Test wiring devices for proper polarity and ground continuity. Operate each device at least six times.
- B. Check TVSS receptacle indicating lights for normal indication.
- C. Test GFCI operation with both local and remote fault simulations according to manufacturer's written instructions.
- D. Replace damaged or defective components.

3.5 CLEANING

A. Internally clean devices, device outlet boxes, and enclosures. Replace stained or improperly painted wall plates or devices.

END OF SECTION 26 27 26

SECTION 262813 - FUSES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 1 Specification Sections, apply to this Section.

1.2 SUMMARY

A. This Section includes cartridge fuses, rated 600 V and less, for use in switches, panelboards, switchboards, controllers, and motor-control centers; and spare fuse cabinets.

1.3 SUBMITTALS

- A. Product Data: Include dimensions and manufacturer's technical data on features, performance, electrical characteristics, and ratings for each fuse type indicated.
- B. Product Data: Include the following for each fuse type indicated:
 - 1. Dimensions and manufacturer's technical data on features, performance, electrical characteristics, and ratings.
 - 2. Let-through current curves for fuses with current-limiting characteristics.
 - 3. Time-current curves, coordination charts and tables, and related data.
 - 4. Fuse size for elevator feeders and elevator disconnect switches.
- C. Ambient Temperature Adjustment Information. If ratings of fuses have been adjusted to accommodate ambient temperatures, provide list of fuses adjusted.
 - 1. For each adjusted fuse, include location of fuse, original fuse rating, local ambient temperature, and adjusted fuse rating.
 - 2. Provide manufacturer's technical data on which ambient temperature adjustment calculations are
- D. Maintenance Data: For tripping devices to include in maintenance manuals specified in Division 1.

1.4 QUALITY ASSURANCE

- A. Source Limitations: Provide fuses from a single manufacturer.
- B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended
- C. The contractor shall coordinate with all trades and equipment suppliers and provide the required fused protection for the equipment being installed.
- D. All equipment requiring fused switches shall be provided with the properly size and type fuses and enclosures per the manufacturer's recommendation and the environment of the equipment to be protected.
- E. Comply with NEMA FU 1.
- F. Comply with NFPA 70.

1.5 PROJECT CONDITIONS

A. Where ambient temperature to which fuses are directly exposed is less than 40 deg F (4.4 deg C) or more than 100 deg F (38 deg C), apply manufacturer's ambient temperature adjustment factors to fuse ratings.

1.6 COORDINATION

A. Coordinate fuse ratings with HVAC and refrigeration equipment nameplate limitations of maximum fuse size.

1.7 EXTRA MATERIALS

- A. Furnish extra materials described below that match products installed and that are packaged in original cartons or containers and identified with labels describing contents.
 - 1. Fuses: Quantity equal to 10 percent of each fuse type and size, but not fewer than 6 of each type and size.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Cooper Industries, Inc.; Bussmann Div.
 - 2. Eagle Electric Mfg. Co., Inc.
 - 3. Ferraz Corp.
 - 4. General Electric Co.; Wiring Devices Div.
 - 5. Gould Shawmut.
 - 6. Tracor, Inc.; Littelfuse, Inc. Subsidiary.
 - 7. Or Approved Equal

2.2 CARTRIDGE FUSES

A. Characteristics: NEMA FU 1, nonrenewable cartridge fuse; class and current rating indicated; voltage rating consistent with circuit voltage.

2.3 SPARE FUSE CABINET

- A. Cabinet: Wall-mounted, 0.05-inch-thick steel unit with full-length, recessed piano-hinged door and key-coded cam lock and pull.
 - 1. Size: Adequate for storage of spare fuses specified with 15 percent spare capacity minimum.
 - 2. Finish: Gray, baked enamel.
 - 3. Identification: "SPARE FUSES" in 1-1/2-inch-high letters on exterior of door.
 - 4. Fuse Pullers: For each size fuse.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine utilization equipment nameplates and installation instructions. Install fuses of sizes and with characteristics appropriate for each piece of equipment.
- B. Evaluate ambient temperatures to determine if fuse rating adjustment factors must be applied to fuse ratings.
- C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 FUSE APPLICATIONS

- A. Main Service: Class L, time delay.
- B. Main Feeders: Class L, time delay.
- C. Motor Branch Circuits: Class RK1, time delay.
- D. Other Branch Circuits: Class RK1, time delay.

3.3 INSTALLATION

- A. Install fuses in fusible devices. Arrange fuses so rating information is readable without removing fuse.
- B. Install spare fuse cabinet[s].

3.4 IDENTIFICATION

A. Install labels indicating fuse replacement information on inside door of each fused switch.

END OF SECTION 26 28 13

April 25, 2025 Bid Issue

Addition & Alterations Department of Public Works 10 Hartford Road Delran, New Jersey

THE PAGE INTENTIONALLY LEFT BLANK

SECTION 262816 - ENCLOSED SWITCHES AND CIRCUIT BREAKERS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 1 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. This Section includes individually mounted enclosed switches and circuit breakers used for the following:
 - 1. Service disconnecting means.
 - 2. Feeder and branch-circuit protection.
 - 3. Motor and equipment disconnecting means.
- B. Related Sections include the following:
 - 1. Division 26 Section "Wiring Devices" for attachment plugs, receptacles, and toggle switches used for disconnecting means.
 - 2. Division 26 Section "Switchboards" for individually enclosed, fusible switches used as feeder protection.
 - 3. Division 26 Section "Fuses" for fusible devices.

1.3 DEFINITIONS

- A. GFCI: Ground-fault circuit interrupter.
- B. RMS: Root mean square.
- C. SPDT: Single pole, double throw.

1.4 SUBMITTALS

- A. Product Data: For each type of switch, circuit breaker, accessory, and component indicated. Include dimensions and manufacturers' technical data on features, performance, electrical characteristics, ratings, and finishes.
- B. Shop Drawings: For each switch and circuit breaker.
 - Dimensioned plans, elevations, sections, and details, including required clearances and service space around equipment. Show tabulations of installed devices, equipment features, and ratings. Include the following:
 - a. Enclosure types and details for types other than NEMA 250, Type 1.
 - b. Current and voltage ratings.
 - c. Short-circuit current rating.
 - d. UL listing for series rating of installed devices.
 - e. Features, characteristics, ratings, and factory settings of individual overcurrent protective devices and auxiliary components.
 - 2. Wiring Diagrams: Power, signal, and control wiring. Differentiate between manufacturer-installed and field-installed wiring.
- C. Qualification Data: Submit data for testing agencies indicating that they comply with qualifications specified in "Quality Assurance" Article.

- D. Field Test Reports: Submit written test reports and include the following:
 - 1. Test procedures used.
 - 2. Test results that comply with requirements.
 - 3. Results of failed tests and corrective action taken to achieve test results that comply with requirements.
- E. Manufacturer's field service report.
- F. Maintenance Data: For enclosed switches and circuit breakers and for components to include in maintenance manuals specified in Division 1. In addition to requirements specified in Division 1 Section "Closeout Procedures," include the following:
 - 1. Routine maintenance requirements for components.
 - 2. Manufacturer's written instructions for testing and adjusting switches and circuit breakers.
 - 3. Time-current curves, including selectable ranges for each type of circuit breaker.

1.5 QUALITY ASSURANCE

- A. Testing Agency Qualifications: Testing agency that is a member company of the International Electrical Testing Association and that is acceptable to authorities having jurisdiction.
 - Testing Agency's Field Supervisor: Person currently certified by the International Electrical Testing Association or National Institute for Certification in Engineering Technologies to supervise on-site testing specified in Part 3.
- B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.
- C. Comply with NEMA AB 1 and NEMA KS 1.
- D. Comply with NFPA 70.
- E. Product Selection for Restricted Space: Drawings indicate maximum dimensions for enclosed switches and circuit breakers, including clearances between enclosures, and adjacent surfaces and other items. Comply with indicated maximum dimensions.

1.6 PROJECT CONDITIONS

- A. Environmental Limitations: Rate equipment for continuous operation under the following conditions, unless otherwise indicated:
 - 1. Ambient Temperature: Not less than minus 22 deg F and not exceeding 104 deg F (40 deg C).
 - 2. Altitude: Not exceeding 6600 feet (2000 m).

1.7 COORDINATION

A. Coordinate layout and installation of switches, circuit breakers, and components with other construction, including conduit, piping, equipment, and adjacent surfaces. Maintain required workspace clearances and required clearances for equipment access doors and panels.

1.8 EXTRA MATERIALS

- A. Furnish extra materials described below that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 - 1. Spares: For the following:
 - a. Potential Transformer Fuses-Provide an additional 6 fuses of each type utilized on this project.
 - b. Control-Power Fuses-Provide an additional 6 fuses of each type utilized on this project.
 - c. Fuses and Fusible Devices for Fused Circuit Breakers-Provide an additional 6 fuses of each type utilized on this project.

- d. Fuses for Fused Switches-Provide an additional 10 fuses of each type utilized on this project.
- e. Fuses for Fused Power-Circuit Devices-Provide an additional 10 fuses of each type utilized on this project.
- 2. Spare Indicating Lights-Provide an additional 6 lights of each type utilized on this project.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - Fusible Switches:
 - a. Eaton Corp.; Cutler-Hammer Products.
 - b. General Electric Co.; Electrical Distribution & Control Division.
 - c. Siemens Energy & Automation, Inc.
 - d. Square D Co.
 - e. Or Approved Equal
 - 2. Molded-Case Circuit Breakers:
 - a. Eaton Corp.; Cutler-Hammer Products.
 - b. General Electric Co.; Electrical Distribution & Control Division.
 - c. Klockner-Moeller.
 - d. Siemens Energy & Automation, Inc.
 - e. Square D Co.
 - f. Or Approved Equal
 - 3. Combination Circuit Breaker and Ground-Fault Trip:
 - a. Eaton Corp.; Cutler-Hammer Products.
 - b. General Electric Co.; Electrical Distribution & Control Division.
 - c. Siemens Energy & Automation, Inc.
 - d. Square D Co.
 - e. Or Approved Equal
 - 4. Molded-Case, Current-Limiting Circuit Breakers:
 - a. Eaton Corp.; Cutler-Hammer Products.
 - b. General Electric Co.; Electrical Distribution & Control Division.
 - c. Siemens Energy & Automation, Inc.
 - d. Square D Co.
 - e. Or Approved Equal
 - 5. Integrally Fused, Molded-Case Circuit Breakers:
 - a. Eaton Corp.; Cutler-Hammer Products.
 - b. General Electric Co.; Electrical Distribution & Control Division.
 - c. Siemens Energy & Automation, Inc.
 - d. Square D Co.
 - e. Or Approved Equal

2.2 ENCLOSED SWITCHES

- A. Enclosed, Nonfusible Switch: NEMA KS 1, Type HD, with lockable handle.
- B. Enclosed, Fusible Switch, 800 A and Smaller: NEMA KS 1, Type HD, with clips to accommodate specified fuses, lockable handle with two padlocks, and interlocked with cover in closed position.

2.3 ENCLOSED CIRCUIT BREAKERS

A. Molded-Case Circuit Breaker: NEMA AB 1, with interrupting capacity to meet available fault currents.

- 1. Thermal-Magnetic Circuit Breakers: Inverse time-current element for low-level overloads, and instantaneous magnetic trip element for short circuits. Adjustable magnetic trip setting for circuit-breaker frame sizes 250 A and larger.
- 2. Adjustable Instantaneous-Trip Circuit Breakers: Magnetic trip element with front-mounted, field-adjustable trip setting.
- 3. Electronic Trip Unit Circuit Breakers: RMS sensing; field-replaceable rating plug; with the following field-adjustable settings:
 - a. Instantaneous trip.
 - b. Long- and short-time pickup levels.
 - c. Long- and short-time time adjustments.
 - d. Ground-fault pickup level, time delay, and I²t response.
- 4. Current-Limiting Circuit Breakers: Frame sizes 400 A and smaller; let-through ratings less than NEMA FU 1, RK-5.
- 5. Integrally Fused Circuit Breakers: Thermal-magnetic trip element with integral limiter-style fuse listed for use with circuit breaker; trip activation on fuse opening or on opening of fuse compartment door.
- 6. GFCI Circuit Breakers: Single- and two-pole configurations with 5-mA trip sensitivity.
- 7. Molded-Case Switch: Molded-case circuit breaker without trip units.
- B. Molded-Case Circuit-Breaker Features and Accessories: Standard frame sizes, trip ratings, and number of poles.
 - 1. Lugs: Mechanical style suitable for number, size, trip ratings, and material of conductors.
 - 2. Application Listing: Appropriate for application; Type SWD for switching fluorescent lighting loads; Type HACR for heating, air-conditioning, and refrigerating equipment.
 - 3. Ground-Fault Protection: Integrally mounted relay and trip unit with adjustable pickup and timedelay settings, push-to-test feature, and ground-fault indicator.
 - 4. Communication Capability: Circuit-breaker-mounted communication module with functions and features compatible with power monitoring and control system.
 - 5. Shunt Trip: 120-V trip coil energized from separate circuit, set to trip at 75 percent of rated voltage.
 - 6. Undervoltage Trip: Set to operate at 35 to 75 percent of rated voltage with field-adjustable 0.1- to 0.6-second time delay.
 - 7. Auxiliary Switch: One SPDT switch with "a" and "b" contacts; "a" contacts mimic circuit-breaker contacts, "b"contacts operate in reverse of circuit-breaker contacts.
 - 8. Key Interlock Kit: Externally mounted to prohibit circuit-breaker operation; key shall be removable only when circuit breaker is in off position.
 - 9. Zone-Selective Interlocking: Integral with electronic trip unit; for interlocking ground-fault protection function.

2.4 ENCLOSURES

- A. NEMA AB 1 and NEMA KS 1 to meet environmental conditions of installed location.
 - 1. Outdoor Locations: NEMA 250, Type 3R.
 - 2. Kitchen Areas: NEMA 250, Type 4X, stainless steel.
 - 3. Other Wet or Damp Indoor Locations: NEMA 250, Type 4.
 - 4. Hazardous Areas Indicated on Drawings: NEMA 250, Type 7C.

2.5 FACTORY FINISHES

- A. Manufacturer's standard prime-coat finish ready for field painting.
- B. Finish: Manufacturer's standard paint applied to factory-assembled and -tested enclosures before shipping.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine elements and surfaces to receive enclosed switches and circuit breakers for compliance with installation tolerances and other conditions affecting performance.
 - 1. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

- A. Comply with mounting and anchoring requirements specified in Division 26 Section "Seismic Controls for Electrical Work."
- B. Temporary Lifting Provisions: Remove temporary lifting eyes, channels, and brackets and temporary blocking of moving parts from enclosures and components.
- C. Provide an additional ten branch breakers with enclosures and accessories of each size, phase and voltage as required to accommodate changes to resolve interferences or as directed by the Engineer.

3.3 IDENTIFICATION

- A. Identify field-installed conductors, interconnecting wiring, and components; provide warning signs as specified in Division 26 Section "Basic Electrical Materials and Methods"
- B. Enclosure Nameplates: Label each enclosure with engraved metal or laminated-plastic nameplate mounted with corrosion-resistant screws.

3.4 CONNECTIONS

- A. Install equipment grounding connections for switches and circuit breakers with ground continuity to main electrical ground bus.
- B. Install power wiring. Install wiring between switches and circuit breakers, and control and indication devices.
- C. Tighten electrical connectors and terminals according to manufacturer's published torque-tightening values. If manufacturer's torque values are not indicated, use those specified in UL 486A and UL 486B.

3.5 FIELD QUALITY CONTROL

- A. Prepare for acceptance tests as follows:
 - 1. Test insulation resistance for each enclosed switch, circuit breaker, component, and control circuit.
 - 2. Test continuity of each line- and load-side circuit.
- B. Testing: After installing enclosed switches and circuit breakers and after electrical circuitry has been energized, demonstrate product capability and compliance with requirements.
 - 1. Procedures: Perform each visual and mechanical inspection and electrical test indicated in NETA ATS, Section 7.5 for switches and Section 7.6 for molded-case circuit breakers. Certify compliance with test parameters.
 - 2. Correct malfunctioning units on-site, where possible, and retest to demonstrate compliance; otherwise, replace with new units and retest.
- C. Infrared Scanning: After Substantial Completion, but not more than 60 days after Final Acceptance, perform an infrared scan of each enclosed switch and circuit breaker. Open or remove doors or panels so connections are accessible to portable scanner.
 - 1. Follow-up Infrared Scanning: Perform an additional follow-up infrared scan of each unit 11 months after date of Substantial Completion.
 - 2. Instrument: Use an infrared scanning device designed to measure temperature or to detect significant deviations from normal values. Provide calibration record for device.
 - 3. Record of Infrared Scanning: Prepare a certified report that identifies switches and circuit breakers checked and that describes scanning results. Include notation of deficiencies detected, remedial action taken, and observations after remedial action.

3.6 ADJUSTING

A. Set field-adjustable switches and circuit-breaker trip ranges.

3.7 CLEANING

A. On completion of installation, inspect interior and exterior of enclosures. Remove paint splatters and other spots. Vacuum dirt and debris; do not use compressed air to assist in cleaning. Repair exposed surfaces to match original finish.

END OF SECTION 26 28 16

SECTION 265100 - LED INTERIOR LIGHTING

PART 1 - GENERAL

1.1 SUMMARY

- A. Section includes the following types of LED luminaires:
 - 1. Cylinder.
 - 2. Downlight.
 - 3. Lowbay.
 - 4. Recessed linear.
 - 5. Strip light.
 - 6. Surface mount, linear.
 - 7. Surface mount, nonlinear.
 - 8. Suspended, linear.
 - 9. Suspended, nonlinear.
 - 10. Materials.
 - 11. Finishes.
 - 12. Luminaire support.

1.2 DEFINITIONS

- A. CCT: Correlated color temperature.
- B. CRI: Color Rendering Index.
- C. Fixture: See "Luminaire."
- D. IP: International Protection or Ingress Protection Rating.
- E. LED: Light-emitting diode.
- F. Lumen: Measured output of lamp and luminaire, or both.
- G. Luminaire: Complete lighting unit, including lamp, reflector, and housing.

1.3 ACTION SUBMITTALS

- A. Product Data: For each type of product, arranged by designation.
- B. Shop Drawings: For nonstandard or custom luminaires.
 - 1. Include plans, elevations, sections, and mounting and attachment details.
 - 2. Include details of luminaire assemblies. Indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
 - 3. Include diagrams for power, signal, and control wiring.
- C. Sustainable Design Submittals:
 - 1. Provide point by point photometric design comparison for all areas.
- D. Product Schedule: For luminaires and lamps. [Use same designations indicated on Drawings.]

1.4 INFORMATIONAL SUBMITTALS

- A. Coordination Drawings: Reflected ceiling plan(s) and other details, drawn to scale and coordinated with each other, using input from installers of the items involved:
- B. Seismic Qualification Certificates: For luminaires, accessories, and components, from manufacturer.
- C. Product Certificates: For each type of luminaire.
- D. Sample warranty.

1.5 CLOSEOUT SUBMITTALS

A. Operation and maintenance data.

1.6 WARRANTY

- A. Warranty: Manufacturer and Installer agree to repair or replace components of luminaires that fail in materials or workmanship within specified warranty period.
- B. Warranty Period: Five (5) years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 MANUFACTURER'S

- 1. See Electrical Drawing for detailed lighting fixture schedule. All lighting fixtures shall be as specified or approved equal.
- 2. Acceptable Manufacturers:
 - a. RAB
 - b. Cooper Lighting
 - c. Hubbell Lighting
 - d. Or Approved Equal

2.2 PERFORMANCE REQUIREMENTS

- A. Seismic Performance: Luminaires and lamps shall be labeled vibration and shock resistant.
 - 1. The term "withstand" means "the luminaire will remain in place without separation of any parts when subjected to the seismic forces specified and the luminaire will be fully operational during and after the seismic event]."

2.3 LUMINAIRE REQUIREMENTS

- A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- B. Standards:
 - 1. ENERGY STAR certified.
 - 2. NRTL Compliance: Luminaires for hazardous locations shall be listed and labeled for indicated class and division of hazard by an NRTL.
 - 3. FM Global Compliance: Luminaires for hazardous locations shall be listed and labeled for indicated class and division of hazard by FM Global.
 - 4. UL Listing: Listed for damp location.
 - 5. Recessed luminaires shall comply with NEMA LE 4.
- C. CRI of minimum 70. CCT of 4000 K
- D. Rated lamp life of 50,000 hours to L70.
- E. Lamps dimmable from 100 percent to 0 percent of maximum light output.
- F. Internal driver.
- G. Nominal Operating Voltage: 120 V ac, 277 V ac (Universal) See drawings for specific application voltage.
 - 1. Lens Thickness: At least 0.125-inch (3.175 mm) minimum unless otherwise indicated.
- H. Housings:
 - 1. Die-cast aluminum unless specified otherwise.

2.4 CYLINDER

- A. See Electrical Drawings for detailed lighting fixture schedule and product.
- B. Include mounting bracket and/or assembly as required per the manufacturers recommendations

2.5 DOWNLIGHT

- A. See Electrical Drawings for detailed lighting fixture schedule
- B. Universal mounting bracket.
- C. Integral junction box with conduit fittings.
- D. Optics: Apply as specified in lighting fixture schedule.

2.6 LOWBAY

- A. See Electrical Drawing for detailed lighting fixture schedule
- B. Universal mounting bracket.

2.7 RECESSED LINEAR

- A. See Electrical Drawing for detailed lighting fixture schedule
- B. Integral junction box with conduit fittings.

2.8 STRIP LIGHT

- A. See Electrical Drawing for detailed lighting fixture schedule
- B. Integral junction box with conduit fittings.

2.9 SURFACE MOUNT, LINEAR

- A. See Electrical Drawing for detailed lighting fixture schedule
- B. Integral junction box with conduit fittings.

2.10 SURFACE MOUNT, NONLINEAR

- A. See Electrical Drawing for detailed lighting fixture schedule
- B. Integral junction box with conduit fittings.

2.11 SUSPENDED, LINEAR

A. See Electrical Drawing for detailed lighting fixture schedule

2.12 SUSPENDED, NONLINEAR

- A. See Electrical Drawing for detailed lighting fixture schedule
- B. Integral junction box with conduit fittings.

2.13 MATERIALS

A. Metal Parts:

- 1. Free of burrs and sharp corners and edges.
- 2. Sheet metal components shall be steel unless otherwise indicated.
- 3. Form and support to prevent warping and sagging

- B. Doors, Frames, and Other Internal Access: Smooth operating, free of light leakage under operating conditions, and designed to permit relamping without use of tools. Designed to prevent doors, frames, lenses, diffusers, and other components from falling accidentally during relamping and when secured in operating position.
- C. Diffusers, and Globes:
- D. See Electrical Drawing for detailed lighting fixture schedule
 - 1. Acrylic: One hundred percent virgin acrylic plastic, with high resistance to yellowing and other changes due to aging, exposure to heat, and UV radiation.
 - 2. Glass: Annealed crystal glass unless otherwise indicated.
 - 3. Lens Thickness: At least 0.125 inch (3.175 mm) minimum unless otherwise indicated.
- E. Housings:
 - 1. Die-cast-aluminum housing and heat sink, unless otherwise noted.

2.14 METAL FINISHES

A. Variations in finishes are unacceptable in the same piece. Variations in finishes of adjoining components are acceptable if they are within the range of approved Samples and if they can be and are assembled or installed to minimize contrast.

2.15 LUMINAIRE SUPPORT

- A. Comply with requirements in Section "Common Work Results for Electrical Materials and Methods" for channel and angle iron supports and nonmetallic channel and angle supports.
- B. Single-Stem Hangers: 1/2-inch (13-mm) steel tubing with swivel ball fittings and ceiling canopy. Finish same as luminaire.
- C. Rod Hangers: 3/8-inch minimum diameter, cadmium-plated, threaded steel rod.
- D. Hook Hangers: Integrated assembly matched to luminaire, line voltage, and equipment with threaded attachment, cord, and locking-type plug.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Comply with NECA 1.
- B. Install luminaires level, plumb, and square with ceilings and walls unless otherwise indicated.
- C. Install lamps in each luminaire.
- D. Supports: Sized and rated for luminaire weight.
- E. Flush-Mounted Luminaire Support: Secured to outlet box.
- F. Wall-Mounted Luminaire Support:
 - 1. Attached to structural members in walls or attached to a minimum 20 gauge backing plate or attached to wall structural members or attached using through bolts and backing plates on either side of wall unless specified otherwise.
 - 2. Do not attach luminaires directly to gypsum board.
- G. Ceiling-Mounted Luminaire Support:
 - 1. Ceiling mount with pendant mounted all-thread.
- H. Suspended Luminaire Support:
 - 1. Pendants and Rods: Where longer than 48 inches (1200 mm), brace to limit swinging.
 - 2. Stem-Mounted, Single-Unit Luminaires: Suspend with twin-stem hangers. Support with approved outlet box and accessories that hold stem and provide damping of luminaire oscillations. Support outlet box vertically to building structure using approved devices.
 - 3. Continuous Rows of Luminaires: Use tubing or stem for wiring at one point and tubing or rod for suspension for each unit length of luminaire chassis, including one at each end.

- 4. Do not use ceiling grid as support for pendant luminaires. Connect support wires or rods to building structure.
- I. Ceiling-Grid-Mounted Luminaires:
 - 1. Secure to any required outlet box.
 - 2. Secure luminaire using approved fasteners in a minimum of four locations, spaced near corners of luminaire.
- J. Provide an additional five lighting fixtures and accessories of each size and type used on the project to accommodate interferences or as directed by the Engineer.
- K. Comply with requirements in Section "Conductors and Cables" for wiring connections.
- L. Identify system components, wiring, cabling, and terminals. Comply with requirements for identification specified in Section "Common Work Results for Electrical Materials and Methods."

3.2 FIELD QUALITY CONTROL

- A. Perform the following tests and inspections:
 - 1. Operational Test: After installing luminaires, switches, and accessories, and after electrical circuitry has been energized, test units to confirm proper operation.
 - 2. Test for Emergency Lighting: Interrupt power supply to demonstrate proper operation. Verify transfer from normal power to battery power and retransfer to normal.
- B. Luminaire will be considered defective if it does not pass operation tests and inspections.
- C. Prepare test and inspection reports.

END OF SECTION 26 51 00

SECTION 265600 - LED EXTERIOR LIGHTING

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes:
 - 1. Exterior solid-state luminaires that are designed for and exclusively use LED lamp technology.
 - 2. Luminaire supports.
 - 3. Luminaire-mounted photoelectric relays.

1.2 DEFINITIONS

- A. CCT: Correlated color temperature.
- B. CRI: Color rendering index.
- C. Fixture: See "Luminaire."
- D. IP: International Protection or Ingress Protection Rating
- E. Lumen: Measured output of lamp and luminaire, or both.
- F. Luminaire: Complete lighting unit, including lamp, reflector, and housing.

1.3 ACTION SUBMITTALS

- A. Product Data: For each type of luminaire.
- B. Shop Drawings: For nonstandard or custom luminaires.
 - 1. Include plans, elevations, sections, and mounting and attachment details.
 - 2. Include details of luminaire assemblies. Indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
 - 3. Include diagrams for power, signal, and control wiring.
- C. Delegated-Design Submittal: For luminaire supports.
 - 1. Include design calculations for luminaire supports with wind load restriction up to 120 MPH.

1.4 INFORMATIONAL SUBMITTALS

- A. Coordination Drawings: Plans, drawn to scale and coordinated. Signed and Sealed by a certified Professional Engineer registered in the State of New Jersey.
- B. Product Certificates: For each type of the following:
 - 1. Luminaire.
 - 2. Photoelectric relay.
- C. Sample warranty.

1.5 CLOSEOUT SUBMITTALS

- A. Operation and maintenance data.
 - 1. Provide a list of all lamp types used on Project. Use ANSI and manufacturers' codes.
 - 2. Provide a list of all photoelectric relay types used on Project; use manufacturers' codes.
 - 3. Provide As-Built Drawings including photometrics and shield requirements.

1.6 FIELD CONDITIONS

A. Mark locations of exterior luminaires for approval by Architect prior to the start of luminaire installation.

1.7 WARRANTY

- A. Warranty: Manufacturer agree to repair or replace components of luminaires that fail in materials or workmanship within specified warranty period.
 - 1. Warranty Period: five year(s) from date of Substantial Completion.
- B. Warranty: Installer agree to repair or replace components of luminaires that fail in materials or workmanship within specified warranty period.
 - 1. Warranty Period: one year(s) from date of Substantial Completion.

PART 2 - PRODUCTS

- 2.1 Approved Manufacturers:
 - A. RAB
 - B. Cooper Lighting
 - C. Hubbell Lighting
 - D. Or Equal

2.2 PERFORMANCE REQUIREMENTS

- A. Seismic Performance: Luminaires shall withstand the effects of earthquake motions determined according to ASCE/SEI 7.
- B. Seismic Performance: Luminaires and lamps shall be labeled vibration and shock resistant.
 - 1. The term "withstand" means "the luminaire will remain in place without separation of any parts when subjected to the seismic forces specified."

2.3 LUMINAIRE REQUIREMENTS

A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

- B. NRTL Compliance: Luminaires shall be listed and labeled for indicated class and division of hazard by an NRTL.
- C. UL Compliance: Comply with UL 1598 and listed for wet location.
- D. Lamp base complying with ANSI C81.61 and IEC 60061-1.
- E. CRI of minimum 70. CCT of 4100 K.
- F. L70 lamp life of 50,000 hours.
- G. Lamps dimmable from 100 percent to 0 percent of maximum light output.
- H. Nominal Operating Voltage: 120 V ac/208Vac/240 V ac/277 V ac.
- I. Lamp Rating: Lamp marked for outdoor use.
- J. Source Limitations: Obtain luminaires from single source from a single manufacturer.

2.4 LUMINAIRE TYPES

- A. Area and Site:
 - 1. Luminaire Shape: Square.
 - 2. Mounting: Pole
 - 3. Luminaire-Mounting Height: See Drawings.
 - 4. Distribution: See drawings for type and specific locations Type I, Type II, Type III, Type IV, Type V

2.5 MATERIALS

- A. Metal Parts: Free of burrs and sharp corners and edges.
- B. Sheet Metal Components: Corrosion-resistant aluminum. Form and support to prevent warping and sagging.
- C. Doors, Frames, and Other Internal Access: Smooth operating, free of light leakage under operating conditions, and designed to permit relamping without use of tools. Designed to prevent doors, frames, lenses, diffusers, and other components from falling accidentally during relamping and when secured in operating position. Doors shall be removable for cleaning or replacing lenses.
- D. Diffusers and Globes:
 - 1. Acrylic Diffusers: 100 percent virgin acrylic plastic, with high resistance to yellowing and other changes due to aging, exposure to heat, and UV radiation.
 - 2. Lens Thickness: At least 0.125 inch (3.175 mm) minimum unless otherwise indicated.
- E. Lens and Refractor Gaskets: Use heat- and aging-resistant resilient gaskets to seal and cushion lenses and refractors in luminaire doors.
- F. Reflecting surfaces shall have minimum reflectance as follows unless otherwise indicated:
 - 1. White Surfaces: 85 percent.
 - 2. Specular Surfaces: 83 percent.
 - 3. Diffusing Specular Surfaces: 75 percent.

G. Housings:

- 1. Rigidly formed, weather- and light-tight enclosure that will not warp, sag, or deform in use.
- 2. Provide filter/breather for enclosed luminaires.

2.6 FINISHES

- A. Variations in Finishes: Noticeable variations in same piece are unacceptable. Variations in appearance of adjoining components are acceptable if they are within the range of approved Samples and are assembled or installed to minimize contrast.
- B. Factory-Applied Finish for Aluminum Luminaires: Comply with NAAMM's "Metal Finishes Manual for Architectural and Metal Products" for recommendations for applying and designating finishes.
 - 1. Finish designations prefixed by AA comply with the system established by the Aluminum Association for designating aluminum finishes.
 - 2. Class I, Color-Anodic Finish: AA-M32C22A42/A44 (Mechanical Finish: Medium satin; Chemical Finish: Etched, medium matte; Anodic Coating: Architectural Class I, integrally colored or electrolytically deposited color coating 0.018 mm or thicker), complying with AAMA 611.
 - a. Color: per owner selection. Provide color samples for owner approval.

PART 3 - EXECUTION

3.1 GENERAL INSTALLATION REQUIREMENTS

- A. Comply with NECA 1.
- B. Use fastening methods and materials selected to resist seismic forces defined for the application and approved by manufacturer.
- C. Install lamps in each luminaire.
- D. Fasten luminaire to structural support.
- E. Supports:
 - 1. Sized and rated for luminaire weight.
 - 2. Able to maintain luminaire position after cleaning and relamping.
 - 3. Support luminaires without causing deflection of finished surface.
 - 4. Luminaire-mounting devices shall be capable of supporting a horizontal force of 100 percent of luminaire weight and a vertical force of 400 percent of luminaire weight.
 - 5. Luminaire shall be able to withstand minimum of 120 MPH wind load for a minimum of 60 seconds.
- F. Wiring Method: Install cables in raceways. Conceal raceways and cables.
- G. Install luminaires level, plumb, and square with finished grade unless otherwise indicated.
- H. Coordinate layout and installation of luminaires with other construction.
- I. Adjust luminaires that require field adjustment or aiming. Include adjustment of photoelectric device to prevent false operation of relay by artificial light sources, favoring a north orientation.

J. Comply with requirements in Section 16120 "Conductors and Cables" and Section 16130 "Raceways and Boxes" for wiring connections and wiring methods.

3.2 INSTALLATION OF INDIVIDUAL GROUND-MOUNTED LUMINAIRES

- A. Aim as indicated on Drawings.
- B. Install on concrete base with top [4 inches (100 mm)] <Insert dimension> above finished grade or surface at luminaire location. Cast conduit into base, and finish by troweling and rubbing smooth. Concrete materials, installation, and finishing are specified in Section 033000 "Cast-in-Place Concrete."

3.3 CORROSION PREVENTION

- A. Aluminum: Do not use in contact with earth or concrete. When in direct contact with a dissimilar metal, protect aluminum by insulating fittings or treatment.
- B. Steel Conduits: Comply with Section 16130 "Raceways and Boxes for Electrical Systems." In concrete foundations, wrap conduit with 0.010-inch- (0.254-mm-) thick, pipe-wrapping plastic tape applied with a 50 percent overlap.

3.4 IDENTIFICATION

A. Identify system components, wiring, cabling, and terminals. Comply with requirements for identification specified in Section 16075 "Identification for Electrical Systems."

3.5 FIELD QUALITY CONTROL

- A. Inspect each installed luminaire for damage. Replace damaged luminaires and components.
- B. Perform the following tests and inspections with the assistance of a factory-authorized service representative:
 - 1. Operational Test: After installing luminaires, switches, and accessories, and after electrical circuitry has been energized, test units to confirm proper operation.
 - 2. Verify operation of photoelectric controls.

C. Illumination Tests:

- 1. Measure light intensities at night. Use photometers with calibration referenced to NIST standards. Comply with the following IES testing guide(s):
 - a. IES LM-52.
- 2. Operational Test: After installing luminaires, switches, and accessories, and after electrical circuitry has been energized, test units to confirm proper operation.
- D. Luminaire will be considered defective if it does not pass tests and inspections.
- E. Prepare a written report of tests, inspections, observations, and verifications indicating and interpreting results. If adjustments are made to lighting system, retest to demonstrate compliance with standards.

3.6 DEMONSTRATION

A. Train Owner's maintenance personnel to adjust, operate, and maintain luminaires and photocell relays.

END OF SECTION 26 56 00

SECTION 271500 - COMMUNICATIONS HORIZONTAL CABLING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

- 1. Pathways.
- 2. UTP cabling.
- 3. 50/125-micrometer, optical fiber cabling.
- 4. Coaxial cable.
- 5. Multiuser telecommunications outlet assemblies.
- 6. Cable connecting hardware, patch panels, and cross-connects.
- 7. Telecommunications outlet/connectors.
- 8. Cabling system identification products.
- 9. Cable management system.

B. Related Sections:

- 1. Division 27 Section "Communications Backbone Cabling" for voice and data cabling associated with system panels and devices.
- 2. Division 28 Section "Conductors and Cables for Electronic Safety and Security" for voice and data cabling associated with system panels and devices.

1.3 DEFINITIONS

- A. Basket Cable Tray: A fabricated structure consisting of wire mesh bottom and side rails.
- B. BICSI: Building Industry Consulting Service International.
- C. Channel Cable Tray: A fabricated structure consisting of a one-piece, ventilated-bottom or solid-bottom channel.
- D. Consolidation Point: A location for interconnection between horizontal cables extending from building pathways and horizontal cables extending into furniture pathways.
- E. Cross-Connect: A facility enabling the termination of cable elements and their interconnection or cross-connection.
- F. EMI: Electromagnetic interference.
- G. IDC: Insulation displacement connector.
- H. Ladder Cable Tray: A fabricated structure consisting of two longitudinal side rails connected by individual transverse members (rungs).
- I. LAN: Local area network.
- J. MUTOA: Multiuser telecommunications outlet assembly, a grouping in one location of several telecommunications outlet/connectors.
- K. Outlet/Connectors: A connecting device in the work area on which horizontal cable or outlet cable terminates.
- L. RCDD: Registered Communications Distribution Designer.
- M. Solid-Bottom or Nonventilated Cable Tray: A fabricated structure consisting of longitudinal side rails and a bottom without ventilation openings.
- N. Trough or Ventilated Cable Tray: A fabricated structure consisting of longitudinal side rails and a bottom having openings for the passage of air.
- O. UTP: Unshielded twisted pair.

1.4 HORIZONTAL CABLING DESCRIPTION

- A. Horizontal cable and its connecting hardware provide the means of transporting signals between the telecommunications outlet/connector and the horizontal cross-connect located in the communications equipment room. This cabling and its connecting hardware are called "permanent link," a term that is used in the testing protocols.
 - TIA/EIA-568-B.1 requires that a minimum of two telecommunications outlet/connectors be installed for each work area.
 - 2. Horizontal cabling shall contain no more that one transition point or consolidation point between the horizontal cross-connect and the telecommunications outlet/connector.
 - 3. Bridged taps and splices shall not be installed in the horizontal cabling.
 - 4. Splitters shall not be installed as part of the optical fiber cabling.
- B. A work area is approximately 100 sq. ft. (9.3 sq. m), and includes the components that extend from the telecommunications outlet/connectors to the station equipment.
- C. The maximum allowable horizontal cable length is 295 feet (90 m). This maximum allowable length does not include an allowance for the length of 16 feet (4.9 m) to the workstation equipment. The maximum allowable length does not include an allowance for the length of 16 feet (4.9 m) in the horizontal cross-connect.

1.5 PERFORMANCE REQUIREMENTS

A. General Performance: Horizontal cabling system shall comply with transmission standards in TIA/EIA-568-B.1, when tested according to test procedures of this standard.

1.6 SUBMITTALS

- A. Product Data: For each type of product indicated.
 - 1. For coaxial cable, include the following installation data for each type used:
 - a. Nominal OD.
 - b. Minimum bending radius.
 - c. Maximum pulling tension.
- B. Shop Drawings:
 - 1. System Labeling Schedules: Electronic copy of labeling schedules, in software and format selected by Owner.
 - 2. System Labeling Schedules: Electronic copy of labeling schedules that are part of the cabling and asset identification system of the software.
 - 3. Cabling administration drawings and printouts.
 - 4. Wiring diagrams to show typical wiring schematics, including the following:
 - a. Cross-connects.
 - b. Patch panels.
 - c. Patch cords.
 - 5. Cross-connects and patch panels. Detail mounting assemblies, and show elevations and physical relationship between the installed components.
 - 6. Cable tray layout, showing cable tray route to scale, with relationship between the tray and adjacent structural, electrical, and mechanical elements. Include the following:
 - a. Vertical and horizontal offsets and transitions.
 - b. Clearances for access above and to side of cable trays.
 - c. Vertical elevation of cable trays above the floor or bottom of ceiling structure.
 - Load calculations to show dead and live loads as not exceeding manufacturer's rating for tray and its support elements.
- C. Qualification Data: For Installer, qualified layout technician, installation supervisor, and field inspector.
- D. Source quality-control reports.
- E. Field quality-control reports.
- F. Maintenance Data: For splices and connectors to include in maintenance manuals.

- G. Software and Firmware Operational Documentation:
 - 1. Software operating and upgrade manuals.
 - 2. Program Software Backup: On magnetic media or compact disk, complete with data files.
 - 3. Device address list.
 - 4. Printout of software application and graphic screens.

1.7 QUALITY ASSURANCE

- A. Installer Qualifications: Cabling Installer must have personnel certified by BICSI on staff.
 - 1. Layout Responsibility: Preparation of Shop Drawings and Cabling Administration Drawings by an RCDD.
 - 2. Installation Supervision: Installation shall be under the direct supervision of Registered Technician who shall be present at all times when Work of this Section is performed at Project site.
 - 3. Testing Supervisor: Currently certified by BICSI as an RCDD to supervise on-site testing.
- B. Testing Agency Qualifications: An NRTL.
 - 1. Testing Agency's Field Supervisor: Currently certified by BICSI as an RCDD to supervise on-site testing.
- C. Surface-Burning Characteristics: As determined by testing identical products according to ASTM E 84 by a qualified testing agency. Identify products with appropriate markings of applicable testing agency.
 - 1. Flame-Spread Index: 25 or less.
 - 2. Smoke-Developed Index: 50 or less.
- D. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- E. Telecommunications Pathways and Spaces: Comply with TIA/EIA-569-A.
- F. Grounding: Comply with ANSI-J-STD-607-A.

1.8 DELIVERY, STORAGE, AND HANDLING

- A. Test cables upon receipt at Project site.
 - 1. Test optical fiber cables to determine the continuity of the strand end to end. Use optical fiber flashlight or optical loss test set.
 - 2. Test optical fiber cables while on reels. Use an optical time domain reflectometer to verify the cable length and locate cable defects, splices, and connector; including the loss value of each. Retain test data and include the record in maintenance data.
 - 3. Test each pair of UTP cable for open and short circuits.

1.9 PROJECT CONDITIONS

A. Environmental Limitations: Do not deliver or install cables and connecting materials until wet work in spaces is complete and dry, and temporary HVAC system is operating and maintaining ambient temperature and humidity conditions at occupancy levels during the remainder of the construction period.

1.10 COORDINATION

- A. Coordinate layout and installation of telecommunications pathways and cabling with Owner's telecommunications and LAN equipment and service suppliers.
- B. Coordinate telecommunications outlet/connector locations with location of power receptacles at each work area.

1.11 SOFTWARE SERVICE AGREEMENT

A. Technical Support: Beginning with Substantial Completion, provide software support for two years.

- B. Upgrade Service: Update software to latest version at Project completion. Install and program software upgrades that become available within two years from date of Substantial Completion. Upgrading software shall include operating system. Upgrade shall include new or revised licenses for use of software.
 - 1. Provide 30 days' notice to Owner to allow scheduling and access to system and to allow Owner to upgrade computer equipment if necessary.

1.12 EXTRA MATERIALS

- A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 - 1. Patch-Panel Units: Two of each type.
 - 2. Connecting Blocks: Two of each type.
 - 3. Device Plates: Ten of each type.
 - 4. Multiuser Telecommunications Outlet Assemblies: Five of each type.

PART 2 - PRODUCTS

2.1 PATHWAYS

- A. General Requirements: Comply with TIA/EIA-569-A.
- B. Cable Support: NRTL labeled for support of Category 6 cabling, designed to prevent degradation of cable performance and pinch points that could damage cable.
 - 1. Support brackets with cable tie slots for fastening cable ties to brackets.
 - 2. Lacing bars, spools, J-hooks, and D-rings.
 - 3. Straps and other devices.
- C. Conduit and Boxes: Comply with requirements in Division 26 Section "Raceway and Boxes for Electrical Systems." Flexible metal conduit shall not be used.
 - 1. Outlet boxes shall be no smaller than 2 inches (50 mm) wide, 3 inches (75 mm) high, and 2-1/2 inches (64 mm) deep.

2.2 BACKBOARDS

A. Backboards: Plywood, [fire-retardant treated,]3/4 by 48 by 96 inches (19 by 1220 by 2440 mm). Comply with requirements in Division 06 Section "Rough Carpentry" for plywood backing panels.

2.3 UTP CABLE

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Belden CDT Inc.; Electronics Division.
 - 2. Berk-Tek; a Nexans company.
 - 3. CommScope, Inc.
 - 4. Draka USA.
 - 5. Genesis Cable Products; Honeywell International, Inc.
 - 6. KRONE Incorporated.
 - 7. Mohawk; a division of Belden CDT.
 - 8. Nordex/CDT; a subsidiary of Cable Design Technologies.
 - 9. Superior Essex Inc.
 - 10. SYSTIMAX Solutions; a CommScope, Inc. brand.
 - 11. 3M
 - 12. Tyco Electronics/AMP Netconnect; Tyco International Ltd.
 - 13. Or Approved Equal

- B. Description: 100-ohm, 4-pair UTP, formed into 25-pair, binder groups covered with a thermoplastic jacket.
 - 1. Comply with ICEA S-90-661 for mechanical properties.
 - 2. Comply with TIA/EIA-568-B.1 for performance specifications.
 - 3. Comply with TIA/EIA-568-B.2, Category 5e.
 - 4. Listed and labeled by an NRTL acceptable to authorities having jurisdiction as complying with UL 444 and NFPA 70 for the following types:
 - a. Communications, Plenum Rated: Type CMP, complying with NFPA 262.
 - b. Communications, Riser Rated: Type CMR; complying with UL 1666.
 - c. Communications, Limited Purpose: Type CMX.
 - d. Multipurpose, Plenum Rated: Type MPP, complying with NFPA 262.
 - e. Multipurpose, Riser Rated: Type MPR, complying with UL 1666.
 - 5. Jacket color code:
 - a. Camera cabling White
 - b. Data & Voice Blue

2.4 UTP CABLE HARDWARE

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. American Technology Systems Industries, Inc.
 - 2. Dynacom Corporation.
 - 3. Hubbell Premise Wiring.
 - 4. KRONE Incorporated.
 - 5. Leviton Voice & Data Division.
 - 6. Molex Premise Networks; a division of Molex, Inc.
 - 7. Nordex/CDT; a subsidiary of Cable Design Technologies.
 - 8. Panduit Corp.
 - 9. Siemon Co. (The).
 - 10. Tyco Electronics/AMP Netconnect; Tyco International Ltd.
 - Or Approved Equal
- B. General Requirements for Cable Connecting Hardware: Comply with TIA/EIA-568-B.2, IDC type, with modules designed for punch-down caps or tools. Cables shall be terminated with connecting hardware of same category or higher
- C. Connecting Blocks: 110-style IDC for Category 5e. Provide blocks for the number of cables terminated on the block, plus 25 percent spare. Integral with connector bodies, including plugs and jacks where indicated.
- Cross-Connect: Modular array of connecting blocks arranged to terminate building cables and permit interconnection between cables.
 - 1. Number of Terminals per Field: One for each conductor in assigned cables.
- E. Patch Panel: Modular panels housing multiple-numbered jack units with IDC-type connectors at each jack for permanent termination of pair groups of installed cables.
 - 1. Number of Jacks per Field: One for each four-pair UTP cable indicated.
- F. Jacks and Jack Assemblies: Modular, color-coded, eight-position modular receptacle units with integral IDC-type terminals.
- G. Patch Cords: Factory-made, four-pair cables; terminated with eight-position modular plug at each end.
 - Patch cords shall have bend-relief-compliant boots and color-coded icons to ensure Category 6 performance. Patch cords shall have latch guards to protect against snagging.
 - 2. Patch cords shall have color-coded boots for circuit identification.
 - 3. Jacket color code:
 - a. Camera cabling White
 - b. Data & Voice Blue
 - 4. Patch Cord lengths:
 - a. Data & voice drops 10'
 - b. Camera drops 10'
 - c. I.T. rack patch cords 5' (half the total number of required cords)

- 7' (half the total number of required cords)

2.5 OPTICAL FIBER CABLE

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Berk-Tek; a Nexans company.
 - 2. CommScope, Inc.
 - 3. Corning Cable Systems.
 - 4. General Cable Technologies Corporation.
 - 5. Mohawk; a division of Belden CDT.
 - 6. Nordex/CDT; a subsidiary of Cable Design Technologies.
 - 7. Optical Connectivity Solutions Division; Emerson Network Power.
 - 8. Superior Essex Inc.
 - 9. SYSTIMAX Solutions; a CommScope, Inc. brand.
 - 10. 3M.
 - 11. Tyco Electronics/AMP Netconnect; Tyco International Ltd.
 - 12. Or Approved Equal
- B. Description: Multimode, 50/125-micrometer, 24 fiber, tight buffer, optical fiber cable.
 - 1. Comply with ICEA S-83-596 for mechanical properties.
 - 2. Comply with TIA/EIA-568-B.3 for performance specifications.
 - 3. Comply with TIA/EIA-492AAAA-B for detailed specifications.
 - 4. Listed and labeled by an NRTL acceptable to authorities having jurisdiction as complying with UL 444, UL 1651, and NFPA 70 for the following types:
 - a. Plenum Rated, Nonconductive: Type OFNP, complying with NFPA 262.
 - b. Riser Rated, Nonconductive: Type OFNR, complying with UL 1666.
 - c. Plenum Rated, Conductive: Type OFCP, complying with NFPA 262.
 - d. Riser Rated, Conductive: Type OFCR, complying with UL 1666.
 - 5. Conductive cable shall be steel armored type.
 - 6. Maximum Attenuation: 3.50 dB/km at 850 nm; 1.5 dB/km at 1300 nm.
 - 7. Minimum Modal Bandwidth: 160 MHz-km at 850 nm; 500 MHz-km at 1300 nm.

C. Jacket:

- 1. Jacket Color: Aqua for 50/125-micrometer cable.
- 2. Cable cordage jacket, fiber, unit, and group color shall be according to TIA/EIA-598-B.
- 3. Imprinted with fiber count, fiber type, and aggregate length at regular intervals not to exceed 40 inches (1000 mm).

2.6 OPTICAL FIBER CABLE HARDWARE

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. ADC
 - 2. American Technology Systems Industries, Inc.
 - 3. Berk-Tek; a Nexans company.
 - 4. Corning Cable Systems.
 - 5. Dynacom Corporation.
 - 6. Hubbell Premise Wiring.
 - 7. Molex Premise Networks; a division of Molex, Inc.
 - 8. Nordex/CDT; a subsidiary of Cable Design Technologies.
 - 9. Optical Connectivity Solutions Division; Emerson Network Power.
 - 10. Siemen Co. (The).
 - 11. Or Approved Equal
- B. Cross-Connects and Patch Panels: Modular panels housing multiple-numbered, duplex cable connectors.
 - 1. Number of Connectors per Field: One for each fiber of cable or cables assigned to field, plus spares and blank positions adequate to suit specified expansion criteria.
- C. Patch Cords: Factory-made, dual-fiber cables in 36-inch (900-mm) lengths.

- D. Cable Connecting Hardware:
 - Comply with Optical Fiber Connector Intermateability Standards (FOCIS) specifications of TIA/EIA-604-2, TIA/EIA-604-3-A, and TIA/EIA-604-12. Comply with TIA/EIA-568-B.3.
 - 2. Quick-connect, simplex and duplex, Type SC connectors. Insertion loss not more than 0.75 dB.
 - 3. Type SFF connectors may be used in termination racks, panels, and equipment packages.

2.7 COAXIAL CABLE

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Alpha Wire Company.
 - 2. Belden CDT Inc.; Electronics Division.
 - 3. Coleman Cable, Inc.
 - 4. CommScope, Inc.
 - 5. Draka USA.
 - 6. Or Approved Equal
- B. Cable Characteristics: Broadband type, recommended by cable manufacturer specifically for broadband data transmission applications. Coaxial cable and accessories shall have 75-ohm nominal impedance with a return loss of 20 dB maximum from 7 to 806 MHz.
- C. RG-11/U: NFPA 70, Type CATV.
 - 1. No. 14 AWG, solid, copper-covered steel conductor.
 - 2. Gas-injected, foam-PE insulation.
 - 3. Double shielded with 100 percent aluminum polyester tape and 60 percent aluminum braid.
 - 4. Jacketed with sunlight-resistant, black PVC or PE.
 - 5. Suitable for outdoor installations in ambient temperatures ranging from minus 40 to plus 85 deg C.
- D. RG59/U: NFPA 70, Type CATVR.
 - 1. No. 20 AWG, solid, silver-plated, copper-covered steel conductor.
 - 2. Gas-injected, foam-PE insulation.
 - 3. Triple shielded with 100 percent aluminum polyester tape and 95 percent aluminum braid; covered by aluminum foil with grounding strip.
 - 4. Color-coded PVC jacket.
- E. RG-6/U: NFPA 70, Type CATV or CM.
 - 1. No. 16 AWG, solid, copper-covered steel conductor; gas-injected, foam-PE insulation.
 - 2. Double shielded with 100 percent aluminum-foil shield and 60 percent aluminum braid.
 - 3. Jacketed with black PVC or PE.
 - 4. Suitable for indoor installations.
- F. RG59/U: NFPA 70, Type CATV.
 - 1. No. 20 AWG, solid, copper-covered steel conductor; gas-injected, foam-PE insulation.
 - 2. Double shielded with 100 percent aluminum polyester tape and 40 percent aluminum braid.
 - 3. PVC jacket.
- G. RG59/U (Plenum Rated): NFPA 70, Type CMP.
 - 1. No. 20 AWG, solid, copper-covered steel conductor; foam fluorinated ethylene propylene insulation.
 - 2. Double shielded with 100 percent aluminum-foil shield and 65 percent aluminum braid.
 - Copolymer jacket.
- H. NFPA and UL compliance, listed and labeled by an NRTL acceptable to authorities having jurisdiction as complying with UL 1655 and with NFPA 70 "Radio and Television Equipment" and "Community Antenna Television and Radio Distribution" Articles. Types are as follows:
 - 1. CATV Plenum Rated: Type CATVP, complying with NFPA 262.
 - 2. CATV Riser Rated: Type CATVR, complying with UL 1666.
 - 3. CATV Limited Rating: Type CATVX.

2.8 COAXIAL CABLE HARDWARE

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

- 1. Aim Electronics; a brand of Emerson Electric Co.
- 2. Leviton Voice & Data Division.
- 3. Siemon Co. (The).
- B. Coaxial-Cable Connectors: Type F, 75 ohms.

2.9 CONSOLIDATION POINTS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. American Technology Systems Industries, Inc.
 - 2. Chatsworth Products, Inc.
 - 3. Dynacom Corporation.
 - 4. Hubbell Premise Wiring.
 - 5. Molex Premise Networks; a division of Molex, Inc.
 - 6. Nordex/CDT; a subsidiary of Cable Design Technologies.
 - 7. Ortronics, Inc.
 - 8. Panduit Corp.

3.

- 9. Siemon Co. (The).
- 10. Or Approved Equal
- B. Description: Consolidation points shall comply with requirements for cable connecting hardware.
 - 1. Number of Terminals per Field: One for each conductor in assigned cables.
 - 2. Number of Connectors per Field:
 - a. One for each four-pair UTP cable indicated.
 - b. One for each four-pair conductor group of indicated cables, plus 25 percent spare positions.
 - Mounting: Recessed in ceiling.
 - 4. NRTL listed as complying with UL 50 and UL 1863.
 - 5. When installed in plenums used for environmental air, NRTL listed as complying with UL 2043.

2.10 MULTIUSER TELECOMMUNICATIONS OUTLET ASSEMBLY (MUTOA)

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Chatsworth Products, Inc.
 - 2. Hubbell Premise Wiring.
 - 3. Molex Premise Networks; a division of Molex, Inc.
 - 4. Nordex/CDT; a subsidiary of Cable Design Technologies.
 - 5. Ortronics, Inc.
 - 6. Panduit Corp.
 - 7. Siemon Co. (The).
 - 8. Or Approved Equal
- B. Description: MUTOAs shall meet the requirements for cable connecting hardware.
 - 1. Number of Terminals per Field: One for each conductor in assigned cables.
 - 2. Number of Connectors per Field:
 - a. One for each four-pair UTP cable indicated.
 - b. One for each four-pair conductor group of indicated cables, plus 25 percent spare positions.
 - 3. Mounting: Recessed in ceiling.
 - 4. NRTL listed as complying with UL 50 and UL 1863.
 - 5. Label shall include maximum length of work area cords, based on TIA/EIA-568-B.1.
 - 6. When installed in plenums used for environmental air, NRTL listed as complying with UL 2043.

2.11 TELECOMMUNICATIONS OUTLET/CONNECTORS

- A. Jacks: 100-ohm, balanced, twisted-pair connector; four-pair, eight-position modular. Comply with TIA/EIA-568-B.1.
- B. Workstation Outlets: Six-port-connector assemblies mounted in single or multigang faceplate.
 - Plastic Faceplate: High-impact plastic. Coordinate color with Division 26 Section "Wiring Devices."

- For use with snap-in jacks accommodating any combination of UTP, optical fiber, and coaxial work area cords.
 - a. Flush mounting jacks, positioning the cord at a 45-degree angle.
- 3. Legend: Snap-in, clear-label covers and machine-printed paper inserts.

2.12 GROUNDING

- A. Comply with requirements in Division 26 Section "Grounding and Bonding for Electrical Systems" for grounding conductors and connectors.
- B. Comply with ANSI-J-STD-607-A.

2.13 IDENTIFICATION PRODUCTS

- A. Comply with TIA/EIA-606-A and UL 969 for labeling materials, including label stocks, laminating adhesives, and inks used by label printers.
- B. Comply with requirements in Division 26 Section "Identification for Electrical Systems."

2.14 CABLE MANAGEMENT SYSTEM

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following]:

- B. Description: Computer-based cable management system, with integrated database and graphic capabilities.
- C. Document physical characteristics by recording the network, TIA/EIA details, and connections between equipment and cable.
- D. Information shall be presented in database view, schematic plans, or technical drawings.
 - Microsoft Visio Professional or AutoCAD drawing software shall be used as drawing and schematic plans software.
- E. System shall interface with the following testing and recording devices:
 - 1. Direct upload tests from circuit testing instrument into the personal computer.
 - 2. Direct download circuit labeling into labeling printer.

2.15 SOURCE QUALITY CONTROL

- A. Testing Agency: Engage a qualified testing agency to evaluate cables.
- B. Factory test UTP and optical fiber cables on reels according to TIA/EIA-568-B.1.
- C. Factory test UTP cables according to TIA/EIA-568-B.2. All testing reports shall be turned over to the owner.
- D. Factory test multimode optical fiber cables according to TIA/EIA-526-14-A and TIA/EIA-568-B.3. All testing reports shall be turned over to the owner.
- E. Factory-sweep test coaxial cables at frequencies from 5 MHz to 1 GHz. Sweep test shall test the frequency response, or attenuation over frequency, of a cable by generating a voltage whose frequency is varied through the specified frequency range and graphing the results.
- F. Cable will be considered defective if it does not pass tests and inspections.
- G. Prepare test and inspection reports.

PART 3 - EXECUTION

3.1 ENTRANCE FACILITIES

A. Coordinate backbone cabling with the protectors and demarcation point provided by communications service provider.

3.2 WIRING METHODS

- A. Wiring Method: Install cables in raceways and cable trays except within consoles, cabinets, desks, and counters and except in accessible ceiling spaces, in attics, and in gypsum board partitions where unenclosed wiring method may be used. Conceal raceway and cables except in unfinished spaces.
 - 1. Install plenum cable in environmental air spaces, including plenum ceilings.
 - 2. Comply with requirements for raceways and boxes specified in Division 26 Section "Raceway and Boxes for Electrical Systems."
- B. Wiring Method: Conceal conductors and cables in accessible ceilings, walls, and floors where possible.
- C. Wiring within Enclosures: Bundle, lace, and train cables to terminal points with no excess and without exceeding manufacturer's limitations on bending radii. Provide and use lacing bars and distribution spools.

3.3 INSTALLATION OF PATHWAYS

- A. Cable Trays: Comply with NEMA VE 2 and TIA/EIA-569-A-7.
- B. Comply with requirements for demarcation point, pathways, cabinets, and racks specified in Division 27 Section "Communications Equipment Room Fittings." Drawings indicate general arrangement of pathways and fittings.
- C. Comply with TIA/EIA-569-A for pull-box sizing and length of conduit and number of bends between pull points.
- D. Comply with requirements in Division 26 Section "Raceway and Boxes for Electrical Systems" for installation of conduits and wireways.
- E. Install manufactured conduit sweeps and long-radius elbows whenever possible.
- F. Pathway Installation in Communications Equipment Rooms:
 - 1. Position conduit ends adjacent to a corner on backboard where a single piece of plywood is installed, or in the corner of room where multiple sheets of plywood are installed around perimeter walls of room.
 - 2. Install cable trays to route cables if conduits cannot be located in these positions.
 - 3. Secure conduits to backboard when entering room from overhead.
 - 4. Extend conduits 3 inches (76 mm) above finished floor.
 - 5. Install metal conduits with grounding bushings and connect with grounding conductor to grounding system.
- G. Backboards: Install backboards with 96-inch (2440-mm) dimension vertical. Butt adjacent sheets tightly, and form smooth gap-free corners and joints.

3.4 INSTALLATION OF CABLES

- A. Comply with NECA 1.
- B. General Requirements for Cabling:
 - 1. Comply with TIA/EIA-568-B.1.
 - 2. Comply with BICSI ITSIM, Ch. 6, "Cable Termination Practices."
 - 3. Install 110-style IDC termination hardware unless otherwise indicated.
 - 4. MUTOA shall not be used as a cross-connect point.
 - 5. Consolidation points may be used only for making a direct connection to telecommunications outlet/connectors:
 - a. Do not use consolidation point as a cross-connect point, as a patch connection, or for direct connection to workstation equipment.
 - b. Locate consolidation points for UTP at least 49 feet (15 m) from communications equipment room.
 - 6. Terminate conductors; no cable shall contain unterminated elements. Make terminations only at indicated outlets, terminals, cross-connects, and patch panels.
 - 7. Cables may not be spliced. Secure and support cables at intervals not exceeding 30 inches (760 mm) and not more than 6 inches (150 mm) from cabinets, boxes, fittings, outlets, racks, frames, and terminals.

- 8. Install lacing bars to restrain cables, to prevent straining connections, and to prevent bending cables to smaller radii than minimums recommended by manufacturer.
- 9. Bundle, lace, and train conductors to terminal points without exceeding manufacturer's limitations on bending radii, but not less than radii specified in BICSI ITSIM, "Cabling Termination Practices" Chapter. Install lacing bars and distribution spools.
- 10. Do not install bruised, kinked, scored, deformed, or abraded cable. Do not splice cable between termination, tap, or junction points. Remove and discard cable if damaged during installation and replace it with new cable.
- 11. Cold-Weather Installation: Bring cable to room temperature before dereeling. Heat lamps shall not be used for heating.
- 12. In the communications equipment room, install a 10-foot- (3-m-) long service loop on each end of cable.
- 13. Pulling Cable: Comply with BICSI ITSIM, Ch. 4, "Pulling Cable." Monitor cable pull tensions.
- C. UTP Cable Installation:
 - 1. Comply with TIA/EIA-568-B.2.
 - 2. Do not untwist UTP cables more than 1/2 inch (12 mm) from the point of termination to maintain cable geometry.
- D. Optical Fiber Cable Installation:
 - 1. Comply with TIA/EIA-568-B.3.
 - 2. Cable may be terminated on connecting hardware that is rack or cabinet mounted.
- E. Open-Cable Installation:
 - 1. Install cabling with horizontal and vertical cable guides in telecommunications spaces with terminating hardware and interconnection equipment.
 - 2. Suspend UTP cable not in a wireway or pathway a minimum of 8 inches (200 mm) above ceilings by cable supports not more than 60 inches (1524 mm) apart.
 - 3. Cable shall not be run through structural members or in contact with pipes, ducts, or other potentially damaging items.
- F. Installation of Cable Routed Exposed under Raised Floors:
 - 1. Install plenum-rated cable only.
 - 2. Install cabling after the flooring system has been installed in raised floor areas.
 - 3. Coil cable 6 feet (1800 mm) long not less than 12 inches (300 mm) in diameter below each feed point.
- G. Outdoor Coaxial Cable Installation:
 - 1. Install outdoor connections in enclosures complying with NEMA 250, Type 4X. Install corrosion-resistant connectors with properly designed O-rings to keep out moisture.
 - 2. Attach antenna lead-in cable to support structure at intervals not exceeding 36 inches (915 mm).
- H. Group connecting hardware for cables into separate logical fields.
- I. Provide installation and materials for an additional two thousand feet of communications horizontal cabling of each size and type used on the project along with associated accessories to accommodate changes required to resolve interferences or as directed by the Engineer.
- J. Provide installation and materials for an additional fifteen communication drops with 100 feet of horizontal cabling to accommodate changes as directed by the Engineer or Owner.
- K. Separation from EMI Sources:
 - 1. Comply with BICSI TDMM and TIA/EIA-569-A for separating unshielded copper voice and data communication cable from potential EMI sources, including electrical power lines and equipment.
 - 2. Separation between open communications cables or cables in nonmetallic raceways and unshielded power conductors and electrical equipment shall be as follows:
 - a. Electrical Equipment Rating Less Than 2 kVA: A minimum of 5 inches (127 mm).
 - b. Electrical Equipment Rating between 2 and 5 kVA: A minimum of 12 inches (300 mm).
 - c. Electrical Equipment Rating More Than 5 kVA: A minimum of 24 inches (610 mm).
 - 3. Separation between communications cables in grounded metallic raceways and unshielded power lines or electrical equipment shall be as follows:
 - a. Electrical Equipment Rating Less Than 2 kVA: A minimum of 2-1/2 inches (64 mm).
 - b. Electrical Equipment Rating between 2 and 5 kVA: A minimum of 6 inches (150 mm).
 - c. Electrical Equipment Rating More Than 5 kVA: A minimum of 12 inches (300 mm).

- 4. Separation between communications cables in grounded metallic raceways and power lines and electrical equipment located in grounded metallic conduits or enclosures shall be as follows:
 - a. Electrical Equipment Rating Less Than 2 kVA: No requirement.
 - b. Electrical Equipment Rating between 2 and 5 kVA: A minimum of 3 inches (76 mm).
 - c. Electrical Equipment Rating More Than 5 kVA: A minimum of 6 inches (150 mm).
- 5. Separation between Communications Cables and Electrical Motors and Transformers, 5 kVA or HP and Larger: A minimum of 48 inches (1200 mm).
- 6. Separation between Communications Cables and Fluorescent Fixtures: A minimum of 5 inches (127 mm).

3.5 FIRESTOPPING

- A. Comply with requirements in Division 07 Section "Penetration Firestopping."
- B. Comply with TIA/EIA-569-A, Annex A, "Firestopping."
- C. Comply with BICSI TDMM, "Firestopping Systems" Article.

3.6 GROUNDING

- A. Install grounding according to BICSI TDMM, "Grounding, Bonding, and Electrical Protection" Chapter.
- B. Comply with ANSI-J-STD-607-A.
- C. Locate grounding bus bar to minimize the length of bonding conductors. Fasten to wall allowing at least 2-inch (50-mm) clearance behind the grounding bus bar. Connect grounding bus bar with a minimum No. 4 AWG grounding electrode conductor from grounding bus bar to suitable electrical building ground.
- D. Bond metallic equipment to the grounding bus bar, using not smaller than No. 6 AWG equipment grounding conductor.

3.7 IDENTIFICATION

- A. Identify system components, wiring, and cabling complying with TIA/EIA-606-A. Comply with requirements for identification specified in Division 26 Section "Identification for Electrical Systems."
 - 1. Administration Class: 1.
 - Color-code cross-connect fields. Apply colors to voice and data service backboards, connections, covers, and labels.
- B. Using cable management system software specified in Part 2, develop Cabling Administration Drawings for system identification, testing, and management. Use unique, alphanumeric designation for each cable and label cable, jacks, connectors, and terminals to which it connects with same designation. At completion, cable and asset management software shall reflect as-built conditions.
- C. Comply with requirements in Division 09 Section "Interior Painting" for painting backboards. For fire-resistant plywood, do not paint over manufacturer's label.
- D. Paint and label colors for equipment identification shall comply with TIA/EIA-606-A for Class 2 level of administration, including optional identification requirements of this standard.
- E. Cable Schedule: Post in prominent location in each equipment room and wiring closet. List incoming and outgoing cables and their designations, origins, and destinations. Protect with rigid frame and clear plastic cover. Furnish an electronic copy of final comprehensive schedules for Project.
- F. Cabling Administration Drawings: Show building floor plans with cabling administration-point labeling. Identify labeling convention and show labels for telecommunications closets, backbone pathways and cables, entrance pathways and cables, terminal hardware and positions, horizontal cables, work areas and workstation terminal positions, grounding buses and pathways, and equipment grounding conductors. Follow convention of TIA/EIA-606-A. Furnish electronic record of all drawings, in software and format selected by Owner.
- G. Cable and Wire Identification:
 - 1. Label each cable within 4 inches (100 mm) of each termination and tap, where it is accessible in a cabinet or junction or outlet box, and elsewhere as indicated.
 - 2. Each wire connected to building-mounted devices is not required to be numbered at device if color of wire is consistent with associated wire connected and numbered within panel or cabinet.

- 3. Exposed Cables and Cables in Cable Trays and Wire Troughs: Label each cable at intervals not exceeding 15 feet (4.5 m).
- 4. Label each terminal strip and screw terminal in each cabinet, rack, or panel.
 - a. Individually number wiring conductors connected to terminal strips, and identify each cable or wiring group being extended from a panel or cabinet to a building-mounted device shall be identified with name and number of particular device as shown.
 - b. Label each unit and field within distribution racks and frames.
- 5. Identification within Connector Fields in Equipment Rooms and Wiring Closets: Label each connector and each discrete unit of cable-terminating and connecting hardware. Where similar jacks and plugs are used for both voice and data communication cabling, use a different color for jacks and plugs of each service.
- 6. Uniquely identify and label work area cables extending from the MUTOA to the work area. These cables may not exceed the length stated on the MUTOA label.
- H. Labels shall be preprinted or computer-printed type with printing area and font color that contrasts with cable jacket color but still complies with requirements in TIA/EIA-606-A.
 - 1. Cables use flexible vinyl or polyester that flex as cables are bent.
- I. Cable and connector color guidelines are as follows:
 - 1. Data Drop: Blue
 - 2. VOIP Drop: Red
 - 3. Security Camera Drop: Green
 - 4. Wireless Drop: Orange
- J. Cables shall be identified at each end with labels that meet the requirements of TIA/EIA-606-A. All cables must have indelible identifying labels that are printed or generated by a mechanical device:
 - 1. Backbone Cables (Fiber Optic and MATV): Each cable must carry labels indicating the closet from which the cable runs, the cable type, and identifying number. The identifying number will indicate the closet numbers of each end, type of cable (i.e. FOC=Fiber optic cable), and the fiber or conductor number (01,02,03,....)
 - 2. Horizontal Cables: Each cable must carry labels indicating the closet from which the cable runs, the room number the cable is terminating, type of cable (i.e. QTP=quad twisted pair), type of drop. The type of drop will be identified by TE for teacher desk; S1, S2, S3, ... for student drop (each drop in a room will be sequentially numbered); SC for security camera; VOIP1, VOIP2, ... for VOIP drops (each drop in a room will be sequentially numbered); P for printer drops.
- K. Contractor shall provide the owner with a complete set of laminated full size "as-built" plans showing the location of all drops.

3.8 FIELD QUALITY CONTROL

- A. Testing Agency: Engage a qualified testing agency to perform tests and inspections.
- B. Perform tests and inspections.
- C. Tests and Inspections:
 - Visually inspect UTP and optical fiber cable jacket materials for NRTL certification markings. Inspect cabling terminations in communications equipment rooms for compliance with color-coding for pin assignments, and inspect cabling connections for compliance with TIA/EIA-568-B.1.
 - 2. Visually confirm Category 5e, marking of outlets, cover plates, outlet/connectors, and patch panels.
 - 3. Visually inspect cable placement, cable termination, grounding and bonding, equipment and patch cords, and labeling of all components.
 - 4. Test UTP backbone copper cabling for DC loop resistance, shorts, opens, intermittent faults, and polarity between conductors. Test operation of shorting bars in connection blocks. Test cables after termination but not cross-connection.
 - a. Test instruments shall meet or exceed applicable requirements in TIA/EIA-568-B.2. Perform tests with a tester that complies with performance requirements in "Test Instruments (Normative)" Annex, complying with measurement accuracy specified in

"Measurement Accuracy (Informative)" Annex. Use only test cords and adapters that are qualified by test equipment manufacturer for channel or link test configuration.

- 5. Optical Fiber Cable Tests:
 - a. Test instruments shall meet or exceed applicable requirements in TIA/EIA-568-B.1. Use only test cords and adapters that are qualified by test equipment manufacturer for channel or link test configuration.
 - b. Link End-to-End Attenuation Tests:
 - 1) Horizontal and multimode backbone link measurements: Test at 850 or 1300 nm in 1 direction according to TIA/EIA-526-14-A, Method B, One Reference Jumper.
 - 2) Attenuation test results for backbone links shall be less than 2.0 dB. Attenuation test results shall be less than that calculated according to equation in TIA/EIA-568-B.1.
- 6. UTP Performance Tests:
 - a. Test for each outlet and MUTOA. Perform the following tests according to TIA/EIA-568-B.1 and TIA/EIA-568-B.2:
 - 1) Wire map.
 - 2) Length (physical vs. electrical, and length requirements).
 - 3) Insertion loss.
 - 4) Near-end crosstalk (NEXT) loss.
 - 5) Power sum near-end crosstalk (PSNEXT) loss.
 - 6) Equal-level far-end crosstalk (ELFEXT).
 - 7) Power sum equal-level far-end crosstalk (PSELFEXT).
 - 8) Return loss.
 - 9) Propagation delay.
 - 10) Delay skew.
- 7. Optical Fiber Cable Performance Tests: Perform optical fiber end-to-end link tests according to TIA/EIA-568-B.1 and TIA/EIA-568-B.3.
- 8. Coaxial Cable Tests: Conduct tests according to Division 27 Section "Master Antenna Television System."
- 9. Final Verification Tests: Perform verification tests for UTP and optical fiber systems after the complete communications cabling and workstation outlet/connectors are installed.
 - a. Voice Tests: These tests assume that dial tone service has been installed. Connect to the network interface device at the demarcation point. Go off-hook and listen and receive a dial tone. If a test number is available, make and receive a local, long distance, and digital subscription line telephone call.
 - b. Data Tests: These tests assume the Information Technology Staff has a network installed and is available to assist with testing. Connect to the network interface device at the demarcation point. Log onto the network to ensure proper connection to the network.
- 10. All testing reports shall be turned over to the owner upon completion.
- D. Document data for each measurement. Data for submittals shall be printed in a summary report that is formatted similar to Table 10.1 in BICSI TDMM, or transferred from the instrument to the computer, saved as text files, and printed and submitted.
- E. End-to-end cabling will be considered defective if it does not pass tests and inspections.
- F. Prepare test and inspection reports.

3.9 DEMONSTRATION

A. Train Owner's maintenance personnel in cable-plant management operations, including changing signal pathways for different workstations, rerouting signals in failed cables, and keeping records of cabling assignments and revisions when extending wiring to establish new workstation outlets. Include training in cabling administration software.

END OF SECTION 27 15 00

April 25, 2025 Bid Issue

Addition & Alterations
Department of Public Works
10 Hartford Road
Delran, New Jersey

SECTION 311000 - SITE CLEARING

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:

- 1. Clearing and grubbing.
- 2. Stripping and stockpiling topsoil.
- 3. Removing above- and below-grade site improvements.
- 4. Disconnecting, capping, or sealing site utilities.

1.2 MATERIAL OWNERSHIP

A. Except for materials indicated to be stockpiled or otherwise remain Owner's property, cleared materials shall become Contractor's property and shall be removed from Project site.

1.3 FIELD CONDITIONS

- A. Traffic: Minimize interference with adjoining roads, streets, walks, and other adjacent occupied or used facilities during site-clearing operations.
 - 1. Do not close or obstruct streets, walks, or other adjacent occupied or used facilities without permission from Owner and authorities having jurisdiction.
 - 2. Provide alternate routes around closed or obstructed trafficways if required by Owner or authorities having jurisdiction.
- B. Salvageable Improvements: Carefully remove items indicated to be salvaged and store on Owner's premises where indicated.
- C. Utility Locator Service: Notify utility locator service for area where Project is located before site clearing.

PART 2 - PRODUCTS

2.1 MATERIALS

- A. Satisfactory Soil Material: Requirements for satisfactory soil material are specified in Section 312000 "Earth Moving."
 - Obtain approved borrow soil material off-site when satisfactory soil material is not available onsite.

SITE CLEARING 311000 - 1

PART 3 - EXECUTION

3.1 PREPARATION

- A. Protect and maintain benchmarks and survey control points from disturbance during construction.
- B. Protect existing site improvements to remain from damage during construction.
 - 1. Restore damaged improvements to their original condition, as acceptable to Owner.

3.2 EXISTING UTILITIES

- A. Locate, identify, disconnect, and seal or cap utilities indicated to be removed or abandoned in place.
 - 1. Arrange with utility companies to shut off indicated utilities.
- B. Interrupting Existing Utilities: Do not interrupt utilities serving facilities occupied by Owner or others, unless permitted under the following conditions and then only after arranging to provide temporary utility services according to requirements indicated:
 - 1. Notify Architect not less than two days in advance of proposed utility interruptions.
 - 2. Do not proceed with utility interruptions without Architect's written permission.
- C. Removal of underground utilities is included in earthwork sections; in applicable fire suppression, plumbing, HVAC, electrical, communications, electronic safety and security, and utilities sections; and in Section 024116 "Structure Demolition" and Section 024119 "Selective Demolition."

3.3 TOPSOIL STRIPPING

- A. Remove sod and grass before stripping topsoil.
- B. Strip topsoil to depth of 6 inches in a manner to prevent intermingling with underlying subsoil or other waste materials.
- C. Stockpile topsoil away from edge of excavations without intermixing with subsoil or other materials. Grade and shape stockpiles to drain surface water. Cover to prevent windblown dust and erosion by water.

3.4 SITE IMPROVEMENTS

A. Remove existing above- and below-grade improvements as indicated and necessary to facilitate new construction.

3.5 DISPOSAL OF SURPLUS AND WASTE MATERIALS

A. Remove unsuitable topsoil, obstructions, demolished materials, and waste materials including trash and debris, and legally dispose of them off Owner's property.

SITE CLEARING 311000 - 2

Addition & Alterations Department of Public Works 10 Hartford Road Delran, New Jersey

B. Separate recyclable materials produced during site clearing from other nonrecyclable materials. Store or stockpile without intermixing with other materials, and transport them to recycling facilities. Do not interfere with other Project work.

END OF SECTION 311000

SITE CLEARING 311000 - 3

SECTION 312000 - EARTH MOVING

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:

- 1. Excavating and filling for rough grading the Site.
- 2. Preparing subgrades for slabs-on-grade, walks, pavements, turf and grasses and plants.
- 3. Excavating and backfilling for buildings and structures.
- 4. Drainage course for concrete slabs-on-grade.
- 5. Subbase course for concrete walks and pavements.
- 6. Subbase course and base course for asphalt paving.
- 7. Excavating and backfilling trenches for utilities and pits for buried utility structures.

1.2 DEFINITIONS

- A. Backfill: Soil material used to fill an excavation.
 - 1. Initial Backfill: Backfill placed beside and over pipe in a trench, including haunches to support sides of pipe.
 - 2. Final Backfill: Backfill placed over initial backfill to fill a trench.
- B. Base Course: Aggregate layer placed between the subbase course and hot-mix asphalt paving.
- C. Bedding Course: Aggregate layer placed over the excavated subgrade in a trench before laying pipe.
- D. Borrow Soil: Satisfactory soil imported from off-site for use as fill or backfill.
- E. Drainage Course: Aggregate layer supporting the slab-on-grade that also minimizes upward capillary flow of pore water.
- F. Excavation: Removal of material encountered above subgrade elevations and to lines and dimensions indicated.
 - 1. Authorized Additional Excavation: Excavation below subgrade elevations or beyond indicated lines and dimensions as directed by Architect. Authorized additional excavation and replacement material will be paid for according to Contract provisions for changes in the Work.
 - 2. Unauthorized Excavation: Excavation below subgrade elevations or beyond indicated lines and dimensions without direction by Architect. Unauthorized excavation, as well as remedial work directed by Architect, shall be without additional compensation.
- G. Fill: Soil materials used to raise existing grades.
- H. Structures: Buildings, footings, foundations, retaining walls, slabs, tanks, curbs, mechanical and electrical appurtenances, or other man-made stationary features constructed above or below the ground surface.

- I. Subbase Course: Aggregate layer placed between the subgrade and base course for hot-mix asphalt pavement, or aggregate layer placed between the subgrade and a cement concrete pavement or a cement concrete or hot-mix asphalt walk.
- J. Subgrade: Uppermost surface of an excavation or the top surface of a fill or backfill immediately below subbase, drainage fill, drainage course, or topsoil materials.
- K. Utilities: On-site underground pipes, conduits, ducts, and cables as well as underground services within buildings.

1.3 INFORMATIONAL SUBMITTALS

A. Material test reports.

1.4 FIELD CONDITIONS

A. Utility Locator Service: Notify utility locator service for area where Project is located before beginning earthmoving operations.

PART 2 - PRODUCTS

2.1 SOIL MATERIALS

- A. General: Provide borrow soil materials when sufficient satisfactory soil materials are not available from excavations.
- B. Satisfactory Soils: Soil Classification Groups GW, GP, GM, SW, SP, and SM according to ASTM D 2487 or a combination of these groups; free of rock or gravel larger than 3 inches in any dimension, debris, waste, frozen materials, vegetation, and other deleterious matter.
- C. Unsatisfactory Soils: Soil Classification Groups GC, SC, CL, ML, OL, CH, MH, OH, and PT according to ASTM D 2487 or a combination of these groups.
 - 1. Unsatisfactory soils also include satisfactory soils not maintained within 2 percent of optimum moisture content at time of compaction.
- D. Subbase Material: Naturally or artificially graded mixture of natural or crushed gravel, crushed stone, and natural or crushed sand; ASTM D 2940/D 2940M; with at least 90 percent passing a 1-1/2-inch (37.5-mm) sieve and not more than 12 percent passing a No. 200 (0.075-mm) sieve.
- E. Base Course: Naturally or artificially graded mixture of natural or crushed gravel, crushed stone, and natural or crushed sand; ASTM D 294/D 2940M 0; with at least 95 percent passing a 1-1/2-inch (37.5-mm) sieve and not more than 8 percent passing a No. 200 (0.075-mm) sieve.
- F. Engineered Fill: Naturally or artificially graded mixture of natural or crushed gravel, crushed stone, and natural or crushed sand; ASTM D 2940/D 2940M; with at least 90 percent passing a 1-1/2-inch (37.5-mm) sieve and not more than 12 percent passing a No. 200 (0.075-mm) sieve.

- G. Bedding Course: Naturally or artificially graded mixture of natural or crushed gravel, crushed stone, and natural or crushed sand; ASTM D 2940/D 2940M; except with 100 percent passing a 1-inch (25-mm) sieve and not more than 8 percent passing a No. 200 (0.075-mm) sieve.
- H. Drainage Course: Narrowly graded mixture of [washed] crushed stone, or crushed or uncrushed gravel; ASTM D 448; coarse-aggregate grading Size 57; with 100 percent passing a 1-1/2-inch (37.5-mm) sieve and zero to 5 percent passing a No. 8 (2.36-mm) sieve.

2.2 ACCESSORIES

- A. Warning Tape: Acid- and alkali-resistant, polyethylene film warning tape manufactured for marking and identifying underground utilities, 6 inches (150 mm) wide and 4 mils (0.1 mm) thick, continuously inscribed with a description of the utility; colored to comply with local practice or requirements of authorities having jurisdiction.
- B. Detectable Warning Tape: Acid- and alkali-resistant, polyethylene film warning tape manufactured for marking and identifying underground utilities, a minimum of 6 inches (150 mm) wide and 4 mils (0.1 mm) thick, continuously inscribed with a description of the utility, with metallic core encased in a protective jacket for corrosion protection, detectable by metal detector when tape is buried up to 30 inches (750 mm) deep; colored to comply with local practice or requirements of authorities having jurisdiction.

PART 3 - EXECUTION

3.1 PREPARATION

- A. Protect structures, utilities, sidewalks, pavements, and other facilities from damage caused by settlement, lateral movement, undermining, washout, and other hazards created by earth-moving operations.
- B. Protect and maintain erosion and sedimentation controls during earth-moving operations.
- C. Protect subgrades and foundation soils from freezing temperatures and frost. Remove temporary protection before placing subsequent materials.

3.2 EXCAVATION, GENERAL

- A. Unclassified Excavation: Excavate to subgrade elevations regardless of the character of surface and subsurface conditions encountered. Unclassified excavated materials may include rock, soil materials, and obstructions. No changes in the Contract Sum or the Contract Time will be authorized for rock excavation or removal of obstructions.
 - 1. If excavated materials intended for fill and backfill include unsatisfactory soil materials and rock, replace with satisfactory soil materials.

3.3 EXCAVATION FOR STRUCTURES

- A. Excavate to indicated elevations and dimensions within a tolerance of plus or minus 1 inch (25 mm). If applicable, extend excavations a sufficient distance from structures for placing and removing concrete formwork, for installing services and other construction, and for inspections.
 - 1. Excavations for Footings and Foundations: Do not disturb bottom of excavation. Excavate by hand to final grade just before placing concrete reinforcement. Trim bottoms to required lines and grades to leave solid base to receive other work.
 - 2. Excavation for Underground Tanks, Basins, and Mechanical or Electrical Utility Structures: Excavate to elevations and dimensions indicated within a tolerance of plus or minus 1 inch (25 mm). Do not disturb bottom of excavations intended as bearing surfaces.
- B. Excavations at Edges of Tree- and Plant-Protection Zones:
 - 1. Excavate by hand or with an air spade to indicated lines, cross sections, elevations, and subgrades. If excavating by hand, use narrow-tine spading forks to comb soil and expose roots. Do not break, tear, or chop exposed roots. Do not use mechanical equipment that rips, tears, or pulls roots.
 - 2. Cut and protect roots according to requirements in Section 015639 "Temporary Tree and Plant Protection."

3.4 EXCAVATION FOR WALKS AND PAVEMENTS

A. Excavate surfaces under walks and pavements to indicated lines, cross sections, elevations, and subgrades.

3.5 EXCAVATION FOR UTILITY TRENCHES

- A. Excavate trenches to indicated gradients, lines, depths, and elevations.
- B. Excavate trenches to uniform widths to provide the following clearance on each side of pipe or conduit. Excavate trench walls vertically from trench bottom to 12 inches (300 mm) higher than top of pipe or conduit unless otherwise indicated.
 - 1. Clearance: 12 inches (300 mm) each side of pipe or conduit.
- C. Trench Bottoms: Excavate and shape trench bottoms to provide uniform bearing and support of pipes and conduit. Shape subgrade to provide continuous support for bells, joints, and barrels of pipes and for joints, fittings, and bodies of conduits. Remove projecting stones and sharp objects along trench subgrade.
 - 1. Excavate trenches 6 inches (150 mm) deeper than elevation required in rock or other unyielding bearing material to allow for bedding course.
- D. Trenches in Tree- and Plant-Protection Zones:
 - 1. Hand-excavate to indicated lines, cross sections, elevations, and subgrades. Use narrow-tine spading forks to comb soil and expose roots. Do not break, tear, or chop exposed roots. Do not use mechanical equipment that rips, tears, or pulls roots.
 - 2. Do not cut main lateral roots or taproots; cut only smaller roots that interfere with installation of utilities.

3. Cut and protect roots according to requirements in Section 015639 "Temporary Tree and Plant Protection."

3.6 SUBGRADE INSPECTION

- A. Proof-roll subgrade below the building slabs and pavements with a pneumatic-tired dump truck to identify soft pockets and areas of excess yielding. Do not proof-roll wet or saturated subgrades.
- B. Reconstruct subgrades damaged by freezing temperatures, frost, rain, accumulated water, or construction activities, as directed by Architect, without additional compensation.

3.7 UNAUTHORIZED EXCAVATION

- A. Fill unauthorized excavation under foundations or wall footings by extending bottom elevation of concrete foundation or footing to excavation bottom, without altering top elevation. Lean concrete fill, with 28-day compressive strength of 2500 psi (17.2 MPa), may be used when approved by Architect.
 - 1. Fill unauthorized excavations under other construction, pipe, or conduit as directed by Architect.

3.8 STORAGE OF SOIL MATERIALS

- A. Stockpile borrow soil materials and excavated satisfactory soil materials without intermixing. Place, grade, and shape stockpiles to drain surface water. Cover to prevent windblown dust.
 - 1. Stockpile soil materials away from edge of excavations. Do not store within drip line of remaining trees.

3.9 UTILITY TRENCH BACKFILL

- A. Place backfill on subgrades free of mud, frost, snow, or ice.
- B. Place and compact bedding course on trench bottoms and where indicated. Shape bedding course to provide continuous support for bells, joints, and barrels of pipes and for joints, fittings, and bodies of conduits.
- C. Trenches under Footings: Backfill trenches excavated under footings and within 18 inches of bottom of footings with satisfactory soil; fill with concrete to elevation of bottom of footings. Concrete is specified in Section 033000 "Cast-in-Place Concrete."
- D. Trenches under Roadways: Provide 4-inch- thick, concrete-base slab support for piping or conduit less than 30 inches below surface of roadways. After installing and testing, completely encase piping or conduit in a minimum of 4 inches of concrete before backfilling or placing roadway subbase course. Concrete is specified in Section 033000 "Cast-in-Place Concrete."
- E. Initial Backfill: Place and compact initial backfill of subbase materials, free of particles larger than 1 inch in any dimension, to a height of 12 inches (300 mm) over the pipe or conduit.

- 1. Carefully compact initial backfill under pipe haunches and compact evenly up on both sides and along the full length of piping or conduit to avoid damage or displacement of piping or conduit. Coordinate backfilling with utilities testing.
- F. Final Backfill: Place and compact final backfill of satisfactory soil to final subgrade elevation.
- G. Warning Tape: Install warning tape directly above utilities, 12 inches (300 mm) below finished grade, except 6 inches (150 mm) below subgrade under pavements and slabs.

3.10 SOIL FILL

- A. Plow, scarify, bench, or break up sloped surfaces steeper than 1 vertical to 4 horizontal so fill material will bond with existing material.
- B. Place and compact fill material in layers to required elevations as follows:
 - 1. Under grass and planted areas, use satisfactory soil material.
 - 2. Under walks and pavements, use satisfactory soil material.
 - 3. Under steps and ramps, use engineered fill.
 - 4. Under building slabs, use engineered fill.
 - 5. Under footings and foundations, use engineered fill.

3.11 SOIL MOISTURE CONTROL

- A. Uniformly moisten or aerate subgrade and each subsequent fill or backfill soil layer before compaction to within 2 percent of optimum moisture content.
 - 1. Do not place backfill or fill soil material on surfaces that are muddy, frozen, or contain frost or ice.
 - 2. Remove and replace, or scarify and air dry, otherwise satisfactory soil material that exceeds optimum moisture content by 2 percent and is too wet to compact to specified dry unit weight.

3.12 COMPACTION OF SOIL BACKFILLS AND FILLS

- A. Place backfill and fill soil materials in layers not more than 8 inches in loose depth for material compacted by heavy compaction equipment and not more than 4 inches in loose depth for material compacted by hand-operated tampers.
- B. Place backfill and fill soil materials evenly on all sides of structures to required elevations and uniformly along the full length of each structure.
- C. Compact soil materials to not less than the following percentages of maximum dry unit weight according to ASTM D 698:
 - 1. Under structures, building slabs, steps, and pavements, scarify and recompact top 12 inches (300 mm) of existing subgrade and each layer of backfill or fill soil material at 95 percent.
 - 2. Under walkways, scarify and recompact top 6 inches (150 mm) below subgrade and compact each layer of backfill or fill soil material at 92 percent.
 - 3. Under turf or unpaved areas, scarify and recompact top 6 inches (150 mm) below subgrade and compact each layer of backfill or fill soil material at 85 percent.
 - 4. For utility trenches, compact each layer of initial and final backfill soil material at 85 percent.

3.13 GRADING

- A. General: Uniformly grade areas to a smooth surface, free of irregular surface changes. Comply with compaction requirements and grade to cross sections, lines, and elevations indicated.
- B. Site Rough Grading: Slope grades to direct water away from buildings and to prevent ponding. Finish subgrades to elevations required to achieve indicated finish elevations, within the following subgrade tolerances:
 - 1. Turf or Unpaved Areas: Plus or minus 1 inch.
 - 2. Walks: Plus or minus 1 inch.
 - 3. Pavements: Plus or minus 1/2 inch.
- C. Grading inside Building Lines: Finish subgrade to a tolerance of 1/2 inch when tested with a 10-foot straightedge.

3.14 SUBBASE AND BASE COURSES UNDER PAVEMENTS AND WALKS

- A. Place subbase course and base course on subgrades free of mud, frost, snow, or ice.
- B. On prepared subgrade, place subbase course and base course under pavements and walks as follows:
 - 1. Shape subbase course and base course to required crown elevations and cross-slope grades.
 - 2. Place subbase course and base course that exceeds 6 inches (150 mm) in compacted thickness in layers of equal thickness, with no compacted layer more than 6 inches (150 mm) thick or less than 3 inches (75 mm) thick.
 - 3. Compact subbase course and base course at optimum moisture content to required grades, lines, cross sections, and thickness to not less than 95 percent of maximum dry unit weight according to ASTM D 698.

3.15 DRAINAGE COURSE UNDER CONCRETE SLABS-ON-GRADE

- A. Place drainage course on subgrades free of mud, frost, snow, or ice.
- B. On prepared subgrade, place and compact drainage course under cast-in-place concrete slabs-on-grade as follows:
 - 1. Place drainage course that exceeds 6 inches (150 mm) in compacted thickness in layers of equal thickness, with no compacted layer more than 6 inches (150 mm) thick or less than 3 inches (75 mm) thick.
 - 2. Compact each layer of drainage course to required cross sections and thicknesses to not less than 95 percent of maximum dry unit weight according to ASTM D 698.

3.16 FIELD QUALITY CONTROL

- A. Special Inspections: Owner will engage a qualified special inspector to perform inspections:
- B. Testing Agency: Owner will engage a qualified geotechnical engineering testing agency to perform tests and inspections.

- C. Allow testing agency to inspect and test subgrades and each fill or backfill layer. Proceed with subsequent earth moving only after test results for previously completed work comply with requirements.
- D. Footing Subgrade: At footing subgrades, at least one test of each soil stratum will be performed to verify design bearing capacities. Subsequent verification and approval of other footing subgrades may be based on a visual comparison of subgrade with tested subgrade when approved by Architect.
- E. When testing agency reports that subgrades, fills, or backfills have not achieved degree of compaction specified, scarify and moisten or aerate, or remove and replace soil materials to depth required; recompact and retest until specified compaction is obtained.

3.17 PROTECTION

- A. Protecting Graded Areas: Protect newly graded areas from traffic, freezing, and erosion. Keep free of trash and debris.
- B. Repair and reestablish grades to specified tolerances where completed or partially completed surfaces become eroded, rutted, settled, or where they lose compaction due to subsequent construction operations or weather conditions.
- C. Where settling occurs before Project correction period elapses, remove finished surfacing, backfill with additional soil material, compact, and reconstruct surfacing.
 - 1. Restore appearance, quality, and condition of finished surfacing to match adjacent work, and eliminate evidence of restoration to greatest extent possible.

3.18 DISPOSAL OF SURPLUS AND WASTE MATERIALS

A. Remove surplus satisfactory soil and waste materials, including unsatisfactory soil, trash, and debris, and legally dispose of them off Owner's property.

END OF SECTION 312000

SECTION 321313 - CONCRETE PAVING

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes Concrete Paving including the following
 - 1. Driveways.
 - 2. Curbs.
 - 3. Walks.
 - 4. Concrete Pads.
 - 5. Walks.

1.2 ACTION SUBMITTALS

- A. Product Data: For each type of product.
- B. Samples: For each type of product, ingredient, or admixture requiring color selection.
- C. Design Mixtures: For each concrete paving mixture. Include alternate design mixtures when characteristics of materials, Project conditions, weather, test results, or other circumstances warrant adjustments.

1.3 QUALITY ASSURANCE

- A. Ready-Mix-Concrete Manufacturer Qualifications: A firm experienced in manufacturing ready-mixed concrete products and that complies with ASTM C 94/C 94M requirements for production facilities and equipment.
 - 1. Manufacturer certified according to NRMCA's "Certification of Ready Mixed Concrete Production Facilities" (Quality Control Manual Section 3, "Plant Certification Checklist").

1.4 PRECONSTRUCTION TESTING

A. Preconstruction Testing Service: Engage a qualified independent testing agency to perform preconstruction testing on concrete paving mixtures.

PART 2 - PRODUCTS

2.1 CONCRETE, GENERAL

A. ACI Publications: Comply with ACI 301 (ACI 301M) unless otherwise indicated.

2.2 STEEL REINFORCEMENT

- A. Recycled Content: Postconsumer recycled content plus one-half of preconsumer recycled content not less than 25 percent.
- B. Plain-Steel Welded-Wire Reinforcement: ASTM A 1064/A 1064M, fabricated from as-drawn steel wire into flat sheets.
- C. Deformed-Steel Welded-Wire Reinforcement: ASTM A 1064/A 1064M, flat sheet.
- D. Reinforcing Bars: ASTM A 615/A 615M, Grade 60 (Grade 420); deformed.
- E. Joint Dowel Bars: ASTM A 615/A 615M, Grade 60 (Grade 420) plain-steel bars[; zinc coated (galvanized) after fabrication according to ASTM A 767/A 767M, Class I coating]. Cut bars true to length with ends square and free of burrs.
- F. Bar Supports: Bolsters, chairs, spacers, and other devices for spacing, supporting, and fastening reinforcing bars, welded-wire reinforcement, and dowels in place. Manufacture bar supports according to CRSI's "Manual of Standard Practice" from steel wire, plastic, or precast concrete of greater compressive strength than concrete specified.

2.3 CONCRETE MATERIALS

- A. Regional Materials: Concrete shall be manufactured within 500 miles (800 km) of Project site from aggregates and cement that have been extracted, harvested, or recovered, as well as manufactured, within 500 miles (800 km) of Project site.
- B. Cementitious Materials: Shall be in conformance with New Jersey Department of Transportation (NJDOT) Standard Specifications for Road and Bridge Construction, 2007 Edition.
- C. Normal-Weight Aggregates: ASTM C 33/C 33M, Class 4S, uniformly graded. Provide aggregates from a single source.
- D. Air-Entraining Admixture: ASTM C 260/C 260M.
- E. Chemical Admixtures: Admixtures certified by manufacturer to be compatible with other admixtures and to contain not more than 0.1 percent water-soluble chloride ions by mass of cementitious material.
- F. Water: Potable and complying with ASTM C 94/C 94M.

2.4 CURING MATERIALS

- A. Absorptive Cover: AASHTO M 182, Class 3, burlap cloth made from jute or kenaf, weighing approximately 9 oz./sq. yd. (305 g/sq. m) dry or cotton mats].
- B. Moisture-Retaining Cover: ASTM C 171, polyethylene film or white burlap-polyethylene sheet.
- C. Water: Potable.
- D. Evaporation Retarder: Waterborne, monomolecular, film forming, manufactured for application to fresh concrete.

- E. Clear, Waterborne, Membrane-Forming Curing Compound: ASTM C 309, Type 1, Class B, dissipating.
- F. White, Waterborne, Membrane-Forming Curing Compound: ASTM C 309, Type 2, Class B, dissipating.

2.5 RELATED MATERIALS

- A. Joint Fillers: ASTM D 1751, asphalt-saturated cellulosic fiber or ASTM D 1752, cork or self-expanding cork in preformed strips.
- B. Slip-Resistive Aggregate Finish: Factory-graded, packaged, rustproof, nonglazing, abrasive aggregate of fused aluminum-oxide granules or crushed emery aggregate containing not less than 50 percent aluminum oxide and not less than 20 percent ferric oxide; unaffected by freezing, moisture, and cleaning materials.

2.6 CONCRETE MIXTURES

- A. Prepare design mixtures, proportioned according to ACI 301 (ACI 301M), for each type and strength of normal-weight concrete, and as determined by either laboratory trial mixtures or field experience.
- B. Cementitious Materials: In accordance with NJDOT Standard Specifications. Add air-entraining admixture at manufacturer's prescribed rate to result in normal-weight concrete at point of placement having an air content as follows:
 - 1. Air Content: In accordance with NJDOT Standard Specifications.
- C. Chemical Admixtures: Use admixtures according to manufacturer's written instructions.
- D. Concrete Mixtures: In accordance with NJDOT Standard Specifications.

2.7 CONCRETE MIXING

A. Ready-Mixed Concrete: Measure, batch, and mix concrete materials and concrete according to ASTM C 94/C 94M [and ASTM C 1116/C 1116M]. Furnish batch certificates for each batch discharged and used in the Work.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Proof-roll prepared subbase surface below concrete paving to identify soft pockets and areas of excess yielding.

3.2 PREPARATION

A. Remove loose material from compacted subbase surface immediately before placing concrete.

3.3 EDGE FORMS AND SCREED CONSTRUCTION

- A. Set, brace, and secure edge forms, bulkheads, and intermediate screed guides to required lines, grades, and elevations. Install forms to allow continuous progress of work and so forms can remain in place at least 24 hours after concrete placement.
- B. Clean forms after each use and coat with form-release agent to ensure separation from concrete without damage.

3.4 STEEL REINFORCEMENT INSTALLATION

A. Comply with CRSI's "Manual of Standard Practice" for fabricating, placing, and supporting reinforcement.

3.5 JOINTS

- A. General: Form construction, isolation, and contraction joints and tool edges true to line, with faces perpendicular to surface plane of concrete. Construct transverse joints at right angles to centerline unless otherwise indicated.
- B. Construction Joints: Set construction joints at side and end terminations of paving and at locations where paving operations are stopped for more than one-half hour unless paving terminates at isolation joints.
- C. Isolation Joints: Form isolation joints of preformed joint-filler strips abutting concrete curbs, catch basins, manholes, inlets, structures, other fixed objects, and where indicated.
- D. Contraction Joints: Form weakened-plane contraction joints, sectioning concrete into areas as indicated. Construct contraction joints for a depth equal to at least one-fourth of the concrete thickness[, to match jointing of existing adjacent concrete paving]:
- E. Edging: After initial floating, tool edges of paving, gutters, curbs, and joints in concrete with an edging tool to a 1/4-inch radius. Repeat tooling of edges after applying surface finishes. Eliminate edging-tool marks on concrete surfaces.

3.6 CONCRETE PLACEMENT

- A. Moisten subbase to provide a uniform dampened condition at time concrete is placed. Do not place concrete around manholes or other structures until they are at required finish elevation and alignment.
- B. Comply with ACI 301 (ACI 301M) requirements for measuring, mixing, transporting, and placing concrete.
- C. Deposit and spread concrete in a continuous operation between transverse joints. Do not push or drag concrete into place or use vibrators to move concrete into place.
- D. Screed paving surface with a straightedge and strike off.
- E. Commence initial floating using bull floats or darbies to impart an open-textured and uniform surface plane before excess moisture or bleedwater appears on the surface. Do not further disturb concrete surfaces before beginning finishing operations or spreading surface treatments.

3.7 FLOAT FINISHING

- A. General: Do not add water to concrete surfaces during finishing operations.
 - 1. Float Finish: In accordance with NJDOT Standard Specifications.

3.8 CONCRETE PROTECTION AND CURING

- A. General: Protect freshly placed concrete from premature drying and excessive cold or hot temperatures.
- B. Comply with ACI 306.1 for cold-weather protection.
- C. Evaporation Retarder: Apply evaporation retarder to concrete surfaces if hot, dry, or windy conditions cause moisture loss approaching 0.2 lb/sq. ft. x h (1 kg/sq. m x h) before and during finishing operations. Apply according to manufacturer's written instructions after placing, screeding, and bull floating or darbying concrete but before float finishing.
- D. Begin curing after finishing concrete but not before free water has disappeared from concrete surface.
- E. Curing Methods: Cure concrete by moisture curing, moisture-retaining-cover curing curing compound or a combination of these.

3.9 PAVING TOLERANCES

A. Comply with tolerances in ACI 117 (ACI 117M) and the NJDOT Standard Specifications

3.10 REPAIR AND PROTECTION

- A. Remove and replace concrete paving that is broken, damaged, or defective or that does not comply with requirements in this Section. Remove work in complete sections from joint to joint unless otherwise approved by Architect.
- B. Protect concrete paving from damage. Exclude traffic from paving for at least 14 days after placement. When construction traffic is permitted, maintain paving as clean as possible by removing surface stains and spillage of materials as they occur.
- C. Maintain concrete paving free of stains, discoloration, dirt, and other foreign material. Sweep paving not more than two days before date scheduled for Substantial Completion inspections.

END OF SECTION 321313

SECTION 329200 - TURF AND GRASSES

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes:
 - 1. Topsoiling.
 - 2. Seeding.
 - 3. Sodding.

1.2 DEFINITIONS

- A. Pesticide: A substance or mixture intended for preventing, destroying, repelling, or mitigating a pest. This includes insecticides, miticides, herbicides, fungicides, rodenticides, and molluscicides. It also includes substances or mixtures intended for use as a plant regulator, defoliant, or desiccant.
- B. Planting Soil: Existing, on-site soil; imported soil; or manufactured soil that has been modified with soil amendments and perhaps fertilizers to produce a soil mixture best for plant growth.
- C. Topsoil: Natural, fertile soil capable of sustaining vigorous plant growth.

1.3 INFORMATIONAL SUBMITTALS

- A. Certification of grass seed.
 - 1. Certification of each seed mixture.
- B. Product certificates.
 - 1. Testing data for topsoil.

1.4 QUALITY ASSURANCE

- A. Installer Qualifications: A qualified landscape Installer whose work has resulted in successful turf establishment.
 - 1. Installer's Field Supervision: Require Installer to maintain an experienced full-time supervisor on Project site when work is in progress.
 - 2. Personnel Certifications: Installer's field supervisor shall have certification in one of the following categories from the Professional Landcare Network:
 - a. Landscape Industry Certified Technician Exterior.
 - b. Landscape Industry Certified Lawncare Manager.
 - c. Landscape Industry Certified Lawncare Technician.

3. Pesticide Applicator: State licensed, commercial.

1.5 DELIVERY, STORAGE, AND HANDLING

A. Seed and Other Packaged Materials: Deliver packaged materials in original, unopened containers showing weight, certified analysis, name and address of manufacturer, and indication of compliance with state and Federal laws, as applicable.

PART 2 - PRODUCTS

2.1 SEED

- A. Grass Seed: Fresh, clean, dry, new-crop seed complying with AOSA's "Rules for Testing Seeds" for purity and germination tolerances.
- B. Grass-Seed Mix:
 - 1. Products: NJDOT Type A-3 seed mix.

2.2 TURFGRASS SOD

2.3 FERTILIZERS

- A. Commercial Fertilizer: Commercial-grade complete fertilizer of neutral character, consisting of fast- and slow-release nitrogen, 50 percent derived from natural organic sources of urea formaldehyde, phosphorous, and potassium in the following composition:
 - 1. Composition: 1 lb/1000 sq. ft. of actual nitrogen, 4 percent phosphorous, and 2 percent potassium, by weight.

2.4 MULCHES

- A. Straw Mulch: Provide air-dry, clean, mildew- and seed-free, salt hay or threshed straw of wheat, rye, oats, or barley.
- B. Sphagnum Peat Mulch: Partially decomposed sphagnum peat moss, finely divided or of granular texture, and with a pH range of 3.4 to 4.8.
- C. Muck Peat Mulch: Partially decomposed moss peat, native peat, or reed-sedge peat, finely divided or of granular texture, with a pH range of 6 to 7.5, and having a water-absorbing capacity of 1100 to 2000 percent, and containing no sand.
- D. Compost Mulch: Well-composted, stable, and weed-free organic matter, pH range of 5.5 to 8; moisture content 35 to 55 percent by weight; 100 percent passing through 1-inch sieve; soluble salt content of 2 to 5 decisiemens/m; not exceeding 0.5 percent inert contaminants and free of substances toxic to plantings; and as follows:

2.5 PESTICIDES

A. General: Pesticide, registered and approved by the EPA, acceptable to authorities having jurisdiction, and of type recommended by manufacturer for each specific problem and as required for Project conditions and application. Do not use restricted pesticides unless authorized in writing by authorities having jurisdiction.

2.5 TOPSOIL

- A. General: Topsoil shall be loamy sand, sandy loam, clay-loam, loam, silt loam, or other soil approved by the Engineer. It shall be natural, fertile soil capable of sustaining vigorous plant growth and shall be of a uniform_quality, free from subsoil, slag, cinders, stones 1 inch or larger in any dimension, lumps of soil, sticks, roots, trash, or other extraneous, undesirable materials. Topsoil shall also be free of viable plants or plant parts of Bermuda grass, quackgrass, Johnson grass, nut sedge, poison ivy, Canada_thistle, or similar material. The contractor shall have all topsoil tested by a reputable laboratory with resulting documentation submitted to the Engineer.
- B. If testing reveals that the topsoil does not conform to the requirements of this section, the contractor shall be responsible for adjusting the ph range and/or percent of organic matter by means of approved additives.
- C. Topsoil shall meet the following requirements:
 - 1. ph range 5.0 to 7.0.
 - 2. Organic matter four (4) percent (loss on ignition).
 - 3. Soluble salts no higher than 500 parts per million.
 - 4. Sieve Analysis:

Sieve Size	Percent Passing
1"	100%
1/2"	97%
#10	60-80%
#40	40-60%
#60	40-60%
#100	10-30%
#200	10-20%

- D. When topsoil, stockpiled on site, is to be reused, soil debris to include roots, sods, stones, clay lumps, and other extraneous materials harmful to plant growth shall be removed prior to reuse.
- E. Materials stripped from the following sources shall not be considered suitable for use as topsoil:
 - 1. Soils having less than 4.1 ph value.
 - 2. Chemically contaminated soils.
 - 3. Areas from which the original surface has been stripped and/or covered over such as borrow pits, open mines, demolition sites, dumps, and sanitary landfills.

4. Wet excavation.

PART 3 - EXECUTION

3.1 TURF AREA PREPARATION

- A. General: Prepare graded area for topsoil placement
- B. Scarify the area to be topsoiled to improve the bond between slope and topsoil. Remove from the scarified area stones 2 inches or larger in any dimension and other debris such as wires, cables, tree roots, pieces of concrete, clods and lumps.
- C. After the Engineer has approved the prepared surface elevations, spread topsoil and smooth to grade to produce the required thickness.
- D. Ensure that ground areas are not damaged by the delivery, handling or storage of materials; by washouts due to drainage diversion; by workers; or by equipment. Repair such damage by grading, fertilizing, seeding and mulching as specified herein.

3.2 SEEDING

- A. Sow seed with spreader or seeding machine. Do not broadcast or drop seed when wind velocity exceeds 5 mph.
 - 1. Evenly distribute seed by sowing equal quantities in two directions at right angles to each other.
 - 2. Do not use wet seed or seed that is moldy or otherwise damaged.
 - 3. Do not seed against existing trees. Limit extent of seed to outside edge of planting saucer.
- B. Sow seed at a total rate of 3 to 4 lb/1000 sq. ft.
- C. Rake seed lightly into top 1/8 inch of soil, roll lightly, and water with fine spray.
- D. Protect seeded areas with slopes not exceeding 1:6 by spreading straw mulch. Spread uniformly at a minimum rate of 2 tons/acreto form a continuous blanket in loose thickness over seeded areas.
 - 1. Anchor straw mulch by crimping into soil with suitable mechanical equipment.

3.3 SODDING

- A. Lay sod within 24 hours of harvesting. Do not lay sod if dormant or if ground is frozen or muddy.
- B. Lay sod to form a solid mass with tightly fitted joints. Butt ends and sides of sod; do not stretch or overlap. Stagger sod strips or pads to offset joints in adjacent courses. Avoid damage to soil or sod during installation. Tamp and roll lightly to ensure contact with soil, eliminate air pockets, and form a smooth surface. Work sifted soil or fine sand into minor cracks between pieces of sod; remove excess to avoid smothering sod and adjacent grass.
 - 1. Lay sod across slopes exceeding 1:3.
 - 2. Anchor sod on slopes exceeding 1:6 with wood pegs or steel staples spaced as recommended by sod manufacturer but not less than two anchors per sod strip to prevent slippage.

C. Saturate sod with fine water spray within two hours of planting. During first week after planting, water daily or more frequently as necessary to maintain moist soil to a minimum depth of 1-1/2 inchesbelow sod.

3.4 TURF MAINTENANCE

- A. General: Maintain and establish turf by watering, fertilizing, weeding, mowing, trimming, replanting, and performing other operations as required to establish healthy, viable turf. Roll, regrade, and replant bare or eroded areas and remulch to produce a uniformly smooth turf. Provide materials and installation the same as those used in the original installation.
- B. Mow turf as soon as top growth is tall enough to cut. Repeat mowing to maintain specified height without cutting more than one-third of grass height. Remove no more than one-third of grass-leaf growth in initial or subsequent mowings.

3.5 SATISFACTORY TURF

- A. Turf installations shall meet the following criteria as determined by Engineer:
 - 1. Satisfactory Seeded Turf: At end of maintenance period, a healthy, uniform, close stand of grass has been established, free of weeds and surface irregularities, with coverage exceeding 90 percent over any 10 sq. ft. and bare spots not exceeding 5 by 5 inches.
- B. Use specified materials to reestablish turf that does not comply with requirements and continue maintenance until turf is satisfactory.

END OF SECTION 329200